Downloaded 12/25/12 to 128.148.252.35. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SIAM J. COMPUT. © 1980 Society for Industrial and Applied Mathematics
Vol. 9, No. 3, August 1980 0097-5397/80/0903-0004 $01.00/0

A CORRECT PREPROCESSING ALGORITHM FOR BOYER-MOORE
STRING-SEARCHING*

WOIJCIECH RYTTERT

Abstract. We present the correction to Knuth’s algorithm [2] for computing the table of pattern shifts
later used in the Boyer-Moore algorithm for pattern matching.

Key words. algorithm, pattern-matching, string, overlap

The key to the Boyer-Moore algorithm for the fast pattern matching is the
application of the table of pattern shifts which is denoted in [1] by A, and in [2] by dd'.
Let us denote this table by D.

Assume that the pattern is given by the array pattern [1:n], so D is given as an
array D [1: n). For every 1 =j =n, D[] gives the minimum shift d > 0 such that the
pattern with the right end placed at the position k+d of the processing string is
compatible with the part of string scanned before, where k is the last scanned position in
the string and j is the last scanned position in the pattern.

The formal definition of D given in [2] is:

D[j]=MIN {s+n—j|ls=1 and (s =j or pattern [j —s]# pattern [])
and ((s =i or pattern [i —s]=pattern [{]) for j <i=n)}.

Algorithm A given by Knuth is:

Al. for k:=1 step 1 until n do D[k]:=2*n—k;
A2./j=n;t=n+1;

while j >0 do

begin

flil=1

while 7 = n and pattern [j]# pattern [¢] do

begin

D[t]:=MIN(D[t], n—J);
t:= flt];

end

t=t-1;j:—j—-1;

end;
A3. for k= 1 step 1 until ¢ do

D[k]:=MIN (D[k], n+t—k);

Algorithm A computes also the auxiliary table f[0:n], for j<n defined as
follows: f[j1=min{i|j<i=n and pattern [i +1]- - - pattern [n]=pattern [j+1]: - -
pattern [n +j —i]}; the final value of ¢ corresponds to f[0]. f[0] is the minimum non-
zero shift of pattern on itself; let us denote this value by SHIFT (pattern).

* Received by the editor January 18, 1979, and in revised form May 25, 1979.

1 Instituto de Investigaciones en Matemadticas Aplicadas y en Sistemas, Universidad Nacional Auténoma
de México Apartado Postal 20-726, México 20, D.F. On leave of absence from Institute of Informatics,
Department of Mathematics, Warsaw University, Warsaw, Poland.

509

Downloaded 12/25/12 to 128.148.252.35. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

510 WOICIECH RYTTER

pattern

-

SHIFT (pattern)

Take as inputs to Algorithm A the following two strings: pattern 1 = aaaaaaaaaa and
pattern 2 =abaabaabaa. Denoting by defD and D' respectively the value of D
according to the definition and computed by Algorithm A we obtain the following
results:

= 1 2 3 4 5 6 7 8 9 10
a a a a a a a a a a

J
pattern 1[]

DefD[] = 10 10 10 10 10 10 10 10 10 10
D'[f] = 10 18 17 16 15 14 13 12 11 10
SHIFT(pattern 1) = 1.

pattern 2[f] = a b a a b a a b a a
DefD[/] = 12 11 10 12 11 10 12 11 2 2
D'[f] = 12 11 10 16 15 14 13 12 2 2

SHIFT(pattern 2) = 3.

