
1

Attacking Nexus 6 & 6P Custom Bootmodes
Roee Hay & Michael Goberman

IBM Security

Abstract—We describe a high severity vulnerability
(CVE-2016-8467) in Nexus 6 & 6P (with a lower
impact on Nexus 6P) which allows enabling of hidden
USB interfaces. This, together with another vulnera-
bility can be combined for conducting several attacks.
The first attack allows an adversary with USB access
to the device, to practically own the Nexus 6 modem,
by accessing its diagnostics interface. The second at-
tack also works on Nexus 6P, and enables access to the
modem’s AT interface. The third and fourth attacks
are against Nexus 6 only and allow for exfiltration of
uninitialized kernel data and some network traffic via
USB. The rest of the described attacks allow for the
adversary to obtain an ADB session on a Nexus 6P
device.

I. Introduction

One of the significant physical attack vectors of mobile
devices is their USB / Lightning port. Despite the im-
mediate assumption that the adversary needs to posses
the device in order to attack it, such an attack could also
be conducted by malicious chargers (e.g. public chargers
found in air ports) [19], also-known-as “Juice jacking”
[18] or by PC malware waiting for the mobile device to
be plugged-in [25]. Therefore, several security features
exist in Android in order to block and lower the impact
of such exploitation attempts. First, the bootloaders
are locked by default. This means that the attacker
should be incapable of doing any harm (such as replacing
the platform operating system) by interacting with the
device’s fastboot interface. In addition, one cannot un-
lock the bootloader without enabling the “Allow OEM
Unlocking” checkbox under Developer’s Settings, which
the attacker cannot reach if the device is protected with
user credentials. Moreover, even if the attacker somehow
managed to circumvent around that checkbox, unlocking
the bootloader will trigger a factory reset, which should
delete all user data. Factory-Reset Prevention (FRP)
[9] will later make the device unusable. Other notable
security features are Full Disk Encryption (FDE) [7]
introduced in Android 5.0, and the recent File Based
Encryption (FBE) [6] which enables Direct Boot [10],
introduced in Android 7.0 – both features aim to prevent
theft of personal data by physical attackers. Further-
more, in order to also protect against off-box attacks,
the encryption keys are hardware-backed, implemented
by the Trusted Execution Environment (TEE) [8].

Despite the protection mechanisms, mobile devices can
still be compromised by exploiting vulnerabilities [14, 5,
4, 21].

II. Vulnerabilities

In this section we describe the new vulnerabilities that
we discovered. It should be noted that all of them were
responsibly disclosed to Google. Both vulnerabilities
have been patched – see Section IV for more details.

The devices which we tested the vulnerabilities on are:
Huawei Nexus 6P ANGLER-ROW-VN1, Huawei Nexus 6P
ANGLER-VN2 and two Motorola Nexus 6 shamu XT1100

32GB P3A0 devices.

Vulnerability 1. Nexus 6P/6 Custom Boot Modes USB
Configs Override (CVE-2016-8467)

The androidboot.mode kernel command line
argument (with a default value of ‘normal’) propagates
to the ro.bootmode system property which is
later read by UsbDeviceManager. The latter maps,
according to the config.xml file under the AOSP path
device/{huawei/angler,moto/shamu}/overlay/fram-

eworks/base/core/res/res/values (Figure 1
& 2), between the couple (bootmode, current
USB configuration) and (new USB configuration).
The new USB configuration is then saved under
the sys.usb.config system property which
triggers an init on property event according to
device/{huawei/angler,moto/shamu}/init.{angler-

