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1. Introduction. The most important 

scientific outcome of the last 500 years 

is that we do not live in an arbitrary uni-

verse: Nothing does just happen; every-

thing obeys the laws of nature that gov-

ern our universe mercilessly and with-

out exception. In this ordered and deter-

mined world there seems to be no place 

for the term “chaos”. In physics, chaos 

has long been viewed as an accumula-

tion of measurement errors rather than a 

real physical principle. However, since 

the research of Edward Lorenz in the 

1960s, this idea has been refuted [1]. 

Chaotic systems are characterized by 

the fact that their behavior is sensitively 

dependent on the initial conditions; an 

extremely small change in the initial 

conditions leads to such a large devia-

tion in finite time periods, that neither 

the initial state, nor the scale of the dis- 

 
1 The time span in which the trajectory is inside a phase 
space region is proportional to the volume of the region. 

 

 

 

 

 

 

turbance is practically possible to recon-

struct [2]. 

1.a What is the Ergodic Theorem? 

There are special models for describing 

the behavior of chaotic systems, one of  

which is the so-called Ergodic Theorem, 

which was formulated in a slightly mod-

ified version by Ludwig Boltzmann in 

1887. It says that thermodynamic sys-

tems usually behave chaotically from a 

molecular level, what means that the 

trajectory of the system in phase space 

comes as close as desired to any ener-

getically possible point (see Fig.1) [3]. 

It also makes statements about the time 

after which a point is passed, but this as-

pect is irrelevant for my research and the 

following explanations.1 

1.b My Research Issue. My research is-

sue concerns the ergodic theorem and its 
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scope. I wondered about following 

question: 

What is the validity range of the Ergodic 

Theorem and what are the conse-

quences of a limited validity? 

However, this does not mean to which 

systems the ergodic theorem is applica-

ble and which exceptions exist (this is 

already quiet clear since the discovery 

of Spontaneous Symmetry Breaking by 

Y.Nambu, M.Kobayashi and T.Mas-

kawa) [4-6]. Instead, I would like to find 

out to what extent the theorem formu-

lated as a mathematical model can actu-

ally be applied to the underlying sys-

tems in physical reality and whether the 

factors not taken into account in the 

model impair its applicability. 

2. My Experimental Setup. In or-

der to answer my research question, I 

had to identify the factors that could po-

tentially limit the validity of the ergodic 

theorem and construct an experimental 

setup through which the single factors 

can be viewed in isolation (see Fig.2).  

2.a Identification of relevant factors. 

Before I designed the experimental 

setup, I had started with theoretical con-

siderations based on extensive literature 

work. I identified six potential 

influences that differentiate physical re-

ality from the mathematical model (see 

Tab.1). 

2.b Selection of the research object. 

To answer the research question, I made 

a distinction between factors that can be 

eliminated by modifying the experi-

mental setup and factors that are a fun-

damental part of our physical reality. I 

decided to investigate friction as the 

most fundamental aspect and chose a 

system that enables friction to be quan-

tified and varied. Finally, I chose a 

chaos pendulum as my research object, 

as it is one of the simplest chaotic sys-

tems and can be measured with little ef-

fort, but can also be modeled mathemat-

ically [7]. To build a chaos pendulum, 

only two pendulum rods have to be cou-

pled together, so that the second pendu-

lum behaves chaotically. However, this 

choice also has disadvantages: Alt-

hough the centrifugal force turned out to 

be negligible at the frequencies exam-

ined, there is a problem with the repre-

sentation. For the dimension D of the 

phase space of a system with 𝑛 degrees 

of freedom the following applies [8]: 

𝐷 = 2𝑛 

A chaos pendulum has two degrees of  
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freedom; hence its phase space is four-

dimensional [9]. After all, it takes four 

values to describe the state of a chaos 

pendulum: the angle between the rods, 

the angle between the upper rod and the 

suspension, and one angular velocity for 

each angle. However, creating four-di-

mensional phase spaces is a significant 

mathematic challenge that I was unable 

to overcome. 

2.c Modification of the structure. To 

solve this problem, I modified the chaos 

pendulum. I installed a stepper motor 

that drives the top pendulum at a con-

stant speed. In this way, the feedback 

between the pendulums is suppressed, 

whereby the upper angle and the associ-

ated angular velocity become irrelevant. 

