

Environmental Management Australia

Peter W Stephenson & Associates Pty Ltd ACN 002 600 526 (Incorporated in NSW) ABN 75 002 600 526

PO Box 6398 Silverwater NSW 1811 Tel: (02) 9737 9991 E-Mail: <u>info@stephensonenv.com.au</u>

EMISSION TEST REPORT (ETR) NO. 7174/S25797/21

STYRENE SCRUBBER EMISSION MONITORING

ROCBOLT RESINS PTY LIMITED

SMEATON GRANGE, NSW 2567

PROJECT NO.: 7174/\$25797/21

DATE OF SURVEY: 18 OCTOBER 2021

DATE OF ISSUE: 30 NOVEMBER 2021

EMISSION TEST REPORT NO. 7174/S25797/21

Client

Organisation:	Rocbolt Resins Pty Limited
Contact:	Andrew Sykes
Address:	40-44 Anzac Avenue, Smeaton Grange NSW 2567
Telephone:	02 4647 8388
Email:	asykes@rocboltresins.com.au
Project Number:	7174/S25797/21
Test Date:	18 October 2021
Production Conditions:	Normal operating conditions during testing
Analysis Requested:	Dry gas density, volumetric flowrate, velocity, temperature, moisture, molecular weight of stack gases, nitrogen oxides, particulate matter less than 10 microns, volatile organic compounds including styrene and benzene
Sample Locations:	Styrene dry scrubber exhaust stack
Sample ID Nos.:	See attachment A
Identification	The samples are labelled individually. Each label recorded the testing laboratory, sample number, sampling location (or Identification) sampling date and time and whether further analysis is required.

The sampling and analysis was commissioned by:

This report cannot be reproduced except in full.

Test	Test Method Number for Sampling & Analysis	Laboratory Analysis & Report No.			
Dry Gas Density	NSW TM-23, USEPA M3	SEMA, ETR No. 7174			
Moisture	NSW TM-22, USEPA M4	SEMA, ETR No. 7174			
Molecular Weight of Stack Gases	NSW TM-23, USEPA M3	SEMA, ETR No. 7174			
Oxides of Nitrogen	NSW TM-11, USEPA M7E	SEMA, ETR No. 7174			
Particulate Matter less than 10 microns	NSW OM-5, USEPA M201A	SEMA, Particle Test Report No. 2198			
Stack Pressure	NSW TM-2, USEPA M2	SEMA, ETR No. 7174			
Stack Temperature	NSW TM-2, USEPA M2	SEMA, ETR No. 7174			
Velocity	NSW TM-2, USEPA M2	SEMA, ETR No. 7174			
Volatile Organic Compounds (styrene, benzene, total as n- Propane)	NSW TM-34, USEPA M18	TestSafe Australia, Accreditation No. 3726, Report No. 2021-4972			
Volumetric Flowrate	NSW TM-2, USEPA M2	SEMA, ETR No. 7174			
Deviations from Test Methods Sampling Times	Nil NSW - As per Test Method requirements or if not specified in the Test Method then as per Protection of the				
Reference Conditions	Environment Operations (Clean Air) Regulations Part 2. NSW – As per (1) Environment Protection Licence conditions, or				

(2) Part 3 of the Protection of the Environment Operations (Clean Air) Regulations

All associated NATA endorsed Test Reports/Certificates of Analysis are provided in Attachment A.

Issue date: 30 November 2021

terheur

P W Stephenson Managing Director

1.1 SCOPE OF WORK

The scope of work undertaken at Rocbolt Resins, Smeaton Grange, on October 18, 2021 is tabled below. Rocbolt Resins holds Environment Protection Licence (EPL) No. 20944.

Parameter	Styrene Scrubber Exhaust Stack	Units of Measure	NSW Approved Test Method
VOCs including Styrene and Benzene	2 samples	mg/m ³ or g/s	OM-2, TM-34
Particulate matter less than 10 microns	1 sample	mg/m ³	OM-5, USEPA 201A
Nitrogen Oxides	Continuous	mg/m ³	TM-11
Dry Gas Density	✓	kg/m ²	TM-23
Moisture	✓	%	TM-22
Molecular weight of stack gases	✓	g.g-mole	TM-23
Temperature	✓	К	TM-2
Velocity	✓	m/s	TM-2
Volumetric flowrate	1	m³/s	TM-2

Key:

11091		
kg/m ³	=	kilograms per cubic metre
mg/m ³	=	milligrams per cubic metre at 0°C and 101.3 kilopascals (kPa)
g/s	=	grams per second
%	=	percentage
g.g-mole	=	grams per gram mole
g/s	=	grams per second
٥C	=	degrees Celsius
TM	=	test method
m/s	=	metres per second
m³/s	=	dry cubic metre per second 0°C and 101.3 kilopascals (kPa)
AS	=	Australian Standard
hr	=	hour
*	=	method agreed to by Chris Kelly, NSW EPA. Refer Benbow Environmental.

1.2 PRODUCTION AND SAMPLING CONDITIONS

Rocbolt Resins personnel considered the manufacturing facility was operating under typical conditions on the day of testing. Details of production conditions are available on request.

The following description of the process was supplied by Rocbolt Resins,

Rocbolt Resins manufactures resin capsules used as reinforcement for rocks/strata in the mining industry in conjunction with steel bolts and cables.

