Cable Equalizer with 2-system Switching Function

CXB1441R

Description

The CXB1441R is a cable equalizer that compensates the attenuation resulting from cable transfer of smallamplitude differential NRZ signals.
This chip has two sets of input ports comprising three pairs of differential data signals and one pair of differential clock signals. It equalizes and quantizes the signals from the optional ports and then outputs the signal from the output ports. NRZ signals from $250 \mathrm{Mb} / \mathrm{s}$ to $1.65 \mathrm{~Gb} / \mathrm{s}$ are supported.
(Applications: High-speed digital video signal switching and compensation of cable attenuation)

Features

- Two sets of input ports comprising three pairs of differential data signals and one pair of differential clock signals
- 50Ω termination pull-up resistors built into differential data and clock inputs
- Low differential data and clock input capacitance facilitates the design and manufacture of TDR standard compatible equipment
- Equalizer circuit that compensates cable attenuation improves the signal eye pattern
- Output 50Ω load drive, voltage amplitude 0.5 Vp -p
- Single +3.3V power supply
- Low power consumption
- Lead-free 48-pin plastic LQFP package ($7 \mathrm{~mm} \times 7 \mathrm{~mm}$)

Package

48-pin LQFP (Plastic)

Absolute Maximum Ratings

- Supply voltage	Vcc	-0.3 to +4.0	V
- Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

- Supply voltage Vcc 3.135 to 3.465 V
- Operating temperature $\mathrm{Ta} \quad-20$ to $+75 \quad{ }^{\circ} \mathrm{C}$ by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Pin Configuration

Pin Description

\begin{tabular}{|c|c|c|c|c|}
\hline Pin No. \& Symbol \& Type \& Equivalent circuit \& Description \\
\hline \[
\begin{aligned}
\& 2,11, \\
\& 18,19, \\
\& 26,35, \\
\& 37,38, \\
\& 42,43, \\
\& 47,48
\end{aligned}
\] \& Vcc \& Power supply \& \& \begin{tabular}{l}
Power supply. \\
Connect to \(3.3 \mathrm{~V} \pm 5 \%\).
\end{tabular} \\
\hline \[
\begin{aligned}
\& 5,8, \\
\& 15,22, \\
\& 29,32, \\
\& 41,44
\end{aligned}
\] \& GND \& GND \& \& GND. Connect to OV. \\
\hline 28
27 \& ACKP
ACKN \& Differential input \& \& A port differential clock input. \\
\hline 31
30 \& ADTOP

ADTON \& Differential input \& \& A port differential data input 0 .

\hline 34
33 \& ADT1P

ADT1N \& Differential input \& \& A port differential data input 1.

\hline 40 \& ADT2P \& Differential input \& \& A port differential data input 2.

\hline 39 \& ADT2N \& \& \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Pin No. \& Symbol \& Type \& Equivalent circuit \& Description

\hline 46
45 \& BCKP
BCKN \& Differential input \& \& B port differential clock input.

\hline 4

3 \& BDTOP
BDTON \& Differential input \& \& B port differential data input 0.

\hline 7

6 \& BDT1P
BDT1N \& Differential input \& \& B port differential data input 1.

\hline 10
9 \& BDT2P
BDT2N \& Differential input \& \& B port differential data input 2.

\hline 25 \& CE \& CMOS in \& \& Chip enabled by High input.

\hline 36 \& SEL \& CMOS in \& \& A ports selected by High input, B ports selected by Low input.

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Pin No. \& Symbol \& Type \& Equivalent circuit \& Description

\hline 12 \& REXT \& Analog \& \& Connect to GND through a $4.7 \mathrm{k} \Omega \pm 1 \%$ input impedance adjusting resistor.

\hline 1 \& TEST \& CMOS in \& \& Test function control. Fix Low.

\hline 23
24 \& YCKP

YCKN \& Differential output \& \& Differential clock output.

\hline 20
21 \& YDTOP

YDTON \& Differential output \& \& Differential data output 0 .