Therefore, the pendulum has only one 

degree of freedom and consequently a 

two-dimensional phase space anymore. 

However, it was questionable whether 

the modified pendulum is still able to 

produce chaotic behavior, so I checked 

this before starting any friction-specific 

measurements. I varied the excitation 

frequency and studied common litera-

ture on phase spaces [10]. Then I at-

tached a colored point to the second 

pendulum and measured its position 

using a video camera and an evaluation 

program [11]. Using simple trigonome-

try, I was able to calculate the angle 

from the positions: 

tan(𝛼) = +
,
 . 

I just had to subtract the previous angle 

from the current angle and then divide 

the result by the time step to get an 

angular velocity, which I then plotted 

against the angle and got a phase space 

[8] (see Fig.3). In the phase space, the 

so-called Feigenbaum scenario could 

be clearly observed, small disturbances 

create a second rotation period that 

shifts a little further with each rotation. 

After all, the periods influence each 

other, which starts the chaos [12]. I also 

found out that this only happens at rela-

tively high frequencies, at low frequen-

cies the trajectory approaches the typi-

cal path of a simple driven pendulum. 

This enabled me to confirm the suitabil-

ity of my setup and also to determine the 

frequency range that generates chaotic 

behavior. 

3. Measuring Results. Finally, I 

started with an one-year series of meas-

urements to find out what influence a 

change in friction has on chaotic behav-

ior and, ultimately, the validity of the 
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ergodic theorem. However, before I 

started experimental verification, I de-

veloped a method to vary and quantify 

the influence of friction. 

3.a Variation of friction. Instead of us-

ing oils of different viscosity to change 

the friction, I opted for the simpler 

method of varying the air resistance by 

mounting faces of different sizes in the 

direction of movement of the pendulum 

[13]. However, it was not certain 

whether there was a proportionality be-

tween the size of the face and the result-

ing damping. Therefore, I used a math-

ematical-experimental method to define 

a universal friction factor. First, I de-

flected the pendulum and, depending on 

the area, received a more or less 

strongly damped sinusoidal oscillation. 

The damping factor can be derived from 

the steepness of the line that results 

when the respective amplitudes are con-

nected [14]. All necessary is inserting 

the high amplitude at the beginning for 

𝐴., the time for 𝑡 and the lower ampli-

tude after 𝑡 for 𝐴0 in 

𝐴0 = 𝐴. ∙ 𝑒34∗0. 

Term rewriting was first used to divide  

 
2 Since it is a damping with the unit 1/s, -k results as a 
function of t. 

by 𝐴., whereby I obtained  
67
68
= 𝑒34∙0, 

then I calculated the natural logarithm 

by what 𝑒 was omitted and I got the 

damping factor2: 

ln :67
68
; = −𝑘 ∙ 𝑡. 

I repeated this procedure for faces of 

different sizes and applied the various 

damping factors to the surfaces. It was 

clear: friction is equivalent to damping, 

there is clearly a proportionality (see 

Tab.2 and Fig.4). I was now able to vary 

friction in a reproducible manner.  

3.b Investigation of friction. I started 

with a very simple measurement. With-

out artificially increasing the friction, I 

took advantage of the friction between 

the pendulum rods and observed its ef-

fect over long periods of time, on the or-

der of a few days (see Fig.5 and 6). 

From these diagrams it can be con-

cluded that friction slows down the cha-

otic behavior by causing the transition 

to a periodic state. An artificial increase 

in friction speeds up this process, an in-

crease in frequency slows it down. This 

result confirmed my suspicion. 
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However, there was also a surprise, be-

cause with higher friction, sometimes 

there was suddenly no more chaos at all. 

Only when I increased the frequency 

further did a Feigenbaum scenario occur 

again and ultimately chaos. Apparently, 

friction affects chaos in two different 

ways: 

i) It leads to a faster transition to 

a periodic state.  

ii) It shifts the chaos entry fre-

quency backwards. 

This realization was most unexpected, 

but it got even stranger: Although the 

damping is completely proportional to 

the friction (see Tab.2 and Fig.4), the 

damping is in no way proportional to the 

chaos entry frequency (see Tab.3 and 

Fig.7). It turns out that the friction ini-

tially acts quite proportionally, but there 

is an area in which the friction has a very 

sensitive effect on the chaos entry fre-

quency. Then chaos entry frequency re-

mains on a plateau. 