The capsules are a 2 part capsule, an outer plastic skin, sealed at both ends with clips and a separate inner compartment. The larger compartment consists of a highly viscous polyester resin mastic paste comprising approximately 20% polyester resin (contains Styrene monomer) & 80% inert limestone fillers. The smaller compartment consists of catalyst containing inert limestone fillers, benzoyl peroxide paste and oil or water as the carrier. The ratio of the two compartment ranges from 80:20 to 93:7 by weight.

Parameter		Unit of measure	Average Measured Concentrations 18 October 2021 Exhaust Stack	EPL Licence 20944 Limit
	(as Styrene)	mg/m ³	15.0	220
Styrene	(as n-propane)	mg/m ³	6.34	
	MER (as Styrene)	g/s	0.0055	
Dansana	(as Benzene)	mg/m ³	<0.18	
Benzene VOC (total)	MER (as Benzene)	g/s	<6.6 X 10-5	
VOC (total)	(as n- propane)	g/s	0.0035	
DM	concentration	mg/m ³	0.73	
PM_{10}	MER	g/s	0.0003	
Ouidaa af aitua aaa	concentration	mg/m ³	2	
Oxides of nitrogen	MER	g/s	0.0007 (7 X 10-4)	
Stack temperature	·	٥C	19.4 - 20.9	
Velocity		m/s	5.2	
Volumetric flow		m ³ /s	0.36	
Moisture		%	0.8	
Molecular weight dry	/ stack gas	g/g mole	28.9	
Gas Density		kg/m ³	1.29	
Stack pressure		kPa	101.9	

1.3 SUMMARY OF EMISSION TEST RESULTS – 18 OCTOBER 2021

Key:	EPL	=	Environment Protection Licence
-	MER	=	Mass Emission Rate
	VOC	=	Volatile organic compounds
	mg/m ³	=	milligrams per cubic metre at 0°C and 101.3 kilopascals (kPa)
	g/s	=	grams per second
	°C	=	degrees Celsius
	m/s	=	metres per second
	m ³ /s	=	dry cubic metre per second 0°C and 101.3 kilopascals (kPa)
	%	=	percentage
	<	=	less than
	g/g mole	=	grams per gram mole
	kg/m ³	=	Kilograms per cubic metre
	kPa	=	Kilo Pascals
		=	not specified in EPL 20944

ETR V1.4

1.4 ESTIMATED UNCERTAINTY OF MEASUREMENT

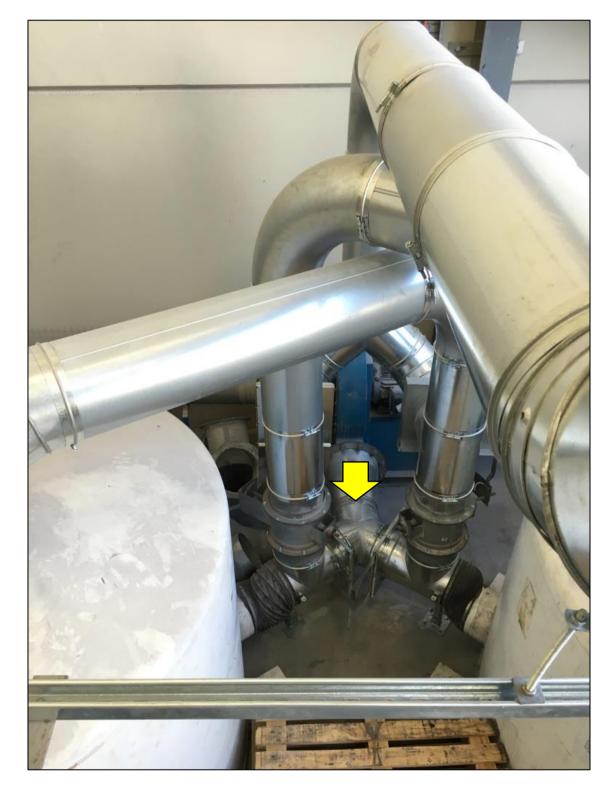
Pollutant	Methods	Uncertainty
Moisture	AS4323.2, NSW TM-22, USEPA 4	25%
Nitrogen Oxides	NSW TM-11, USEPA M7E	15%
Oxygen and Carbon Dioxide	NSW TM-24, TM-25, USEPA M3A	1% actual
Particulate matter less than 10 microns	NSW OM-5, USEPA M201A	50%
Velocity	AS4323.1, NSW TM-2, USEPA 2	5%
Volatile Organic Compounds (adsorption tube)	NSW TM-34, USEPA M18	25%
Styrene as Volatile Organic Compound (adsorption tube)	NSW TM-34, USEPA 18	25%

Key:

Unless otherwise indicated the uncertainties quoted have been determined @ 95% level of Confidence level (i.e. by multiplying the repeatability standard deviation by a co-efficient equal to 1.96) (Source – Measurement Uncertainty)

Sources: Measurement Uncertainty – implications for the enforcement of emission limits by Maciek Lewandowski (Environment Agency) & Michael Woodfield (AEAT) UK

Technical Guidance Note (Monitoring) M2 Monitoring of stack emissions to air Environment Agency Version 3.1 June 2005.