/shamu}.usb.rc (Figure 5). This implies that the
attacker, capable of changing androidboot.mode can
gain extra capabilities if a secure USB configuration can
now be overridden to an insecure one. Indeed, as one can
see, both on Nexus 6 and 6P the original configurations
are overridden with some more capable ones. The
added new interfaces for Nexus 6 are as follows: (1)
diag: provides diagnostics access to the Snapdragon
805 SoC (APQ8048). We did not manage to conduct
any attack by accessing this interface, although further
research may prove otherwise. (2) diag_mdm: Provides
diagnostics access to the to the modem (MDM9x25).
Attack 1 describes what we managed to achieve by
accessing it. (3) serial_hsic. Serial access to the
device’s modem’s AT interface, covered by Attack 2. (4)
serial_tty: Access to a NMEA interface. This interface
should provide GPS data, however we do not cover it
in this paper. (5) rmnet_hsic: Access to the RmNet
interface. Not covered in this paper. (6) usbnet. a USB
interface identified by “Motorola Test Command” –
covered by Attack 3 & Attack 4.
As for Nexus 6P, the added new interfaces are: (1)
diag: provides diagnostics access to the modem. Port

identified as MSM8994. Enabling this interface has no
security impact, at least on our Nexus 6P test devices,
because accessing the diagnostics data required flashing
a custom radio image. (2) serial_smd: Serial access to
the device’s modem’s AT interface, covered by Attack 2.
(3) adb: Enables the ‘Android Debug Bridge’. This
added interface is problematic since it dishonors the
‘Enable USB debugging’ under the ‘Developer Settings’
menu, allowing the device to accept ADB connections
from previously authorized hosts. Covered by Attacks 5
& 6. (4) rmnet_ipa: Access to the RmNet interface. Not
covered in this paper. (5) manufacture: includes all of
the above interfaces in addition to a mass-storage device
interface, which seems to have no security impact.

The only open-question left is how the adversary
changes androidboot.mode. It turns out that under the
Nexus 6P/6 device’s fastboot UI (which an unauthenti-
cated physical attacker can boot into), two proprietary
menu items exist. These menu items instruct, even on
a locked bootloader, to change the androidboot.mode

argument to either bp-tools or hw/mot-factory. In-
terestingly the ability to change the bootmode via the
fastboot UI has long been known within the developers
community [24], however its security impact seems to
have been overlooked.

The situation is more severe, as an attacker with
ADB access, such as PC malware or a malicious charger
connected to an ADB-enabled device, can change the
bootmode permanently, by issuing the following
commands:

adb reboot bootloader

fastboot oem config bootmode bp-tools (N6)

fastboot oem bp-tools-on (N6, option 2)

fastboot oem enable-bp-tools (N6P)

fastboot reboot

Similarly, in order to boot with hw/mot-factory, the
attacker can issue:

adb reboot bootloader

fastboot oem config bootmode factory (N6)

fastboot oem enable-hw-factory (N6P)

fastboot reboot

This means that the attacker does not even need
to posses the device in order to attack it. Thus, the
malware only needs to wait for the victim to enable
ADB once, and then any future boot will have the
dangerous bootmode enabled. It should be noted that
an ADB authorization dialog may pop-up on the device.
Another option for malware without ADB access, is to
opportunistically wait for the device to be in the fastboot
mode, and then just issue the relevant command.

Again, the ability to change the bootmode via a
fastboot command has been known within the develop-

ment / engineering community [16], yet security-wise,
overlooked.

<string -array translatable="false" name="
config_oemUsbModeOverride">

<item>"hw-factory:mtp:manufacture ,adb"</item>
...
<item>"hw-factory:adb:manufacture ,adb"</item>
<item>"bp-tools:mtp:diag ,serial_smd ,rmnet_ipa ,

adb"
</item>
...
<item>"bp-tools:rndis ,adb:rndis ,serial ,adb"</

item>
</string -array>

Figure 1. Nexus 6P USB port settings override

<string -array translatable="false"
name="config_oemUsbModeOverride">

...
<item>"bp-tools:mtp:diag ,diag_mdm ,serial_hsic ,

serial_tty ,rmnet_hsic ,usbnet"
</item>
<item>"bp-tools:adb:diag ,diag_mdm ,serial_hsic ,

serial_tty ,rmnet_hsic ,usbnet ,
adb"

</item>
<item>"mot -factory:rndis ,adb:usbnet ,adb"</item>
<...
<item>"mot -factory:adb:usbnet ,adb"</item>
</string -array>

