## Properties of the Multidimensional Fourier Transform

| $f(\boldsymbol{x}) = \int_{\mathbb{R}^D} F(\boldsymbol{u}) \exp(j2\pi \boldsymbol{u} \cdot \boldsymbol{x}) d\boldsymbol{u}$ | $F(\boldsymbol{u}) = \int_{\mathbb{R}^D} f(\boldsymbol{x}) \exp(-j2\pi \boldsymbol{u} \cdot \boldsymbol{x}) d\boldsymbol{x}$ |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| rect(x, y)                                                                                                                  | $\frac{\sin \pi u}{\pi u} \frac{\sin \pi v}{\pi v}$                                                                          |
| $\operatorname{circ}(x,y)$                                                                                                  | $\frac{1}{\sqrt{u^2+v^2}}J_1(2\pi\sqrt{u^2+v^2})$                                                                            |
| $\exp(-(x^2+y^2)/2r^2)$                                                                                                     | $2\pi r^2 \exp(-2\pi^2(u^2+v^2)r^2)$                                                                                         |
| $\cos(\pi(x^2+y^2)/r^2)$                                                                                                    | $r^2\sin(\pi(u^2+v^2)r^2)$                                                                                                   |
| $\exp(j\pi(x^2+y^2)/r^2)$                                                                                                   | $jr^2 \exp(-j\pi(u^2+v^2)r^2)$                                                                                               |
| $\delta(m{x})$                                                                                                              | 1                                                                                                                            |



## Two-dimensional Fourier Transform of Selected Functions

|        | $f(\mathbf{x}) = \int_{\mathbb{R}^D} F(\mathbf{u}) \exp(j2\pi \mathbf{u} \cdot \mathbf{x}) d\mathbf{u}$ | $F(\mathbf{u}) = \int_{\mathbb{R}^D} f(\mathbf{x}) \exp(-j2\pi \mathbf{u} \cdot \mathbf{x}) d\mathbf{x}$ |
|--------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| (i)    | $af_1(\mathbf{x}) + bf_2(\mathbf{x})$                                                                   | $aF_1(\mathbf{u}) + bF_2(\mathbf{u})$                                                                    |
| (ii)   | $f(\mathbf{x} - \mathbf{x}_0)$                                                                          | $F(\mathbf{u}) \exp(-j2\pi \mathbf{u} \cdot \mathbf{x}_0)$                                               |
| (iii)  | $f(\mathbf{x}) \exp(j2\pi \mathbf{u}_0 \cdot \mathbf{x})$                                               | $F(\mathbf{u} - \mathbf{u}_0)$                                                                           |
| (iv)   | $f(\mathbf{A}\mathbf{x})$                                                                               | $\frac{1}{ \det \mathbf{A} }F(\mathbf{A}^{-T}\mathbf{u})$                                                |
| (v)    | $f_1(\mathbf{x}) * f_2(\mathbf{x})$                                                                     | $F_1(\mathbf{u})F_2(\mathbf{u})$                                                                         |
| (vi)   | $f_1(\mathbf{x})f_2(\mathbf{x})$                                                                        | $F_1(\mathbf{u}) * F_2(\mathbf{u})$                                                                      |
| (vii)  | $\nabla_{\mathbf{x}} f(\mathbf{x})$                                                                     | $j2\pi \mathbf{u}F(\mathbf{u})$                                                                          |
| (viii) | xf(x)                                                                                                   | $\frac{j}{2\pi}  abla_{\mathbf{u}} F(\mathbf{u})$                                                        |
| (ix)   | $F(\mathbf{x})$                                                                                         | $f(-\mathbf{u})$                                                                                         |
| (x)    | $f^*(\mathbf{x})$                                                                                       | $F^*(-\mathbf{u})$                                                                                       |
| (xi)   | $f_1(x)f_2(y)$                                                                                          | $F_1(u)F_2(v)$                                                                                           |
| (xii)  | $\int_{\mathbb{R}^D}  f(\mathbf{x}) ^2 d\mathbf{x} = \int_{\mathbb{R}^D}  F(\mathbf{u}) ^2 d\mathbf{u}$ |                                                                                                          |