Note: ISO 9096 is for 20-1000 mg/m³⁻ which AS4323.2 is based on. Note DSEN 13284-1 testing for < 5 mg/m³ correlates to 5 mg/m³ with most quoted uncertainties of \pm 5.3 mg/m³ @ 6.4 mg/m³. From Clean Air Engineering in the United States the lowest practical limit of USEPA M5 is 5 mg/m³ under lab conditions.

1.5 DRY SCRUBBER SAMPLING LOCATIONS

PHOTOGRAPH 1 DRY CARBON SCRUBBERS AND OUTLET SAMPLE PORTS

ETR V1.4

PHOTOGRAPH 2 VARIABLE SPEED FAN EXTRACTING AIR FROM WITHIN PLANT TO SCRUBBER TOWERS IN SERIES

PHOTOGRAPH 3 DRY SCRUBBER MANUFACTURER'S DETAILS

ETR V1.4

SEMA Asset No.	Equipment Description	Date Last Calibrated	Calibration Due Date	
646	Stopwatch	12-May-21	12-Nov-21	
857	Digital Temperature Reader	06-May-21	06-Nov-21	
920	Thermocouple	06-May-21	06-Nov-21	
815	Digital Manometer	08-Dec-20	08-Dec-21	
613	Barometer	07-Dec-20	07-Dec-21	
183 Pitot		18-Mar-21	18-Mar-2022 Visually inspected On-Site before use	
928 Balance			Response Check with SEMA Site Mass	
125669	SKC PCXR Sampling Pump (Airmet)	25-Nov-20	25-Nov-21	
ML 520- 24	Mesa Labs Defender DryCal Mass Flowmeter	15-Jul-21	15-Jul-22	
946	Combustion Analyzer	1-Sep-21	01-Mar-22	
708	Gas Meter	22-Feb-21	22-Feb-22	
	Gas Mixtures used for An	alyser Span Response		
Conc.	Mixture	Cylinder No.	Expiry Date	
100 ppm 100 ppm 100 ppm	Nitric Oxide Total Oxide Of Nitrogen In Nitrogen Sulphur Dioxide In Nitrogen	ALTF 3709	09-Aug-23	

1.6 INSTRUMENT CALIBRATION DETAILS

1.7 CONCLUSIONS

Emissions were monitored on the discharge side of the two dry carbon scrubbing units connected in series, at the Rocbolt Resins manufacturing facility with the following results:

- The average Styrene emission concentration (reported as Styrene) was 15 mg/m^3 which was compliant with the EPL limit of 220 mg/m^3 . The styrene mass emission rate (MER) was less than 0.0055 grams per second (g/s).
- The average benzene MER (reported as benzene) was less than 6.6 X 10⁻⁵ g/s;
- The average total VOC MER (reported as n-propane) was 0.0035 g/s;
- $\circ~$ The average emission concentration of Oxides of Nitrogen (NO_x) (expressed as nitrogen dioxide (NO₂)) was 2.0 mg/m³. The NO_x MER was 0.0007-g/s.
- $\circ~$ The average PM_{10} emission concentration was 0.73 mg/m³. The PM_{10} MER was 0.0003 g/s.
- Rocbolt Resins advised that the variable speed extraction fan serving the scrubber system was running at its normal set point (20 Hertz) during the system efficiency testing. This is of the order of 50% of total flow;
- However, the fan speed is variable depending on demand for extraction within the plant. Rocbolt Resins advise that this is both an energy conservation and scrubber efficiency optimisation policy.