Figure 2. Nexus 6 USB port settings override

on property:sys.usb.config=diag ,serial_smd ,
rmnet_ipa ,adb

stop adbd
write /sys/class/android_usb/android0/enable 0
write ...
write /sys/class/android_usb/android0/enable 1
start adbd
setprop sys.usb.state ${sys.usb.config}

Figure 3. init.angler.usb.rc of Nexus 6P

Vulnerability 2. Nexus 6 usbnet Kernel Uninitialized
Memory Leak Over USB (CVE-2016-6678)

Motorola’s f usbnet kernel driver leaks 4-5 bytes of
uninitialized kernel data for each frame it sends over
USB, allowing the adversary to exfiltrate information out
of the device.

The usb_ether_xmit function (Figure 4) receives the
socket buffer (skb) and queues it on the USB endpoint.
The function adds another 4-5 bytes to the socket buffer
len field, in order to reserve space for the soon to
be transmitted frame’s CRC. Since the function does
not compute and set the CRC on the reserved space,
the field is sent uninitialized (and may contain data of
previous allocations) over the USB wire. Figure 5 depicts
a successful leak.

2

stat ic int usb ether xmi t (struct s k bu f f ∗skb ,
struct ne t dev i c e ∗dev) {
struct usbnet context ∗ context = netdev pr iv (

dev) ;
struct usb reques t ∗ req ;
unsigned long f l a g s ;
unsigned l en ;
int rc ;
req = usb ge t xmi t r eque s t (STOP QUEUE, dev) ;
. . . .
/∗ Add 4 bytes CRC ∗/
skb−>l en += 4 ;

/∗ ensure tha t we end with a short packet ∗/
l en = skb−>l en ;
i f (! (l en & 63) | | ! (l en & 511))

l en++;
req−>context = skb ;
req−>buf = skb−>data ;
req−>l ength = len ;

rc = usb ep queue (context−>bulk in , req ,
GFP KERNEL) ;

. . . .
return 0 ;

}

Figure 4. f usbnet’s usb ether xmit function

Ethernet
02 1a 11 fe 91 5d

dst 02:1a:11:fe:91:5d

da 9c 27 ce 4c c9

src da:9c:27:ce:4c:c9

08 00

type 0x800

IP
version 4L

45

ihl 5L

c0

tos 0xc0

00 6c

len 108

3e 5e

id 15966
flags

00 00

frag 0L

40

ttl 64

01

proto icmp

33 6b

chksum 0x336b

01 02 03 04

src 1.2.3.4

01 02
03 01

dst 1.2.3.1
options []

ICMP

03

type dest-unreach

03

code port-unreachable

05 53

chksum 0x553

00

reserved 0

00

length 0

00 00

nexthopmtu 0

IP in ICMP
version 4L

45

ihl 5L

00

tos 0x0

00 50

len 80

00 01

id 1
flags

00 00

frag 0L

40

ttl 64

11

proto udp

72 94

chksum 0x7294

01 02 03 01

src 1.2.3.1

01 02 03 04

dst 1.2.3.4
options []

UDP in ICMP

04 d2

sport 1234

00 33

dport 51

00 3c

len 60

0e 85

chksum 0xe85

Raw

61 61 61 61 61 61 61 61 61 61
61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61
61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61
61 61 61 61 61 61 61 61 61 61

load ’aaaaaaaaaaaaaaaaa[...]

Padding

72 6f 69 64

load ’roid’

Figure 5. f usbnet’s Leak (the ‘Padding’ field)

III. Attacks

We describe a few attacks that can stem out of
the vulnerabilities listed above. The following table
summarizes the attack requirements and exploited
vulnerabilities, for each of the described attacks.

Attack Nexus 6 Nexus 6P Vulnerability

1 χ ∨ ϕ - 1
2 χ ∨ ϕ χ ∨ ϕ 1
3 χ ∨ ϕ - 1,2
4 χ ∨ ϕ - 1
5 - φ ∧ ϕ 1
6 - M ∧ f 1

Legend: φ - Physical access to the victim’s ADB-
authorized locked PC. ϕ- Physical access to the Android
device. χ - Malware-infected PC / malicious charger with
(at least) one time ADB / fastboot access to a device.
M - Malware-infected ADB-authorized PC. f - device
under fastboot mode.