3.c Interpretation of the results. What 

does this mean for the validity of the Er-

godic Theorem? Because friction slows 

down chaotic behavior, the Ergodic 

Theorem is usually not fulfilled, after 

all, the half-life of chaos is so limited 

that never every energetically possible 

point is passed. However, since the in-

fluence of friction does not grow for-

ever, but at some point, reaches a maxi-

mum value, whereas the excitation fre-

quency can be increased further, the Er-

godic Theorem is at least approximately 

fulfilled at high frequencies. Certainly, 

there is no unrestricted validity, the Er-

godic Theorem is a mathematical model 

with limited applicability in reality. 

4. Consequences of the Results. 
Now I turn to the second part of the 

question posed at the beginning. Which 

consequences have the present results? 

4.a Stability of Limit Cycles. For this 

purpose, I introduce the notion of limit 

cycle. A limit cycle is an isolated peri-

odic solution of a chaotic system [15], it 

is characterized by the fact that neigh-

boring trajectories diverge or converge.  

A limit cycle can also be described as an 

attractor in phase space that does not 

pull a system toward a point energy val-

ley, but rather forces it into a particular 

cycle that it always strives to break, 

even when work is expended to break it 

- the counterpart, so to speak, of chaotic 

behavior [2]. But if it depends on the 

distance of the starting point of the 
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trajectory from the limit cycle whether 

the system diverges or converges, and 

the distance lies on both the x-axis and 

the y-axis and thus represents a volume 

of energy in phase space, the further be-

havior of the system would then be sen-

sitively dependent on the initial energy. 

Thus, I have provided a new limit-cycle 

oriented approach to classical chaos the-

ory. However, if the course of the sys-

tem depends on the distance to the limit 

cycle, i. e. on the energy difference, then 

there must be an individual limit above 

which trajectories diverge. One could 

think of this as a "catchment" as known 

from other attractors [16], but this con-

clusion leads to a dead end in the case of 

semistable limit cycles. If one draws the 

catchment area as a sphere surrounding 

the limit cycle, then this sphere contains 

completely different energy values that 

converge against the same state. This is 

senseful for stable limit cycles and point 

attractors, but not in this case. In fact, 

the result is that the catchment area does 

not have the character of a sphere, but of 

a point or a surface. However, if there 

are points near the limit cycle where the 

cycle is broken and the system returns to 

a chaotic state, what does this say about 

limit cycles? If the ergodic theorem is 

almost completely satisfied at high fre-

quencies (see 3.b), the trajectory will hit 

one of the unstable points at t→∞ and 

decay. If it runs exactly back into itself, 

it is generally unstable, because any per-

turbation would grow exponentially. 

[2]. Limit cycles would thus also be in-

evitably unstable in reality, which could 

have far-reaching consequences for nu-

merous chaotic systems such as our so-

lar system, climate or stock exchange.  

4.b Falsification Reasons. Of course, 

scientific work also includes the critical 

questioning of own hypotheses and the 

questioning of alternative explanations. 

These also exist for the facts of the limit 

cycles. For example, it would be con-

ceivable that no unstable points or re-

gions exist in the phase space, but the 

selection between diverging and con-

verging is subject to chance instead of 

the energy difference. Superficially, this 

would be hardly distinguishable from a 

sensitive dependence, but then a trajec-

tory that converges once could also fol-

low the limit cycle forever. This sounds 

arbitrary, but it is a serious possibility, 

which could be described mathemati-

cally. In this case the phase space would 
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be underlaid by a fractal pattern of start-

ing points which produce diverging tra-

jectories and starting points which pro-

duce converging trajectories. The dis-

tance between two such possible points 

is theoretically infinitesimal in a self-

similar fractal, so what happens is left to 

random [17]. Possibly even the phase 

space itself would be fractal, 𝐷 would 

then not necessarily have to be a natural, 

but also a decimal number, which could 

be calculated as similarity dimension: 

𝐷 = −
log𝑁
log 𝜀

, 

where 𝑁 is the number of versions of the 

set itself, reduced by the factor ε, of 

which it consists [18]. This would have 

interesting consequences, e. g. it would 

allow to interpret indeterminacy effects, 

since angle and angular velocity cannot 

be completely mapped in a less than 

four-dimensional phase space. How-

ever, this is currently a hypothesis - just 

like the instability of limit cycles. 