ATTACHMENT A – NATA CERTIFICATES OF ANALYSIS

	Analysis of	Volatile	Organi	c Com	pour	nds in Workplace Ai	and a second second	Service Conserves	
						Dat	te Sampled	18/10/20	21
	Client: Stephenson					Dat	e Analysed	18/10/20	21
:	Sample ID: 728227					Referen	ce Number	2021-49	72-1
No	Compounds	CAS No	Front	Back	No	Compounds	CAS No	Front	Back
	compounds		μg/se	ection	110	compounds	Chorio	μg/se	ection
	Aliphatic hydrocarbon	IS (LOQ = 5µg/c	ompound/sect	ion)		Aromatic hydrocarbon	S (LOQ = 1µg/co	ompound/secti	on)
1	2-Methylbutane	78-78-4	<loq< td=""><td><loq< td=""><td>39</td><td>Benzene</td><td>71-43-2</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>39</td><td>Benzene</td><td>71-43-2</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	39	Benzene	71-43-2	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
2	n-Pentane	109-66-0	<loq< td=""><td><loq< td=""><td>40</td><td>Ethylbenzene</td><td>100-41-4</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>40</td><td>Ethylbenzene</td><td>100-41-4</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	40	Ethylbenzene	100-41-4	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
3	2-Methylpentane	107-83-5	<loq< td=""><td><loq< td=""><td>41</td><td>Isopropylbenzene</td><td>98-82-8</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>41</td><td>Isopropylbenzene</td><td>98-82-8</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	41	Isopropylbenzene	98-82-8	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
4	3-Methylpentane	96-14-0	<loq< td=""><td><loq< td=""><td>42</td><td>1,2,3-Trimethylbenzene</td><td>526-73-8</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>42</td><td>1,2,3-Trimethylbenzene</td><td>526-73-8</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	42	1,2,3-Trimethylbenzene	526-73-8	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
5	Cyclopentane	287-92-3	<loq< td=""><td><loq< td=""><td>43</td><td>1,2,4-Trimethylbenzene</td><td>95-63-6</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>43</td><td>1,2,4-Trimethylbenzene</td><td>95-63-6</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	43	1,2,4-Trimethylbenzene	95-63-6	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
6	Methylcyclopentane	96-37-7	<loq< td=""><td><loq< td=""><td>44</td><td>1,3,5-Trimethylbenzene</td><td>108-67-8</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>44</td><td>1,3,5-Trimethylbenzene</td><td>108-67-8</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	44	1,3,5-Trimethylbenzene	108-67-8	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
7	2,3-Dimethylpentane	565-59-3	<loq< td=""><td><loq< td=""><td>45</td><td>Styrene</td><td>100-42-5</td><td>80</td><td><loc< td=""></loc<></td></loq<></td></loq<>	<loq< td=""><td>45</td><td>Styrene</td><td>100-42-5</td><td>80</td><td><loc< td=""></loc<></td></loq<>	45	Styrene	100-42-5	80	<loc< td=""></loc<>
8	n-Hexane	110-54-3	<loq< td=""><td><loq< td=""><td>46</td><td>Toluene</td><td>108-88-3</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>46</td><td>Toluene</td><td>108-88-3</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	46	Toluene	108-88-3	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
9	3-Methylhexane	589-34-4	<loq< td=""><td><loq< td=""><td>47</td><td>p-Xylene &/or m-Xylene</td><td>106-42-3 & 108-38-3</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>47</td><td>p-Xylene &/or m-Xylene</td><td>106-42-3 & 108-38-3</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	47	p-Xylene &/or m-Xylene	106-42-3 & 108-38-3	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
10	Cyclohexane	110-82-7	<loq< td=""><td><loq< td=""><td>48</td><td>o-Xylene</td><td>95-47-6</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>48</td><td>o-Xylene</td><td>95-47-6</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	48	o-Xylene	95-47-6	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
11	Methylcyclohexane	108-87-2	<loq< td=""><td><loq< td=""><td></td><td>Ketones (LOQ #49, #54 & #55</td><td></td><td>51, #52 & #53</td><td>=25µg/c/s)</td></loq<></td></loq<>	<loq< td=""><td></td><td>Ketones (LOQ #49, #54 & #55</td><td></td><td>51, #52 & #53</td><td>=25µg/c/s)</td></loq<>		Ketones (LOQ #49, #54 & #55		51, #52 & #53	=25µg/c/s)
12	2,2,4-Trimethylpentane	540-84-1	<loq< td=""><td><loq< td=""><td>49</td><td>Acetone</td><td>67-64-1</td><td>22</td><td><l00< td=""></l00<></td></loq<></td></loq<>	<loq< td=""><td>49</td><td>Acetone</td><td>67-64-1</td><td>22</td><td><l00< td=""></l00<></td></loq<>	49	Acetone	67-64-1	22	<l00< td=""></l00<>
