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Abstract This paper reviews melatonin as an overlooked
factor in the developmental etiology and maintenance of
schizophrenia; the neuroimmune and oxidative pathophysiol-
ogy of schizophrenia; specific symptoms in schizophrenia,
including sleep disturbance; circadian rhythms; and side
effects of antipsychotics, including tardive dyskinesia and
metabolic syndrome. Electronic databases, i.e. PUBMED,
Scopus and Google Scholar were used as sources for this
review using keywords: schizophrenia, psychosis, tardive
dyskinesia, antipsychotics, metabolic syndrome, drug side
effects and melatonin. Articles were selected on the basis of
relevance to the etiology, course and treatment of schizophre-
nia. Melatonin levels and melatonin circadian rhythm are
significantly decreased in schizophrenic patients. The adjunc-
tive use of melatonin in schizophrenia may augment the
efficacy of antipsychotics through its anti-inflammatory and
antioxidative effects. Further, melatonin would be expected to
improve sleep disorders in schizophrenia and side effects of
anti-psychotics, such as tardive dyskinesia, metaboilic syn-
drome and hypertension. It is proposed that melatonin also
impacts on the tryptophan catabolic pathway via its effect on
stress response and cortisol secretion, thereby impacting on
cortex associated cognition, amygdala associated affect and
striatal motivational processing. The secretion of melatonin is
decreased in schizophrenia, contributing to its etiology, path-
ophysiology and management. Melatonin is likely to have

impacts on the metabolic side effects of anti-psychotics that
contribute to subsequent decreases in life-expectancy.
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Introduction

Schizophrenia is associated with a dramatic decrease in life
expectancy, not entirely explained by increased suicide rates
(Flaum 2010). The effects of anti-psychotics, via the induction
of metabolic syndrome, are widely thought to contribute to
this. The moral dilemma of containing psychotic symptoms,
whilst likely contributing to decreased longevity and longer-
term health problems, is arguably the major practical issue
faced in the treatment of schizophrenia today. Out with its
well-known efficacy in sleep induction and circadian rhythm
modulation (Marczynski et al. 1964), melatonin’s role in the
etiology, course and treatment of schizophrenia has received
relatively little attention. Melatonin has a number of potential
effects relevant to the context of schizophrenia, including in its
etiology, pathophysiology and on the prevention of the meta-
bolic and other side effects induced by anti-psychotics (Bushe
and Leonard 2007; Tardieu et al. 2003).

This review aims to highlight the relevance of alterations
in melatonin in the etiology and maintenance of schizophre-
nia. It is proposed that its adjuvant use will prevent many
side effects of typical and atypical antipsychotics that con-
tribute to decreased longevity and quality of life.

Methods

Electronic databases, i.e. PUBMED, Scopus and Google
Scholar were used as sources for this review using keywords:
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schizophrenia, psychosis, tardive dyskinesia, antipsychotics,
metabolic syndrome, drug side effects and melatonin. Articles
were selected on the basis of relevance to the etiology, course
and treatment of schizophrenia.

Melatonin and schizophrenia

Accumulating evidence suggests that melatonin plays a role
in the pathophysiology of schizophrenia. Decreased noctur-
nal secretion of melatonin has been detected in drug-free as
well as paranoid schizophrenic patients (Monteleone et al.
1992, 1997). Many patients with schizophrenia lack the
typical diurnal variation in melatonin (Bersani et al. 2003).
Jiang and Wang (1998) also found disrupted melatonin
patterns in medicated schizophrenic patients. Generally
decreased melatonin has been found in schizophrenic
patients, although not always (Vigano et al. 2001). A phase
advance in melatonin circadian rhythms was also detected
(Rao et al. 1994). There is evidence for pineal calcification
in schizophrenia that is associated with CT measurements of
cortical atrophy (Sandyk and Kay 1991). Chronic treatment
with antipsychotics improves psychotic symptoms, but does
not normalize decreased baseline melatonin (Monteleone et
al. 1992). Monozygotic twins discordant for schizophrenia
show significant alterations in levels of melatonin (Afonso
et al. 2010). This indicates that the impaired activity of the
pineal gland may be a trait marker of schizophrenia. The
promoter of the melatonin receptor 1A gene is significantly
associated with schizophrenia (Park et al. 2011).