4.c Verification of Stability. Whether 

the selection of the diverging and con-

verging trajectories is subject to the en-

ergy difference, which would be accom-

panied by a general instability of limit 

cycles, or to chance, which would 

suggest a fractal phase space, is very 

difficult to verify experimentally. I cal-

culated that the always occurring dis-

turbances in chaotic systems make the 

verification by means of my experi-

mental setup practically impossible. A 

computer simulation, on the other hand, 

could achieve sufficient precision. I 

therefore started to design a scheme for 

a program based on the programming 

language C++ [19]. It works according 

to the following principle: For the vari-

ables location (𝑥; 	𝑦) and velocity 

(𝑣𝑥; 	𝑣𝑦) initial values are entered as in-

put. From these and the underlying 

physical laws, a value for the resulting 

force 𝐹 and acceleration 𝑎 is obtained, 

which is then divided into the compo-

nents of the velocity change in x- and y-

direction (∆𝑣𝑥; ∆𝑣𝑦). These can then be 

used to calculate the new velocities 

(𝑣𝑥KLM; 𝑣𝑦KLM) by simple addition, 

which is used to determine the new po-

sitions (𝑥KLM;	𝑦KLM) at the end. These 

then serve as initial values for the next 

iteration. After each iteration in the time 

span ∆𝑡, which was also specified at the 

beginning, the positions should also be 

plotted, so that I can track the position 

of the point in real time. This is of 
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elementary importance for the method-

ology of data collection (see Fig.8). 

5. Creation of a Simulation. In 

simulating my problem, I proceeded in 

several steps. 

5.a Two-Body-Problem. The scheme 

of my simulation (see Fig.8) can be used 

to model numerous physical systems. I 

was faced with the problem that I had to 

verify my simulation, but this is not pos-

sible with my simulated system, be-

cause I need the already verified simu-

lation to be able to solve it at all. There-

fore, I started to apply it to an already 

known problem, the orbit of the moon 

around earth. For this I need only a 

handful of functions, I calculated 

𝑣𝑥0 = 𝑣𝑥. − 𝐺 ∙ 𝑚⨁ ∙
,

QR∗∆0
. 

On the same principle I calculated also 

𝑣𝑦0, then 𝑥0 could be calculated by 

𝑥0 = 𝑥. + 𝑣𝑥 ∙ ∆𝑡 

Analogously also 𝑦0. The orbital radius 

𝑟 of the moon is valid according to the 

Pythagorean theorem 

 𝑟 = U𝑥V + 𝑦V. 

The entered start values correspond to 

 
3 The data was converted to meters by multiplying by 
103, since 𝐺 is written in meters. 

the position of the moon in its perigee.3 

An optimal value for ∆𝑡 can be obtained 

by variation, I chose ∆𝑡 = 100	𝑠. This 

resulted in Fig.9. I then applied the sim-

ulation to another two-body problem, 

the orbit of the Earth around the Sun. 

For this I had just to insert new values: 

𝑣𝑥0 = 𝑣𝑥. − 𝐺 ∙ 𝑚⊙ ∙
,

QR∆0
, 

analogously for 𝑣𝑦0. Then I converted 

parameters to AU4 and Fig.10. resulted. 

5.b Three-Body-Problem. Far more 

difficult is the application to a three-

body problem, but here nonlinearity oc-

curs, which my program needs to be ap-

plicable to my pendulum [20]. I simu-

lated the movement of the Sun, Earth 

and Mars under mutual attraction. The 

masses and orbital radii of every other 

body must be taken into account when 

calculating 𝑣𝑥0 and 𝑣𝑦0 from the super-

position of all forces [21], e. g. for 𝑣𝑥⨁: 

𝑣𝑥0 = 𝑣𝑥 − 𝐺 ∙ 𝑚⊙ ∙
𝑥

𝑟⊙
[ ∆𝑡

− 𝐺 ∙ 𝑚♂ ∙
𝑥

𝑟♂
[ ∆𝑡

 

By factoring out, I obtain: 

𝑣𝑥0 = 𝑣𝑥 − \𝐺
𝑥
∆𝑡	]

𝑚♂
𝑟♂3

+
𝑚⊙

𝑟⊙3
_` 

Fig.1 resulted which showed some  

nonlinearities for the first time. The 

4 1 AU (Astronomical Unit) = 149.597.870.700 m 
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same procedure is to be followed with 

the y-component5. Afterwards I put the 

origin on the position of the earth by 

means of coordinate transformation, 

whereby the opposition loops received, 

which the Mars relative to the earth car-

ries out (see. Fig.12) [22]. 