Attack 1. Unauthenticated Access to Nexus 6’s Modem
Diagnostics interface via USB

Setting and Prerequisites: This attack exploits Vuln 1
and works on Nexus 6 only, thus it requires an attacker
(PC malware / charger / physical attacker) who is able
to reboot into one of the special bootmodes as explained
above.

Attack Flow: (1) The attacker reboots the Nexus 6
device into one of the special modes in order to enable
the diag_mdm interface. (2) The attacker can now access
the USB interface. As for the physical adversary, It
should be noted that FDE does not protect against this
attack because accessing the diagnostics interface can
be done prior to the victim’s authentication, thus the
attacker can cause some havoc before leaving the device.

It should also be noted that our owned model (XT1100)
is the international one. The other model (XT1103) might
prevent diagnostics access to the modem, and/or have a
different Service Provider Code (SPC) & diag password.

Impact: Accessing the diagnostics interface allows the
adversary to practically own the modem. We successfully
managed to (1) Intercept phone calls. In our test envi-
ronment, these were UMTS RX/TX vocoder frames with
AMR 12.2 encoded audio [3]. We then assembled them
into an AMR File [1], the result is displayed under Figure
6 as a waveform. (2) Sniff data packets. (Figure 7) (3)
Find the exact GPS coordinates with detailed satellite
information. (4) Get call information. (5) Initiate phone
calls. (6) Access / Change NV items. (7) Access /
Change the EFS.

Attack 2. Unauthenticated Access to the AT interface
of the device’s modem via USB

Setting and Prerequisites: Similar to Attack 1 but
works on Nexus 6P as well.

Attack Flow: Similar to Attack 1.

3

2 other

Figure 6. Intercepted ’IBM’ (with Hebrew accent) waveform
(UMTS RX)

Figure 7. LTE data sniff

Impact: (1) The attacker has ‘AT’ access to the mo-
dem which allows him to steal sensitive information such
seeing incoming call numbers. In addition, the attacker
can retrieve the Physical Cell ID (PCI) and signal level.
The attacker can also transparently read and send SMS
messages on behalf of the victim, the attacker can make
the device accept or place phone calls, which practically
allows him to eavesdrop nearby conversations. Interest-
ingly, under Nexus 6 with Android 6.0, if the device is
under the Secure-startup authentication screen (FDE),
a placed phone call (after enabling the modem function-
ality, using AT^CFUN=1) will have no UI indication, so
the user will be unaware that the other side is listening.
(In Android 7.0, the user sees a placed / incoming call,
although an airplane mode is indicated.) Moreover, the
attacker can permanently change various radio settings,
such as disabling the circuit- or packet-switched ser-
vices (with AT^SYSCONFIG), making the device unable to
place/receive phone calls or data. Unfortunately, these
changes survive Android Factory Resets. In addition,
the attacker can downgrade the network connection to
older protocols. Figure 8 depicts SMS sniffing via the AT
interface on Nexus 6P, which may allow the attacker to

Figure 8. SMS sniffing via AT on Nexus 6P

AT Description

+CLCC Show current call

+VZWRSRP/Q (N6 only) Get Physical Cell ID, RSRP

and RSRQ

+CMGS Send SMS

+CNMI=1,2,0,0,0 Sniff SMS

+CFUN=6 (N6 Only) Reboot the device

ˆSYSCONFIG=13,0,2,4 Downgrade to GSM

ˆSYSCONFIG=2,0,2,0 Circuit Switching Only

ˆSYSCONFIG=2,0,2,1 Packet Switching Only

Figure 9. Various AT commands with security impact

bypass two-factor authentication. See Figure 9 for some
AT commands with security impact. (2) The enabled
interfaces unnecessarily increase the attack surface of the
victim’s device (Nexus 6 has 372 AT commands returned
by AT$QCCLAC, while Nexus 6P has 316 commands),
allowing for exploitation of other vulnerabilities, if such
exist.