Melatonin and the immune pathophysiology
of schizophrenia

Two recent meta-analyses showed that schizophrenia is
accompanied by monocytic activation including increased
levels of proinflammatory cytokines (PICs) with altered T cell
activation and a Th1-like pattern (Miller et al. 2011; Potvin et
al. 2008). However, increased Th2-like cytokines have also
been found (Drexhage et al. 2011), suggestive of a mixed
immune response. There is also evidence for increased neuro-
inflammation in schizophrenic patients (Meyer et al. 2011).

Developmental neuroinflammation caused by maternal pre-
natal infections is pathophysiologically relevant and may con-
tribute to progressive brain changes and thus progression of
schizophrenia (Meyer et al. 2011). Additional evidence shows
that oxidative pathways are involved in the pathophysiology of
schizophrenia via lipid peroxidation, DNA damage and
oxidatively modified proteins (Bošković et al. 2011). Melato-
nin is not only a hypnotic and circadian rhythm resynchroniz-
ing compound, it is also a strong antioxidant and anti-
inflammatory agent (Maldonado et al. 2009a, b). Melatonin

attenuates PICs and other inflammatory mediators, additional-
ly acting as a free radical scavenger protecting against oxida-
tive damage (Esposito and Cuzzocrea 2010). As such
melatonin has neuroprotective capacities and has therapeutic
potential in chronic (neuro)inflammatory and neurodegenera-
tive disorders (Esposito and Cuzzocrea 2010). Melatonin, in
combination with anti-psychotic drugs, may augment the effi-
cacy of these drugs via the targeting of (neuro)inflammation
and oxidative stress (Maldonado et al. 2009a, b).

As well as being a powerful anti-oxidant, melatonin
increases the phosphorylation and inhibition of glycogen syn-
thase kinase-3b (GSK-3b), thus increasing endogenous anti-
oxidants via enhanced nuclear factor erythroid-derived-2 (NF-
E2)-related factor (Nrf-2) (Olcese et al. 2009).Melatonin is also
a significant inhibitor of cortisol’s Gcr (glucocorticoid receptor)
nuclear translocation (Quiros et al. 2008). This latter effect is
likely mediated via increased Bcl-2 associated anthanogene-1
(BAG-1). If so, then this would link melatonin effects to those
of lithium and valproate, both of which increase BAG-1 in the
brain (Zhou et al. 2005). This suggests that melatonin would
lead to a decrease in the dosage of such classical mood stabil-
izers, contributing to a decrease in their side effects.

Schizophrenia and bipolar disorder (BD) have been con-
ceptualized as both circadian and metabolic disorders (Wulff
et al. 2012). Both these aspects will be regulated bymelatonin.
Melatonin increases the longevity protein Sirtuin-1 in neurons
(Tajes et al. 2009), increasing peroxisome proliferator activat-
ed receptor gamma coactivator 1 alpha (PGC-1a), driving
mitochondrial bioenergetics and increasing mitochondrial
mass (Wareski et al. 2009). Melatonin increases mitochondrial
oxidative phosphorylation and would offset mitochondrial
deficits previously shown in schizophrenia, which drive wider
aspects of metabolic syndrome (Martín et al. 2002).

