5. Let $L=\left\{w \in\{0,1\}^{*}: w\right.$ has an odd no. of 1 's $\}$, and let A be the DFA with tabular representation:

$$
\begin{array}{r||c|c}
A & 0 & 1 \\
\hline \hline \rightarrow p & p & q \\
\star q & q & p
\end{array}
$$

Prove that $L=L(A)$. Hint: Do the $L(A) \subseteq L$ part of the proof by induction on the the length of the string processed by A. You need a mutual induction with a claim for state p and a claim for state q.

Solution:
To prove $w \in L(A) \Rightarrow w \in L$ we use an induction on length of w. We claim that
(1) If $\hat{\delta}(p, w)=p$, then w has even number of 1's.
(2) If $\hat{\delta}(p, w)=q$, then w has odd number of 1's.

Basis: $|w|=0$ then $w=\epsilon$, so obviously (1) is true. Also, it is clear that $\hat{\delta}(p, \epsilon)=p \neq q$, so (2) is vacuously true.
$\mathrm{IH}:(1)$ and (2) are true for any string w of length n.
IS: Now prove (1) and (2) for $w=x a$, where $|x|=n$ and $a \in \Sigma$.
(1): If $\hat{\delta}(p, x a)=p$ then $\hat{\delta}(p, x)$ is p and $a=0$ or q and $a=1$, as can be seen from the transition diagram of A.
If $\hat{\delta}(p, x)=p$ then by the IH (1), the string x has even number of 1's. Therefore $w=x 0$ which has even number of 1 's.
If $\hat{\delta}(p, x)=q$ then by the IH (2), the string x has odd number of 1's, so $w=x 1$ has even number of 1 's.
(2): If $\hat{\delta}(p, x a)=q$ then $\hat{\delta}(p, x)$ is p and $a=1$ or q and $a=0$, as can be seen from the transition diagram of A.
If $\hat{\delta}(p, x)=p$ then by the IH (1), the string x has even number of 1's. Therefore $w=x 1$ which has odd number of 1's.
If $\hat{\delta}(p, x)=q$ then by the IH (2), the string x has odd number of 1's, so $w=x 0$ has odd number of 1's. This completes induction.

For the other direction, we have:

$$
\begin{aligned}
w \notin L(A) & \Rightarrow \hat{\delta}(p, w)=p \\
& \Rightarrow w \text { has even number of } 1 \text { 's } \\
& \Rightarrow w \notin L
\end{aligned}
$$

So it never ends in a final state with an even number of 1's. Therefore, this direction is also proved, that is $L \subseteq L(A)$.