Attack 3. Leaking Uninitialized Kernel Data via USB

Setting and Prerequisites: This attack is against Nexus
6 only and targets Motorola’s usbnet USB gadget [20].

Attack Flow: (1) The attacker reboots the phone into
one of the special bootmodes, exploiting Vuln 1 (2)
The attacker can now access the usbnet interface, which
allows him to configure (i.e. change the IP settings) via
USB the ‘usb0’ network interface on the victim’s device
(Figure 10 & 11). This allows him to capture network
traffic flowing from/to that adapter via USB. (3) The
attacker induces the device to send packets over the USB
wire. For example, this can be achieved by sending UDP
packets to closed UDP ports as it will cause the other
end to transmit ICMP port unreachable replies. Due to
Vuln 2 the reply packets contain the 4-5 leaked bytes
(Figure 5).

Impact: The leaked kernel data may contain sensitive
information and/or aid in conducting further exploita-
tion.

4

ip = socket.inet_aton(IP_ADDR)
ipwords = struct.unpack("HH",ip)
sn = socket.inet_aton(SUBNET_MASK)
snwords = struct.unpack("HH",sn)
host = socket.inet_aton(HOST)
hostwords = struct.unpack("HH",host)

dev = usb.core.find()

dev.ctrl_transfer (0x40 , 0x5, ipwords [1], ipwords [0])
dev.ctrl_transfer (0x40 , 0x6, snwords [1], snwords [0])
dev.ctrl_transfer (0x40 , 0x7, hostwords [1], hostwords [0])

Figure 10. Nexus 6 usb0 configuration via USB

shell@shamu:/ $ ifconfig usb0
usb0 Link encap:UNSPEC
inet addr:1 .2.3.4 Bcast:1 .2.3.255
Mask:255 .0.0.0
inet6 addr: fe80::dcb9:c8ff:fee0:e04b /64 Scope: Link
UP BROADCAST RUNNING MULTICAST MTU:1500
Metric:1
RX packets:10 errors:96 dropped:2 overruns:0 frame:0
TX packets:394 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:176 TX bytes:50601

Figure 11. USB-configured Nexus 6’s usb0 adapter

Attack 4. Limited Leakage of packets via USB

Setting and Prerequisites: As of Attack 3.
Attack Flow: Similarly to Attack 3, the adversary

interacts and configures, via USB, the usb0 network
adapter, however this time with arbitrary network set-
tings in order to exfiltrate/inject network traffic from/to
the device.

Impact: (1) Our short analysis proved that we can
capture broadcast and multicast packets (such as Google-
cast discovery messages). We haven’t managed to cause
unicast packets with TCP/UDP ports below 1024 to
be routed to the USB device except of those generated
by root. (2) We have managed to capture unicast con-
nections to any IP, targeting ports 1024 and above, by
using a permission-less (except for the automatically-
granted INTERNET permission) malicious app that
listens on ports above 1024. Then, the attacker can
configure the usb0 adapter with the IP of his target (e.g.
www.ibm.com’s IP). This will cause any traffic targeting
that IP to bounce back to loopback, which the attacker
listens on. This attack may allow for Universal XSS on
sites without HSTS [15], or on never visited / aged HSTS
sites not on the HSTS Preload List [2].

Attack 5. Obtaining an ADB session from a Nexus 6P
Device by a Physical Attacker

Background: As part of the ADB handshake [22],
adbd, running on the mobile device, generates a 20-
byte random token (adb_auth_generate_token under
adb_auth_client.cpp) which is then RSA-signed by the
ADB host (adb_auth_sign under adb_auth_host.cpp).
The former delivers the signed token back to adbd,
which validates the signature (adb_auth_verify under

adb_auth_client.cpp). One problem, as with Poison-
Tap [17], is that the ADB host signs a given token,
even on locked hosts. Another fundamental problem
with the ADB protocol which enables attacks is the
fact that only the handshake is secure. Thus, a Man-
in-the-Middle (MiTM) attacker can place some special
hardware between the victim’s device and the host in
order to hijack / monitor the ADB session.