\hline 16
17 \& YDT1P

YDT1N \& Differential output \& \& Differential data output 1.

\hline 13
14 \& YDT2P

YDT2N \& Differential output \& \& Differential data output 2.

\hline
\end{tabular}

Electrical Characteristics

DC characteristics

(Under the recommended operating conditions)

Item	Symbol	Min.	Typ.	Max.	Unit	Remarks
CMOS input High level voltage	VIH_M	Vcc -0.5		Vcc +0.3	V	
CMOS input Low level voltage	VIL_M	-0.3		0.5	V	
CMOS input High level current	IIH_M			1	$\mu \mathrm{~A}$	$@ \mathrm{VIN}=\mathrm{Vcc}$
CMOS input Low level current	IIL_M	-1			$\mu \mathrm{~A}$	$@ \mathrm{VIN}=0$
Differential input pin resistance relative to Vcc	RTERM	45	50	55	Ω	IIN $\mathrm{CE}=\mathrm{Vcc}$, IIN
Differential input dynamic range	VI	$\mathrm{Vcc}-0.8$		$\mathrm{Vcc}+0.2$	V	
Differential output High level current	IOH	0		0.05	mA	
Differential output Low level current	IOL	8	10	12	mA	
Supply current (operating)	Icc	110		165	mA	CE $=\mathrm{H}$, differential input open
Supply current (standby)	Istby			30	$\mu \mathrm{~A}$	$\mathrm{CE}=\mathrm{L}$, differential input open

*1 The resistance value when CE = Low is 55Ω (typ.).

AC Characteristics

(Under the recommended operating conditions)

Item	Symbol	Min.	Typ.	Max.	Unit	Remarks
Clock frequency	fCK	25		165	MHz	$1 / 10$ the differential data rate
Maximum equalizer gain	G_EQ	5			dB	@125MHz
		6			dB	@200MHz
		9			dB	@400MHz
		12			dB	@ 740 MHz
Differential data and clock output rise/fall time	Tr		150		ns	20 to 80\%
	Tf		150		ns	80 to 20\%

Electrical Characteristics Measurement Circuit

Description of Functions

The CXB1441R has two sets of input ports comprising three pairs of differential data signals and one pair of differential clock signals. The A ports are selected when a High signal is applied to the CMOS input pin SEL, and the B ports are selected when a Low signal is applied. Shaping is performed by the equalizer to compensate the signal deterioration of the selected port data signals and clock signals caused by transfer cable attenuation, and then these signals are quantized and reproduced on the output ports.
The CXB1441R inputs have built-in 50Ω pull-up resistors that act as transfer termination resistors, and parasitic capacitance is suppressed to a level that does not deteriorate the TDR characteristics of the equipment.
The outputs employ a 10 mA differential current output format in order to drive external 50Ω pull-up resistors. This output current is driven only when a High signal is applied to the CMOS input pin CE and the clock signal of the selected input port is in differential mode.
When a Low signal is applied to the CMOS input pin CE, the CXB1441R enters standby mode to reduce the power consumption.
The CXB1441R can be controlled by operating only the CMOS input pins CE and SEL.

Function Block Diagram

Application Circuit

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Equalizer Characteristics

Example of cable jitter improvement effects

Notes On Handling

The guideline for cable attenuation that can be compensated by the equalizer is the maximum equalizer gain. However, this rule does not apply when skin effects cause the attenuation characteristics to deviate greatly from the square root of the frequency response, or for cables with a large skew.

Package Outline

(Unit: mm)

		PACKAGE STRUCTURE		
PACKAGE MATERIAL	EPOXY RESIN			
SONY CODE	LQFP-48P-L01			
EIAJ CODE	P-LQFP48-7x7-0.5			
JEDEC CODE	-	LEAD TREATMENT	PALLADIUM PLATING	
LEAD MATERIAL	COPPER ALLOY			
PACKAGE MASS	0.2 g			