13	n-Heptane	142-82-5	<loq< td=""><td><loq< td=""><td>50</td><td>Acetoin</td><td>513-86-0</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>50</td><td>Acetoin</td><td>513-86-0</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	50	Acetoin	513-86-0	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
14	n-Octane	111-65-9	<loq< td=""><td><loq< td=""><td>51</td><td>Diacetone alcohol</td><td>123-42-2</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>51</td><td>Diacetone alcohol</td><td>123-42-2</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	51	Diacetone alcohol	123-42-2	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
15	n-Nonane	111-84-2	<loq< td=""><td><loq< td=""><td>52</td><td>Cyclohexanone</td><td>108-94-1</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>52</td><td>Cyclohexanone</td><td>108-94-1</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	52	Cyclohexanone	108-94-1	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
16	n-Decane	124-18-5	<loq< td=""><td><loq< td=""><td>53</td><td>Isophorone</td><td>78-59-1</td><td><loq< td=""><td><loc< td=""></loc<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>53</td><td>Isophorone</td><td>78-59-1</td><td><loq< td=""><td><loc< td=""></loc<></td></loq<></td></loq<>	53	Isophorone	78-59-1	<loq< td=""><td><loc< td=""></loc<></td></loq<>	<loc< td=""></loc<>
17	n-Undecane	1120-21-4	<loq< td=""><td><loq< td=""><td>54</td><td>Methyl ethyl ketone (MEK)</td><td>78-93-3</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>54</td><td>Methyl ethyl ketone (MEK)</td><td>78-93-3</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	54	Methyl ethyl ketone (MEK)	78-93-3	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
18	n-Dodecane	112-40-3	<loq< td=""><td><loq< td=""><td>55</td><td>Methyl isobutyl ketone (MIBK)</td><td></td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>55</td><td>Methyl isobutyl ketone (MIBK)</td><td></td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	55	Methyl isobutyl ketone (MIBK)		<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
19	n-Tridecane	629-50-5	<loq< td=""><td><loq< td=""><td></td><td>Alcohols (LOQ = 25µg/compe</td><td>100 10 1</td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>Alcohols (LOQ = 25µg/compe</td><td>100 10 1</td><td></td><td></td></loq<>		Alcohols (LOQ = 25µg/compe	100 10 1		
20	n-Tetradecane	629-59-4	<l00< td=""><td><l00< td=""><td>56</td><td>Ethyl alcohol</td><td>64-17-5</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></l00<></td></l00<>	<l00< td=""><td>56</td><td>Ethyl alcohol</td><td>64-17-5</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></l00<>	56	Ethyl alcohol	64-17-5	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
21	α-Pinene	80-56-8	<loq< td=""><td><loq< td=""><td>57</td><td>n-Butyl alcohol</td><td>71-36-3</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>57</td><td>n-Butyl alcohol</td><td>71-36-3</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	57	n-Butyl alcohol	71-36-3	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
22	β-Pinene	127-91-3	<loq< td=""><td><1.00</td><td>58</td><td>Isobutyl alcohol</td><td>78-83-1</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	<1.00	58	Isobutyl alcohol	78-83-1	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
23	D-Limonene	138-86-3	<loq< td=""><td><loq< td=""><td>59</td><td>Isopropyl alcohol</td><td>67-63-0</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>59</td><td>Isopropyl alcohol</td><td>67-63-0</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	59	Isopropyl alcohol	67-63-0	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
	Chlorinated hydrocart	-			60	2-Ethyl hexanol	104-76-7	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
24	Dichloromethane	75-09-2	<loq< td=""><td><loq< td=""><td>61</td><td>Cyclohexanol</td><td>108-93-0</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>61</td><td>Cyclohexanol</td><td>108-93-0</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	61	Cyclohexanol	108-93-0	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
25	1,1-Dichloroethane	75-34-3	<1.00	<1.00		Acetates (LOQ = 25µg/compo		204	
26	1,2-Dichloroethane	107-06-2	<loq< td=""><td><loq< td=""><td>62</td><td>Ethyl acetate</td><td>141-78-6</td><td><l00< td=""><td><l00< td=""></l00<></td></l00<></td></loq<></td></loq<>	<loq< td=""><td>62</td><td>Ethyl acetate</td><td>141-78-6</td><td><l00< td=""><td><l00< td=""></l00<></td></l00<></td></loq<>	62	Ethyl acetate	141-78-6	<l00< td=""><td><l00< td=""></l00<></td></l00<>	<l00< td=""></l00<>