Setting and Prerequisites: Our attack assumes a phys-
ical access to the victim’s PC and Android device. The
PC can be locked. The attack requires the victim’s PC
to be adbd-authenticated, however it does not require
ADB to be running on the device prior to it. A feasible
example for such a setting with the aforementioned
prerequisites is an inside-attacker, targeting a fellow
developer, that left his locked device unattended. The
developer had permanently ADB-authorized his PC, but
later disabled ADB on the device.

Attack Flow: (1) By exploiting Vuln 1, an unauthen-
ticated attacker enables adbd on the device. (2) The
attacker connects the device to through a USB proxy.
(3) The victim’s PC (the ADB HOST) blindly signs the
ADB token generated by the device, even if it’s locked.
(3) The attacker now has an authenticated adb session
with the victim’s device.

Impact: The attacker now has a shell (running as
the capable ‘shell’ user that is a member of multiple
groups) on the device. He can thus install malicious apps,
copy files from/to the device, generate a bug report and
more. Note that Direct Boot [10] does not protect against
malware installation.

Attack 6. Obtaining an ADB session from a Nexus 6P
Device by PC Malware

Setting and Prerequisites: The attack requires the
victim’s PC to be adbd-authenticated, however it does
not require ADB to be running on the device prior to
it. A feasible example for such a setting is a developer
that had permanently ADB-authorized his PC, but later
disabled ADB on the device.

Attack Flow: (1) The PC malware waits for the victim
to place the device in the fastboot mode, then it exploits
Vuln 1 using the aforementioned fastboot command. (2)
The attacker now has an authenticated adb session with
the victim’s device.

Impact: Similar to Attack 5.

IV. Coordinated Disclosure

All of the issues were responsibly disclosed to Google
prior to the publication of this paper.

Google rated Vuln 1 (CVE-2016-8467) with High
severity and mitigated it by forbidding a locked boot-
loader to boot with the dangerous boot modes. The first
non-vulnerable bootloader version of Nexus 6 is 71.22
(released in the November 2016 Android Security Bul-
letin [11]). The first non-vulnerable bootloader version of

5

Nexus 6P is 03.64, released as part of the January 2017
Security Bulletin [13].

Google rated Vuln 2 (CVE-2016-6678) with Moder-
ate severity and mitigated it by commit 3f3c8a8 [23].
The padding is now zeroed out so uninitialized bytes
won’t be leaked. The patch was released as part of the
October 2016 Android Security bulletin [12].

References

[1] AMR File Format. http://hackipedia.org/
File%20formats/Containers/AMR,%20Adaptive%
20MultiRate/AMR%20format.pdf.

[2] HSTS Preload List Submission. https:
//hstspreload.org/.

[3] AMR Codec in UMTS, 2007. http:
//onlinelibrary.wiley.com/doi/10.1002/
9780470612279.app1/pdf.

[4] Beniamini, G. QSEE privilege escalation
vulnerability and exploit (CVE-2015-6639).
http://bits-please.blogspot.com/2016/05/qsee-
privilege-escalation-vulnerability.html.

[5] CodeAurora. Fastboot boot command bypasses
signature verification (CVE-2014-4325), 2014.
https://www.codeaurora.org/projects/security-
advisories/fastboot-boot-command-bypasses-
signature-verification-cve-2014-4325.

[6] Google. File-Based Encryption. https:
//source.android.com/security/encryption/file-
based.html.

[7] Google. Full-Disk Encryption. https:
//source.android.com/security/encryption/full-
disk.html.

[8] Google. Hardware-backed Keystore. https://
source.android.com/security/keystore/index.html.

[9] Google. Make sure your device is pro-
tected. https://support.google.com/nexus/answer/
6172890?hl=en.

[10] Google. Supporting direct boot.
https://developer.android.com/training/articles/
direct-boot.html.