Melatonin, vitamin D and schizophrenia early
developmental etiology

Vitamin D3 (vit D3) is significantly lower in schizophrenic
patients than in normal controls (Schneider et al. 2000). A
decrease in vit D3 prenatally and in the first post-natal year has
long been associated with increased schizophrenia rates in the
offspring (McGrath et al. 2003). Decreased vit D3 is signifi-
cant in a number of contexts associated with the etiology of
schizophrenia, including maternal stress/infection (Brown and
Derkitis 2010), pre-eclampsia (Byrne et al. 2007), and season
of birth variations (Marzullo and Fraser 2009). Between 38 %
and 46 % of schizophrenia cases have been estimated to be
caused by prenatal infection (Brown and Derkitis 2010), and a
decrease in vit D3 is a significant contributor to this (Holmes
et al. 2009), due to its powerful role in the modulation of both
the innate (Miller and Gallo 2010), and adaptive (Bikle 2009)
immune systems.
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How relevant are melatonin’s interactions with vit D3 in
these developmental etiologies to psychosis? No data cur-
rently exists looking at the interactions of melatonin and vit
D3 in the modulation of immunity, and it remains to be
tested as to whether this would be a significant interaction in
maternal infection induced schizophrenia. Nevertheless,
melatonin is known to interact with vitamin D3 in a number
of human disorders, including synergistic interactions in
breast cancer (Proietti et al. 2011). There may be some scope
for relevant interactions of melatonin and vit D3 in the
context of an early developmental etiology to schizophrenia.
There are overlaps in their pathways e.g. both are inducers of
the intracellular C/EBPb (CCAAT/enhancer-binding perotin
beta) pathway (Alonso-Vale et al. 2009). Both also signifi-
cantly modulate the immune response and would inhibit the
increased levels of osteoporosis, evident in schizophrenia
(Graham et al. 2011). Melatonin increases osteoblast differen-
tiation from mesenchymal stem cells, decreasing the differen-
tiation of adipocytes (Zhang et al. 2010). The putative increase
in the levels of BAG-1 by melatonin may be relevant to its
interactive effects with vit D, as BAG-1 is a chaperone for vit
D3 to the nuclear Vit D receptor, potentiating the effects of vit
D3 (Chun et al. 2008).

Preeclampsia is another risk factor for an increase in
schizophrenia in the offspring, and this too is associated with
decreased maternal vit D3 (Grant 2010), as well as decreased
placental melatonin (Aversa et al. 2012). It seems likely that
vit D3mediates its effects via the inhibition of decidual natural
killer (NK) cells, with consequent impacts on trophoblast
migration and survival (Evans et al. 2006). Trophoblasts can
produce melatonin (Lanoix et al. 2008), N-acetylserotonin and
probably serotonin. It remains to be determined as to whether
vit D3 modulates such serotonin-melatonin paths in tropho-
blasts, either directly and/or via its inhibition of NK cells. This
would seem another potential site for vit D3 and melatonin
interactions that would be relevant to an early developmental
etiology to schizophrenia.

Seasonal variations often occur in both vit D3 and melato-
nin, and this may have some relevance to the seasonal varia-
tions that are known to occur in the levels of the serotonin
transporter (SERT). The increase in winter SERT (Praschak-
Rieder et al. 2008), and presumably a decrease in available
serotonin, may make some contribution to the season of birth
effect associated with schizophrenia (Watson and McDonald
2007). It is unknown as to whether such seasonal variations in
the levels of SERTalso occur in the placenta. Serotonin effects
in the placenta are currently being investigated in the context
of preeclampsia, so any seasonal variations in SERTmay have
relevance to other early developmental susceptibility factors.
Again it is not known if the proven interactions of melatonin
and vit D3 would be relevant in this context. The seasonal
fluctuations in melatonin and vit D3 do contribute to altered
immune responses, as well as having direct effects on CNS

development, driving season of birth influences on the devel-
opment of schizophrenia.

General etiology pathways

A general corollary of both maternal stress/infection and
preeclampsia is a decrease in the levels of placental 11b-
Hydrosteroid-dehydrogenase type 2 (11b HSD2), increasing
cortisol to both the placenta and the foetus (Aufdenblatten et
al. 2009; Causevic and Mohaupt 2007). Such cortisol effects
on foetal development include a decrease in neurogenesis,
and an increase in the renin-angiotensin system (RAS) both
centrally and peripherally. The changes in the RAS lead to
increases in childhood and adult blood pressure, and
increases in adult hypertension susceptibility (Reynolds et
al. 2009). Melatonin decreases hypertension and increases
neurogenesis and will directly inhibit cortisol’s prenatal
effects (Rennie et al. 2009).