27	Chloroform	67-66-3	<loq< td=""><td><loq< td=""><td>63</td><td>n-Propyl acetate</td><td>109-60-4</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>63</td><td>n-Propyl acetate</td><td>109-60-4</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	63	n-Propyl acetate	109-60-4	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
28	1,1,1-Trichloroethane	71-55-6	<loq< td=""><td><loq< td=""><td>64</td><td>n-Butyl acetate</td><td>123-86-4</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>64</td><td>n-Butyl acetate</td><td>123-86-4</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	64	n-Butyl acetate	123-86-4	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
29	1,1,2-Trichloroethane	79-00-5	<loq< td=""><td><loq< td=""><td>65</td><td>Isobutyl acetate</td><td>123-80-4</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>65</td><td>Isobutyl acetate</td><td>123-80-4</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	65	Isobutyl acetate	123-80-4	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
30	Trichloroethylene	79-01-6	<loq< td=""><td><loq< td=""><td></td><td>Ethers (LOQ = 25µg/compound</td><td></td><td>204</td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>Ethers (LOQ = 25µg/compound</td><td></td><td>204</td><td></td></loq<>		Ethers (LOQ = 25µg/compound		204	
31	Carbon tetrachloride	56-23-5	<1.00	<1.00	66	Ethyl ether	60-29-7	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
32	Perchloroethylene	127-18-4	<loq< td=""><td><loq< td=""><td>67</td><td>tert -Butyl methyl ether (MTBE)</td><td>1634-04-4</td><td><l00< td=""><td><l00< td=""></l00<></td></l00<></td></loq<></td></loq<>	<loq< td=""><td>67</td><td>tert -Butyl methyl ether (MTBE)</td><td>1634-04-4</td><td><l00< td=""><td><l00< td=""></l00<></td></l00<></td></loq<>	67	tert -Butyl methyl ether (MTBE)	1634-04-4	<l00< td=""><td><l00< td=""></l00<></td></l00<>	<l00< td=""></l00<>
33	1,1,2,2-Tetrachloroethane	79-34-5	<loq< td=""><td><loq< td=""><td>68</td><td>Tetrahydrofuran (THF)</td><td>109-99-9</td><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></loq<></td></loq<>	<loq< td=""><td>68</td><td>Tetrahydrofuran (THF)</td><td>109-99-9</td><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></loq<>	68	Tetrahydrofuran (THF)	109-99-9	<l0q< td=""><td><l00< td=""></l00<></td></l0q<>	<l00< td=""></l00<>
34	Chlorobenzene	108-90-7	<loq< td=""><td><loq< td=""><td></td><td>Glycols (LOQ = 25µg/compou</td><td></td><td>-204</td><td>-200</td></loq<></td></loq<>	<loq< td=""><td></td><td>Glycols (LOQ = 25µg/compou</td><td></td><td>-204</td><td>-200</td></loq<>		Glycols (LOQ = 25µg/compou		-204	-200
35	1,2-Dichlorobenzene	95-50-1	<l0q< td=""><td><l0q< td=""><td>69</td><td>PGME</td><td></td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></l0q<></td></l0q<>	<l0q< td=""><td>69</td><td>PGME</td><td></td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></l0q<>	69	PGME		<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
36	1,4-Dichlorobenzene		<loq< td=""><td><l0q< td=""><td>70</td><td>Ethylene glycol diethyl ether</td><td>107-98-2</td><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></l0q<></td></loq<>	<l0q< td=""><td>70</td><td>Ethylene glycol diethyl ether</td><td>107-98-2</td><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></l0q<>	70	Ethylene glycol diethyl ether	107-98-2	<l0q< td=""><td><l00< td=""></l00<></td></l0q<>	<l00< td=""></l00<>
	Miscellaneous (LOQ #37=	106-46-7			70	PGMEA	629-14-1	<l0q< td=""><td><l00< td=""></l00<></td></l0q<>	<l00< td=""></l00<>
37	Acetonitrile		<loq< td=""><td><loq< td=""><td>72</td><td>Cellosolve acetate</td><td>108-65-6</td><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></loq<></td></loq<>	<loq< td=""><td>72</td><td>Cellosolve acetate</td><td>108-65-6</td><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></loq<>	72	Cellosolve acetate	108-65-6	<l0q< td=""><td><l00< td=""></l00<></td></l0q<>	<l00< td=""></l00<>
38	n-Vinyl-2-pyrrolidinone	75-05-8	<l0q< td=""><td><l0q< td=""><td>72</td><td>DGMEA</td><td>111-15-9</td><td></td><td></td></l0q<></td></l0q<>	<l0q< td=""><td>72</td><td>DGMEA</td><td>111-15-9</td><td></td><td></td></l0q<>	72	DGMEA	111-15-9		
	Extra compound (LOQ -	88-12-0		LUQ	15	Extra compound (LOQ =	112-15-2	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
74	Bromopropane *	106-94-5	<loq< td=""><td><l0q< td=""><td>75</td><td>Naphthalene *</td><td>91-20-3</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></l0q<></td></loq<>	<l0q< td=""><td>75</td><td>Naphthalene *</td><td>91-20-3</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></l0q<>	75	Naphthalene *	91-20-3	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
-									