[11] Google. Android Security Bulletin - November
2016, 2016. https://source.android.com/security/
bulletin/2016-11-01.html.

[12] Google. Android Security Bulletin - October
2016, 2016. https://source.android.com/security/
bulletin/2016-10-01.html.

[13] Google. Android Security Bulletin - January
2017, 2017. https://source.android.com/security/
bulletin/2017-01-01.html.

[14] Hay, R. Undocumented Patched Vulnerability in
Nexus 5X Allowed for Memory Dumping via USB,
2016. http://ibm.co/2i2HVlK.

[15] Hodges, J., Jackson, C., and Barth, A. RFC
6797: HTTP Strict Transport Security (HSTS),
2012. https://tools.ietf.org/html/rfc6797.

[16] Jimmy. ADB Commands. https:
//sites.google.com/site/jimmy1115kk/engineering/
android/adb-commands.

[17] Kamkar, S. PoisonTap - siphons cookies, exposes
internal router & installs web backdoor on locked
computers, 2016. https://samy.pl/poisontap/.

[18] Krebs, B. Beware of Juice-Jacking, 2011.
https://krebsonsecurity.com/2011/08/beware-of-
juice-jacking/.

[19] Lau, B., Jang, Y., et al. MACTANS, Injecting
Malware Into iOS Devices via Malicious Chargers.
In BlackHat USA (2013), Georgia Institute of
Technology. https://media.blackhat.com/us-13/
US-13-Lau-Mactans-Injecting-Malware-into-iOS-
Devices-via-Malicious-Chargers-WP.pdf.

[20] Motorola, Inc. Gadget Driver for Motorola
USBNet, 2009. https://android.googlesource.com/
kernel/msm.git/+/android-msm-shamu-3.10-
marshmallow/drivers/usb/gadget/f usbnet.c.

[21] Shen, D. Exploiting Trustzone on Android. In
BlackHat (2015).

[22] Styan, C. ADB Protocol Documentation. https:
//github.com/cstyan/adbDocumentation.

[23] Tjin, P. usb: gadget: f usbnet:
zero out CRC padding. https://
android.googlesource.com/kernel/msm/+/
3f3c8a8313ff7995498d6e794f67650c8ba8072d.

[24] XDA-Developers. Brief Guide to Connect to
diag port with QPST and QXDM for Nexus 6P,
2016. https://forum.xda-developers.com/nexus-
6p/general/guide-biref-guide-to-connect-to-diag-
t3354938.

[25] Xiao, C. DualToy: New Windows Trojan Sideloads
Risky Apps to Android and iOS Devices, 2016.
http://researchcenter.paloaltonetworks.com/2016/
09/dualtoy-new-windows-trojan-sideloads-risky-
apps-to-android-and-ios-devices/.

