
Compact Control Flow Integerity in Linux

Introduction

The system supported stack plays an important role in running any application. If

someone has the control of the stack then he/she has the control over the flow of the

program. This is possible when some malicious input is given to the program and the

attacker then redirects the control flow to a harmfull code segment. We intend to

prevent this by modifying the binary therefore fortifying it.

Attack

The stack becomes vulnerable whenever a function is called either directly or

indirectly.

(i) Indirect Call :- The control flow is vulnerable during both call and return.

(ii) Direct Call:- The control flow is vulnerable only during return.

Everytime when a program returns from a function, the return address is read from

the stack. Whenever a function is called indirectly, the function address is read from

the registers which is inturn read from the stack (happens in case of function

pointers). The attacker can give some malicious inputs that overwrites the target

adresses in the stack thus gaining power over the control flow.

How do we fortify?

This problem can be solved by clubing all the targets into a single place (which the

attacker does not have access to) and redirecting the calls here. We call this address

space the springboard.

We add a new section called the springboard and all the function calls are made from

here and the original call instructions are replaced by the jmp instruction that branch

to the corresponding springboard target.

Major steps in fortification

(i) Find all the calls and replace it with jumps that branches to the springboard

 along with adding call instuctions followed by jmp instructions that jumps back

 to the original calling address.

(ii) Insert checkpoints before every return statement that checks if the return

 address lies within the springboard section.

Technical details

Adding a Section to a binary:

We can use the readelf --sections command to print the sections of a binary.

To add a section use objcopy --add-section .mysection=mydata inptfile outptfile to

add a new section with a name .mysection and has a data found in the file mydata.

Objcopy, by default, adds the section after the comment section.

Below is the output of readelf –sections add1...where add1 is the output file.

Though we have added a new section, it is not yet executable. If we try to redirect the

control flow there we will recieve a segmentation fault. This is because the new

section is not yet in the loadable segment. So our section will not be loaded during

the runtime.

We can check the loadable segments in the program header with readelf -l command.

We can see that our section is not there in the loadable segment(no. 3).

To make our section executable, we have to make some mannual changes in the

binary. One can use a hex editor like 010Editor to do these changes.\

 Change the flag of the section in the section header table to 6.

 Make sure the address of the section = base address + offset, the base is same

as that of other loadable sections. In this case base = 0x400000, offset = 0x1075. The

base address can be obtained by looking at the other loadable sections and using the

above formula.

 Increase the size of the loadable segment (3
rd

 segment, 02) in the program

header table to include our new section. Change both the file length and ram length.

The size has to be one greater than the address of the last byte of our section. To get

the value for Elf64_xword p_filesz_segment_file_length and Elf64_xword

p_memsz_segment_ram_length (they have to be set the same): Approach 1, to look at

the size and offset of our added section (.mysection), add them together (and plus 1)

to get 0x1091. Approach 2 is to look at the last byte (plus 1) of chardata field of the

section.

And now our section is successfully in the loadable segment. After this the section is

executable.

Now we can add our executable instructions and direct the control flow here.

Direct Call

 1

st
 add a section called .springboard.

 As mentioned earlier redirect the calls to the spring board.

 To add the checkpoints, we need to insert a piece of code before the return

statement but that would change the offsets of many other instructions which is not

desirable.

 So we add a new section called .extention in which we add the extra piece of

code with a return at the end.

 We also have to redirect the end of the function to this section.

-> this is before the modification

-> this is after modification

we delete the required number of instructions to add a jmp instruction and replace the

remaining bytes with nop(0x90). So we copy the deleted code in the .extension before

we add the checkpoint. The program control flow for the modified program is shown

as the figure below.

-> the original code

-> the call is modified

-> this is the code in our added sections.

The checkpoint :

push %rax #to save the current value of rax

lea 0x12(%rip),%eax #loading the springboard address into rax

sub 0x8(%rsp),%eax #subtracting the return address from the stack

 and rax (rsp pointing to the 8 bytes below the

 return address)

cmp 0x0,%eax #checking if the return address is greater than

 the springboard address (we need to make

 sure the return address is inside springboard

 section)

jle 401091 #jumping to return if everything is fine

jmpq 4007b0 #error handling, just a random address in the

 #binary to cause seg fault.

pop %rax #restore the value of rax

retq #return

Indirect Call

 The return statements are handled the same way as the direct call.

 As for the call, it also is dealt like the direct call but we dont know the actuall

address of the function being called as it is read from the register.

 Right now, we dont have an automatic technique for this but one can manually

see the address loaded in the register by tracing back few assembly instructions.

Benchmark

We tried our approach a to benchmark binary : kill. The results are as below.

 Number of direct calls = 245(220 library calls, 25 normal calls)
 Number of indirect calls = 2
 Number of returns = 14 (2 sensitive returns and 12 normal ones)
we remove our checkpoint for the 2 sensitive returns as they are called from the

system and return to the system.

The funcionality has been tested by trying a few commands like:
 ./kill
 ./kill --help
 ./kill --version
 ./kill -9 $PID
Performance has been tested by creating and killing the process 10,000 times(I wrote

a c++ script).

Original

0.859882

0.854217

0.854568

0.854012

= 0.85570 +/- 0.003 , deviation = 0.35%

Fortified

0.861137

0.861522

0.850526

0.852335

= 0.85640 +/- 0.006 , deviation = 0.70%

overhead = 0.08%

The above times are in seconds. The overhead is so small(even smaller than the

deviation) as kill is a very small binary.