The disagreement between DefD and D' demonstrates explicitly that Knuth’s
algorithm is incorrect.
There are three cases which are considered in the design of Algorithm A for
computing the value of D[/]:
Case (1). D[j]=2*n—j. This is the most simple case computed in the part Al of
Algorithm A.
Case (2). D[j]<n and pattern [[]# pattern[j], where [=n —D[/]. In this case
D[j]is computed in the part A2.
Case (3). n=D[j]<2*n—j and j =SHIFT(pattern) = f[0] = t. In this case D[] is
computed in the part A3 of Algorithm A.
However, another case occurs which is not covered by Cases (1), (2) and (3):
Case (4). n<D[j]<2*n—j and j>SHIFT(pattern). For example it occurs for
pattern = pattern 2 and j = 5. To correct Algorithm A, we have to consider not only the
minimal nonzero shift of the string on itself but all shifts, namely all i suchthat 0 <i=n
and pattern[i +1] - - - pattern [n] = pattern[1]- - - pattern [n —i]. Let us denote the set
of all such i by ALLSHIFTS(pattern). Using the method of computing the failure
function in the pattern-matching algorithm of Knuth, Morris and Pratt [2], we give
below a correct version of the algorithm, where A1, A2 denote the corresponding
parts of Algorithm A.
ALGORITHM B.
Al; A2,
q=t;t=n+1—-q;ql =1;
Bl. j1:=1;1 :=0;
while j1=¢ do
begin
ALj1] =11
while 71 =1 and pattern [j1] # pattern [¢1] do 1 := f1[r1];
=10+1;1:=j1+1;
end;

Downloaded 12/25/12 to 128.148.252.35. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

BOYER-MOORE STRING-SEARCHING 511

B2. while g <n do
begin
for k := q1 step 1 until g do D[k]:= Min (D[k], n +q—k);
ql =q+1;q=q+t—fl[t];
t = f1[¢]; end;
The part B1 computes the auxiliary table f1[1:¢'] where ¢ = n +1—SHIFT(pattern),
and the part B2 computes the values of D[] for both Cases (3) and (4).
fl[1]=0 and forl<j=¢,
fl[j1=max {i|]1 =i <j and pattern[j —i + 1] - - - pattern [j — 1]
=pattern[1] - - - pattern [i —1]}.
The correctness of the part B2 follows from the following: If ALLSHIFTS(pattern) =
{il, i2, vy, lk} and il = SHIFT(pattern) and i] < i2< e <ik and ti=n+ 1 —il, tp+1 =
fllt,1forp=1,2,---,(k—1) then ip1 =iy +t,—tp forp=1,2,-- -, (k—1).

P
+

p+1

Ip+1 &

R

ip b~ lp+1

FIG. 1. The graphical representation of the computation of i,. 1.

Remark 1. The same table space can be used for f and f1.

Remark 2. The tables f and f1 are related in the following way: Let pattern’ be the
string resulting from reversing the string pattern and f1 be computed for the string
pattern and f be computed for pattern’.

Then

Alil=n—fln—i+1]+1 fori=1,2,---,(n+1).

Remark 3. Denote OVR(pattern) = n — SHIFT(pattern). So OVR(pattern) gives
the maximum overlap of the pattern with itself. The difference in the time complexity of
Algorithms A and B is proportional to OVR(pattern) which can be linear with respect
to n. However, on the average it is very small for alphabets of the size greater than 1. Let
V(n, k) denotes the average value of OVR(pattern) taken over the set of all patterns of
the length n over the same alphabet of the size k.

The rounded values of V(n,2) for n =14 computed on B6700 are shown in
Table 1.

TABLE 1
n 1 2 3 4 5 6 7
V(n,2) 0 0.5 0.75 1.0 1.125 1.281 1.375
n 8 9 10 11 12 13 14

V(n,2) 1.453 1.500 1.545 1.574 1.595 1.607 1.618

Downloaded 12/25/12 to 128.148.252.35. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

512 WOJCIECH RYTTER

LEMMA. 1. Ifk>1 then V(n, k)<k/(k—1)*.
2. V(n,2)<2.
3. Vi(n,k)<1 fork>2.

Proof. Fix n and k and assume that k > 1. Let a; be the number of patterns such that
OVR(pattern)=j for j=1,2,---,(n—1). Every pattern with OVR(pattern)=j is
determined by its ?reﬁx of the length n—j. So q;= k"~ Hence V(n, k)=
Citi-a)/k"=Y - (1/k)Y =Y, j- (1/k)Y =k/(k—1)*. Parts 2 and 3 of the
lemma follow from 1. This ends the proof.

REFERENCES

[1] R. S. BOYER AND J. S. MOORE, A fast string searching algorithm, Comm. ACM, 20 (1977), pp.
762-772.

[2] D. E. KNUTH, J. H. MORRIS, JR. AND V. R. PRATT, Fast pattern matching in strings, this Journal, 6
(1977), pp. 323-350.