6

http://hackipedia.org/File%20formats/Containers/AMR,%20Adaptive%20MultiRate/AMR%20format.pdf
http://hackipedia.org/File%20formats/Containers/AMR,%20Adaptive%20MultiRate/AMR%20format.pdf
http://hackipedia.org/File%20formats/Containers/AMR,%20Adaptive%20MultiRate/AMR%20format.pdf
https://hstspreload.org/
https://hstspreload.org/
http://onlinelibrary.wiley.com/doi/10.1002/9780470612279.app1/pdf
http://onlinelibrary.wiley.com/doi/10.1002/9780470612279.app1/pdf
http://onlinelibrary.wiley.com/doi/10.1002/9780470612279.app1/pdf
http://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
http://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
https://www.codeaurora.org/projects/security-advisories/fastboot-boot-command-bypasses-signature-verification-cve-2014-4325
https://www.codeaurora.org/projects/security-advisories/fastboot-boot-command-bypasses-signature-verification-cve-2014-4325
https://www.codeaurora.org/projects/security-advisories/fastboot-boot-command-bypasses-signature-verification-cve-2014-4325
https://source.android.com/security/encryption/file-based.html
https://source.android.com/security/encryption/file-based.html
https://source.android.com/security/encryption/file-based.html
https://source.android.com/security/encryption/full-disk.html
https://source.android.com/security/encryption/full-disk.html
https://source.android.com/security/encryption/full-disk.html
https://source.android.com/security/keystore/index.html
https://source.android.com/security/keystore/index.html
https://support.google.com/nexus/answer/6172890?hl=en
https://support.google.com/nexus/answer/6172890?hl=en
https://developer.android.com/training/articles/direct-boot.html
https://developer.android.com/training/articles/direct-boot.html
https://source.android.com/security/bulletin/2016-11-01.html
https://source.android.com/security/bulletin/2016-11-01.html
https://source.android.com/security/bulletin/2016-10-01.html
https://source.android.com/security/bulletin/2016-10-01.html
https://source.android.com/security/bulletin/2017-01-01.html
https://source.android.com/security/bulletin/2017-01-01.html
http://ibm.co/2i2HVlK
https://tools.ietf.org/html/rfc6797
https://sites.google.com/site/jimmy1115kk/engineering/android/adb-commands
https://sites.google.com/site/jimmy1115kk/engineering/android/adb-commands
https://sites.google.com/site/jimmy1115kk/engineering/android/adb-commands
https://samy.pl/poisontap/
https://krebsonsecurity.com/2011/08/beware-of-juice-jacking/
https://krebsonsecurity.com/2011/08/beware-of-juice-jacking/
https://media.blackhat.com/us-13/US-13-Lau-Mactans-Injecting-Malware-into-iOS-Devices-via-Malicious-Chargers-WP.pdf
https://media.blackhat.com/us-13/US-13-Lau-Mactans-Injecting-Malware-into-iOS-Devices-via-Malicious-Chargers-WP.pdf
https://media.blackhat.com/us-13/US-13-Lau-Mactans-Injecting-Malware-into-iOS-Devices-via-Malicious-Chargers-WP.pdf
https://android.googlesource.com/kernel/msm.git/+/android-msm-shamu-3.10-marshmallow/drivers/usb/gadget/f_usbnet.c
https://android.googlesource.com/kernel/msm.git/+/android-msm-shamu-3.10-marshmallow/drivers/usb/gadget/f_usbnet.c
https://android.googlesource.com/kernel/msm.git/+/android-msm-shamu-3.10-marshmallow/drivers/usb/gadget/f_usbnet.c
https://github.com/cstyan/adbDocumentation
https://github.com/cstyan/adbDocumentation
https://android.googlesource.com/kernel/msm/+/3f3c8a8313ff7995498d6e794f67650c8ba8072d
https://android.googlesource.com/kernel/msm/+/3f3c8a8313ff7995498d6e794f67650c8ba8072d
https://android.googlesource.com/kernel/msm/+/3f3c8a8313ff7995498d6e794f67650c8ba8072d
https://forum.xda-developers.com/nexus-6p/general/guide-biref-guide-to-connect-to-diag-t3354938
https://forum.xda-developers.com/nexus-6p/general/guide-biref-guide-to-connect-to-diag-t3354938
https://forum.xda-developers.com/nexus-6p/general/guide-biref-guide-to-connect-to-diag-t3354938
http://researchcenter.paloaltonetworks.com/2016/09/dualtoy-new-windows-trojan-sideloads-risky-apps-to-android-and-ios-devices/
http://researchcenter.paloaltonetworks.com/2016/09/dualtoy-new-windows-trojan-sideloads-risky-apps-to-android-and-ios-devices/
http://researchcenter.paloaltonetworks.com/2016/09/dualtoy-new-windows-trojan-sideloads-risky-apps-to-android-and-ios-devices/

	Introduction
	Vulnerabilities
	Attacks
	Setting and Prerequisites
	Attack Flow
	Impact
	Setting and Prerequisites
	Attack Flow
	Impact
	Setting and Prerequisites
	Attack Flow
	Impact
	Setting and Prerequisites
	Attack Flow
	Impact
	Background
	Setting and Prerequisites
	Attack Flow
	Impact
	Setting and Prerequisites
	Attack Flow
	Impact

	Coordinated Disclosure