Chronic unpredictable mild stress (CUMS) leads to an
increase in the levels of quinolinic acid (QA) in the amygdala
and striatum, and a trend increase in kynurenic acid (KYNA)
in the frontal cortex (Laugeray et al. 2010). In the context of
neurodegenerative disease, stress induced cortisol, at least
transiently, increases interleukin-18 (IL-18) (Anderson and
Ojalla 2010). IL-18 levels positively correlate with increased
cortisol (Kristo et al. 2002) and are increased in schizophrenia
(Reale et al. 2011). IL-18, independent of gamma-Interferon
(IFNy), can increase indoleamine-2,3-dioxygenase (IDO)
(Anderson 2011), including in microglia. This would lead to
an increase in QA induced N-methyl D-aspartate receptor
(NMDAr) activation, with excitotoxicity occurring at higher
concentrations (Anderson and Ojalla 2011). Would prenatal
stress/infection or preeclampsia induced increases in placental
cortisol transfer also increase IL-18 and the tryptophan catab-
olite (TRYCAT) pathway, especially in the prefrontal cortex,
amygdala and striatum, paralleling the effects of CUMS? This
would drive tryptophan down the TRYCAT pathway and
away from melatonin and serotonin production (Anderson
2011). This remains to be examined, but such putative effects
of cortisol are likely to be inhibited by both melatonin and vit
D3, perhaps acting synergistically. Activation of the TRYCAT
pathway additionally could explain the low melatonin levels
that are frequently found in schizophrenia.

Accumulating data shows an increase in KYNA in the
frontal cortex in schizophrenia (Miller et al. 2006), and this is
thought to contribute to the evident cognitive deficits and
hypofrontality (Zmarowski et al. 2009). Tryptophan 2,3-dioxy-
genase type 2 (TDO2) is a susceptibility gene for schizophrenia
(Miller et al. 2009) suggesting that an increase in astrocyte
KYNA production is a significant susceptibility and mainte-
nance factor in psychosis. Cortisol significantly induces TDO
and therefore KYNA, contributing to cortex inhibition and
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cognitive deficits. Melatonin and vit D3, via increased BAG-1,
would be expected to inhibit cortisol’s induction of TDO.
Astrocyte TDO and KYNA production can also be potentiated
by the cAMP/PKA pathway (Luchowska et al. 2009). Melato-
nin is a significant inhibitor of the cAMP path, and therefore
would be expected to make some contribution to the inhibition
of KYNA induced cognitive deficits and hypofrontality in
schizophrenia. Melatonin has been shown to have a positive
impact on cognitive processing in a stress paradigm (Rimmele
et al. 2009), and is therefore likely to modulate stress effects on
cognition in the etiology and course of schizophrenia.

The role of the TRYCAT pathways in schizophrenia is
further highlighted by the data showing increased trypto-
phan breakdown and associated inflammatory markers (Kim
et al. 2009). Also the importance of the TRYCAT, 3-
hydroxykynurenine (3-OHK), is emphasized by its altered
level in schizophrenia and in its significant associations with
both clinical symptoms and response to treatment (Condray et
al. 2011; Myint et al. 2011). As to how melatonin would
interact with level of expression of, and antipsychotic induced
changes in, specific TRYCATs remains to be examined.

Melatonin, sleep and schizophrenia

Sleep disturbance occurs in over 80 % of people with schizo-
phrenia, with many showing severe circadian and melatonin
misalignment, which can occur despite stability inmental state
and mood (Wulff et al. 2012). Such sleep disturbance is
associated with poor quality of life and may be particularly
evident when positive symptoms are present (Afonso et al.
2011a). One study shows not only improved sleep, but also
improved mood and daytime functioning in a random control
trial of adjunctive melatonin in schizophrenic patients (Suresh
Kumar et al. 2007). Given the commonly found decrease in
melatonin production at night in schizophrenia (Bersani et al.
2003), this would suggest that melatonin could have wider
benefits on patient quality of life. However, It has been sug-
gested that the sleep-promoting effects of melatonin may be
altered in schizophrenia (Afonso et al. 2011b).