. C X 7 1 0 . . COAR

Accreditation No. 3726

ac-MRA NATA

2021-4972

hulm

Accredited for compliance with ISO/IEC 17025 - Testing

SW08051 0817

2021-49

TestSafe Australia – Chemical Analysis Branch

Total VOCs (LOQ =50µg/compound/section)

ABN 81 913 830 179 Level 2, Building 1, 9–15 Chilvers Road, Thornleigh, NSW 2120, Australia

Telephone +61 2 9473 4000 Email lab@safework.nsw.gov.au Website testsafe.com.au

102

<LOQ

Worksheet check

Analysis of Volatile Organic Compounds in Workplace Air by GC/MS

Date Sampled 18/10/2021 Date Analysed 18/10/2021

Client: Stephenson Sample ID: 728228

Reference Number 2021-4972-2

No	Compounds	CAS No	Front	Back	No	Compounds	CAS No	Front	Back
	n - Costor Grandsh		µg/section				5110 110	µg/section	
	Aliphatic hydrocarbor	18 (1.0Q = Sµg/e	onpound/sect	ion)		Aromatic hydrocarbon	s (LOQ - lugico	appund/sect	en)
1	2-Methylbutane	78-78-4	<1.00	<1.0Q	39	Beazene	71-43-2	<1.0Q	<l00< th=""></l00<>
2	n-Pentane	109-66-0	<1.0Q	<l0q< td=""><td>40</td><td>Ethylbenzene</td><td>100-41-4</td><td><1.00</td><td><l00< td=""></l00<></td></l0q<>	40	Ethylbenzene	100-41-4	<1.00	<l00< td=""></l00<>
3	2-Methylpentane	107-83-5	<1.0Q	<1.0Q	41	IsopropyBenzene	98-82-8	<1.0Q	<1.0
4	3-Methylpentane	96-14-0	<l0q< td=""><td><l0q< td=""><td>42</td><td>1,2,3-Trimethylbenzene</td><td>526-73-8</td><td><l0q< td=""><td><l0< td=""></l0<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td>42</td><td>1,2,3-Trimethylbenzene</td><td>526-73-8</td><td><l0q< td=""><td><l0< td=""></l0<></td></l0q<></td></l0q<>	42	1,2,3-Trimethylbenzene	526-73-8	<l0q< td=""><td><l0< td=""></l0<></td></l0q<>	<l0< td=""></l0<>
5	Cyclopentane	287-92-3	<1.0Q	<1.0Q	43	1,2,4-Trimethylbenzene	95-63-6	<l0q< td=""><td><1.0</td></l0q<>	<1.0
б	Methylcyclopentane	96-37-7	<1.0Q	<loq< td=""><td>44</td><td>1,3,5-Trimethylbenzene</td><td>108-67-8</td><td><1.0Q</td><td><1.0</td></loq<>	44	1,3,5-Trimethylbenzene	108-67-8	<1.0Q	<1.0
7	2,3-Dimethylpentane	565-59-3	<1.0Q	<loq< td=""><td>45</td><td>Styrene</td><td>100-42-5</td><td>83</td><td><l0< td=""></l0<></td></loq<>	45	Styrene	100-42-5	83	<l0< td=""></l0<>
8	n-Hexane	110-34-3	<1.0Q	<loq< td=""><td>46</td><td>Toluene</td><td>108-88-3</td><td><1.0Q</td><td><1.0</td></loq<>	46	Toluene	108-88-3	<1.0Q	<1.0
9	3-Methylhexane	589-34-4	<1.0Q	<1.0Q	47	p-Xylene &/or m-Xylene	106-82.7 # 108-82.7 #	<1.0Q	<l0< td=""></l0<>
10	Cyclohexane	110-82-7	<1.0Q	<loq< td=""><td>48</td><td>o-Xylene</td><td>95-47-6</td><td><1.0Q</td><td><1.0</td></loq<>	48	o-Xylene	95-47-6	<1.0Q	<1.0
11	Methylcyclohexane	108-87-2	<1.00	<l00< td=""><td></td><td>Ketones (LOQ #49, #54 & #55</td><td></td><td>1, 652 & 853</td><td>-2Sugisla</td></l00<>		Ketones (LOQ #49, #54 & #55		1, 652 & 853	-2Sugisla
12	2,2,4-Trimethylpentane	540-84-1	<1.0Q	<l00< td=""><td>49</td><td>Acetone</td><td>67-64-1</td><td>24</td><td><l0< td=""></l0<></td></l00<>	49	Acetone	67-64-1	24	<l0< td=""></l0<>
13	n-Heptaae	142-82-5	<l00< td=""><td><1.00</td><td>50</td><td>Acetoin</td><td>513-86-0</td><td><1.00</td><td><l0< td=""></l0<></td></l00<>	<1.00	50	Acetoin	513-86-0	<1.00	<l0< td=""></l0<>
14	n-Octane	111-63-9	<1.00	<1.00	51	Diacetone alcohol	123-42-2	4.00	<1.0
15	n-Nonane	111-84-2	<l00< td=""><td><1.00</td><td>52</td><td>Cyclohexanone</td><td>108-94-1</td><td><1.00</td><td><1.0</td></l00<>	<1.00	52	Cyclohexanone	108-94-1	<1.00	<1.0
16	n-Decane	124-18-5	<1.00	<l00< td=""><td>53</td><td>Isophorone</td><td>78-59-1</td><td><1.00</td><td><l0< td=""></l0<></td></l00<>	53	Isophorone	78-59-1	<1.00	<l0< td=""></l0<>
17	n-Undecane	1120-21-4	<1.00	<1.00	54	Methyl ethyl ketone (MEK)	78-93-3	<1.00	<l0< td=""></l0<>
18	n-Dodecane	112-40-3	<1.00	<1.00	55	Methyl isobutyl ketone (MIBK	108-10-1	<l0q< td=""><td><1.0</td></l0q<>	<1.0
19	n-Tridecane	629-50-5	<l00< td=""><td><l00< td=""><td></td><td>Alcohols (1.00 - 15ugicomp</td><td>and the second second second</td><td></td><td></td></l00<></td></l00<>	<l00< td=""><td></td><td>Alcohols (1.00 - 15ugicomp</td><td>and the second second second</td><td></td><td></td></l00<>		Alcohols (1.00 - 15ugicomp	and the second second second		
20	n-Tetradecane	629-59-4	<l00< td=""><td><1.00</td><td>56</td><td>Ethyl alcohol</td><td>64-17-3</td><td><1.00</td><td><l0< td=""></l0<></td></l00<>	<1.00	56	Ethyl alcohol	64-17-3	<1.00	<l0< td=""></l0<>
21	a-Pinene	80-56-8	<1.00	<1.00	57	n-Butyl alcohol	71-36-3	<1.00	<1.0
22	β-Pinene	127-91-3	<1.00	<1.00	58	Isobutyl alcohol	78-83-1	<1.00	<l0< td=""></l0<>
23	D-Limonene	138-86-3	<1.00	<l00< td=""><td>59</td><td>Isopropyl alcohol</td><td>67-63-0</td><td><l00< td=""><td><l0< td=""></l0<></td></l00<></td></l00<>	59	Isopropyl alcohol	67-63-0	<l00< td=""><td><l0< td=""></l0<></td></l00<>	<l0< td=""></l0<>
+	Chlorinated hydrocarl				60	2-Ethyl hexanol	104-76-7	<l00< td=""><td><1.0</td></l00<>	<1.0
24	Dichloromethane	75-09-2	<l00< td=""><td><1.00</td><td>61</td><td>Cyclohexanol</td><td>108-93-0</td><td><l00< td=""><td><1.0</td></l00<></td></l00<>	<1.00	61	Cyclohexanol	108-93-0	<l00< td=""><td><1.0</td></l00<>	<1.0
25	1.1-Dichlomethane	75-34-3	<1.00	<1.00		Acetates (LOQ = 25gg/compo			
26	1.2-Dichloroethane	107-06-2	<l00< td=""><td><1.00</td><td>62</td><td>Ethyl acetate</td><td>141-78-6</td><td><l00< td=""><td><1.0</td></l00<></td></l00<>	<1.00	62	Ethyl acetate	141-78-6	<l00< td=""><td><1.0</td></l00<>	<1.0
27	Chloroform	67-66-3	<l00< td=""><td><1.00</td><td>63</td><td>n-Propyl acetate</td><td>109-60-4</td><td><1.00</td><td><1.0</td></l00<>	<1.00	63	n-Propyl acetate	109-60-4	<1.00	<1.0
28	1,1,1-Trichloroethane	71-55-6	<1.00	<1.00	64	n-Butyl acetate	123-86-4	<1.00	<1.0
29	1,1,2-Trichlotoethane	79-00-5	<l00< td=""><td><l00< td=""><td>65</td><td>Isobutyl acetate</td><td>110-19-0</td><td><1.00</td><td><1.0</td></l00<></td></l00<>	<l00< td=""><td>65</td><td>Isobutyl acetate</td><td>110-19-0</td><td><1.00</td><td><1.0</td></l00<>	65	Isobutyl acetate	110-19-0	<1.00	<1.0
30	Trichlomethylene	79-01-6	<l00< td=""><td><1.00</td><td></td><td>Ethers (LOQ - 25µg/compound</td><td>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</td><td></td><td></td></l00<>	<1.00		Ethers (LOQ - 25µg/compound	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
31	Carbon tetrachloride	56-23-5	<l00< td=""><td><1.0Q</td><td>65</td><td>Ethyl ether</td><td>60-29-7</td><td><l00< td=""><td><l0< td=""></l0<></td></l00<></td></l00<>	<1.0Q	65	Ethyl ether	60-29-7	<l00< td=""><td><l0< td=""></l0<></td></l00<>	<l0< td=""></l0<>
32	Perchloroethylene	127-18-4	<1.0Q	<1.0Q	67	terr-Butyl methyl ether orma	1634-04-4	<1.00	<1.0
33	1,1,2,2-Tetrachloroethane	79-34-5	<1.00	<1.00	68	Tetrahydrofuran (THF)	109-99-9	<l00< td=""><td><1.0</td></l00<>	<1.0
34	Chlorobenzene	108-90-7	<l0q< td=""><td><1.0Q</td><td></td><td>Glycols (LOQ - 25µg/compou</td><td></td><td></td><td></td></l0q<>	<1.0Q		Glycols (LOQ - 25µg/compou			
35	1,2-Dichlorobenzene	95-50-1	<l00< td=""><td><1.00</td><td>69</td><td>PGME</td><td></td><td><l0q< td=""><td><1.0</td></l0q<></td></l00<>	<1.00	69	PGME		<l0q< td=""><td><1.0</td></l0q<>	<1.0
36	1.4-Dichlorobenzene	105-46-7	<1.00	<l00< td=""><td>70</td><td>Ethylene glycol diethyl ether</td><td>107-98-2 629-14-1</td><td><l00< td=""><td><l0< td=""></l0<></td></l00<></td></l00<>	70	Ethylene glycol diethyl ether	107-98-2 629-14-1	<l00< td=""><td><l0< td=""></l0<></td></l00<>	<l0< td=""></l0<>
-	Miscellaneous (1.00/037-				71	PGMEA	108-65-6	<1.00	<1.0
37	Acetonitrile	75-05-8	<lo0< td=""><td><l00< td=""><td>72</td><td>Cellosolve acetate</td><td></td><td><l00< td=""><td><l0< td=""></l0<></td></l00<></td></l00<></td></lo0<>	<l00< td=""><td>72</td><td>Cellosolve acetate</td><td></td><td><l00< td=""><td><l0< td=""></l0<></td></l00<></td></l00<>	72	Cellosolve acetate		<l00< td=""><td><l0< td=""></l0<></td></l00<>	<l0< td=""></l0<>
38	n-Vinyl-2-pytrolidinone	73-03-8 88-12-0	<l0q< td=""><td><l0q< td=""><td>73</td><td>DGMEA</td><td>111-13-9</td><td><l00< td=""><td><l0< td=""></l0<></td></l00<></td></l0q<></td></l0q<>	<l0q< td=""><td>73</td><td>DGMEA</td><td>111-13-9</td><td><l00< td=""><td><l0< td=""></l0<></td></l00<></td></l0q<>	73	DGMEA	111-13-9	<l00< td=""><td><l0< td=""></l0<></td></l00<>	<l0< td=""></l0<>
	Extra compound (Loo		10000	your		Extra compound (LOO-	112-15-2 Man/compound/s		-10
74	Bromopropane *	105-94-5	<loq< td=""><td><1.0Q</td><td>75</td><td>Naphthalene *</td><td>91-20-3</td><td><loq< td=""><td><l0< td=""></l0<></td></loq<></td></loq<>	<1.0Q	75	Naphthalene *	91-20-3	<loq< td=""><td><l0< td=""></l0<></td></loq<>	<l0< td=""></l0<>
T	Total VOCs (LOQ -5tug/com	(notion)	107	<1.00		Worksheet check			2021-49

TestSafe Australia - Chemical Analysis Branch

ABN 81 913 830 179 Level 2, Building 1, 9–15 Chilvers Road, Thomleigh, NSW 2120, Australia Telephone +61 2 9473 4000 Email lab@safework.nsw.gov.au Website testsafe.com.au

Accreditation No. 3726

Accredited for compliance with ISO/IEC 17025 - Testing

SW09061 0817