Potential utility of melatonin adjunctive
to anti-psychotics

Anti-psychotic induced metabolic syndrome in schizophrenia
is associated with increased hypertension, undoubtedly contrib-
uting to decreased life expectancy in schizophrenia (Chwastiak
and Tek 2009). Melatonin is a peripheral vasodilator decreasing
blood pressure. Its maintenance of sirtuin-1 levels in neurons
under challenge (Chang et al. 2009), gives it links to pathways
that have been classically associated with increases in longevity
(Cantó and Auwerx 2009). Melatonin decreases obesity and

increases mitochondria oxidative phosphorylation (Martín et al.
2002), in turn decreasing metabolic syndrome. As with neuro-
leptics, both lithium and valproate have metabolic side effects,
including weight gain and glucose dysregulation (Bushe and
Leonard 2007; Tardieu et al. 2003). Melatonin affords protec-
tion against these side effects (Shieh 2009; Sartori et al. 2009).

Olanzapine in rodents decreases melatonin by 55 %
(Raskind et al. 2007). However, in a short duration trial,
olanzapine was found to have no significant impact on mela-
tonin levels in a sample of schizophrenic patients (Mann et al.
2006). This requires replication over a longer time frame.
There is only one ongoing clinical trial looking at the effects
of melatonin in offsetting the side effects of olanzapine in
psychosis (Kilzieh, clinicaltrials.gov). Given the above, it
would seem not unlikely that melatonin would inhibit these
longevity decreasing antipsychotic side effects. Among the
anti-psychotics clozapine is especially associated with an
increased risk of pneumonia, particularly at the time of initial
prescription (Kuo et al. in press). The susceptibility to pneu-
monia will be modulated by variations in vit D and the vit D
regulation of the endogenous anti-microbial cathelicidin
(Leow et al. 2011). Decreased cathelicidin induction by vit
D increases the risk of, and mortality from, pneumonia.
Melatonin has efficacy in attenuating bacteria induced lung
inflammation in animal models (Lee et al. 2009). In a pilot
study, melatonin has shown clinical utility in the management
of pneumonia and COPD (Shilo et al. 2000), particularly in
the regulation of sleep, which is often disturbed in these lung
disorders. Given the cell-mediated immune and inflammation
model of schizophrenia and the effects of clozapine within this
model (Maes et al. 1994), the optimization of melatonin and
vit D at the time of the initial prescribing of antipsychotics
may help to decrease the likelihood of pneumonia emerging as
a side effect.

Tardive dyskinesia (TD) is a serious adverse effect often
associated with the first generation antipsychotic medica-
tions used in the management of schizophrenia. A number
of risk factors for TD have been found, including the single
nucleotide polymorphisms in the dopamine D3 receptor
(Utsunomiya et al. 2012) and TNFa (Wang et al. 2012). In
relatively small samples of schizophrenia patients, melato-
nin, at a low dose (2 mg/day), does not seem to have any
significant impact on TD (Shamir et al. 2000). However at
10 mg/day melatonin significantly decreases TD (Shamir et
al. 2001). Recent interest in the treatment of TD has centred
on the utility of anti-oxidants, including melatonin (Lerner
and Miodownik 2011).

Conclusions

In summary, melatonin plays a role in the pathophysiology,
developmental etiology, course and treatment of schizophrenia.
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Its optimization, alongwith vit D3, could significantly attenuate
the development of psychosis, and the extent of psychotic
symptoms. At the very least, it would be expected to decrease
anti-psychotic side effects, and decrease the hypertension, sleep
disorders, glucose dysregulation, obesity and tardive dyskinesia
as well as increasing the longevity of a population of people
whose life expectancy is 25 years less than the general popula-
tion (Flaum 2010).
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