5.c Circular Motion. A circular motion 

is simpler than an astronomical three-

body problem, a "one-body problem" so 

to speak, but it is also much more simi-

lar to my chaos pendulum and therefore 

relevant. One difference to the previous 

simulations is that I now worked with 

vectors and matrices instead of positions 

and velocities.  From the angle of rota-

tion of the pendulum I generated a rota-

tion matrix, which I multiplied with the 

location vector [23], whereby it changes 

and generates the new position: 

:
𝑥0
𝑦0; = a

cos	(𝛼) −sin	(𝛼)
sin	(𝛼) −cos	(𝛼)e ∙ :

𝑥.
𝑦.; 

I checked the result of my simulation by 

calculating the velocities from the posi-

tion vectors and plotting their x- and y-

components separately. Thereby I got 

the typical harmonic oscillations, for 𝑣, 

a sine curve, for 𝑣+ a cosine curve [24]. 

 
5 In this case, 𝑟 is the distance to earth, not to the 
origin. Its calculated with f𝑑⨁ − 𝑑♂f, if 𝑑 is the dis-
tance to the origin. 

Thus, I could verify the function of my 

program also here several times. 

5.d Coupled Circular Motion. Subse-

quently, I simulated also the coupled 

second pendulum by setting the origin 

of the second pendulum to 𝑥0 and 𝑦0 of 

the first pendulum. This allowed me to 

generate coupled circular motions - but 

since there are no forces acting yet, the 

feedbacks and thus the chaos remain ab-

sent (see Fig.12, 13, 14) [25]. However, 

regularities could be established, the 

number of loops within the path of the 

first pendulum equals the quotient of the 

excitation frequencies of the two pendu-

lums minus 1. 

5.d Damped Coupled Circular Mo-

tion. Another important step to simulate 

my system was introduce friction to be 

able to determine the influence of fric-

tion on chaos later. For this, I had to in-

sert a linear friction factor 𝜇 when cal-

culating the angular velocity of the sec-

ond pendulum6: 

𝜔V7 = 	𝜔V8 − 𝜇 ∙ 𝜔V8 

I first began to investigate the influence 

of friction on force-less coupled circular 

6 The friction of the first pendulum is negligible be-
cause it is driven by a stepper motor. 
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motions. Thereby it could be observed 

that the friction slows down the move-

ment in a similar way as the chaos, and 

the two pendulums behave increasingly 

like one at higher friction. The higher 

the friction is, the faster the coupled cir-

cular motions become a simple circle. I 

wondered whether the time until the sin-

gle circular motion occurs is propor-

tional to the friction and tried to answer 

this question with my simulation. I sim-

ulated trajectories with varied 𝜇 and 

noted after how many iterations a sim-

ple circular motion applied (see Fig.16, 

17, 18). The result was a curve with two 

asymptotes approaching the axes: Thus, 

for a friction of 0, it would take an infi-

nite number of iterations; for a friction 

of 1, it is a single pendulum (see Tab.4 

and Fig. 19).  

6. Conclusion. At this point, I high-

light my research results and distinguish 

between proven and conjectural results. 

The following results can be verified: 

i) At my pendulum, chaos is fre-

quency-dependent. (see 2.c) 

ii) Friction shifts the Chaos entry 

frequency backward. (see 3.b) 

 

iii) Friction leads to a transition to 

periodicity and breaks er-

godicity. (see 3.b) 

iv) At high frequencies, friction 

loses its influence and allows  

partial ergodicity. (see 3.a) 

The following, however, is still an open 

question for which there are at least two 

different possible explanations, which I 

am currently pursuing (see 4.b): 

v) Limit cycles could be unstable 

or the phase space has a fractal 

dimension. (see 4.a to 5) 

The research question posed at the be-

ginning can be answered comprehen-

sively with these results: The Ergodic 

Theorem is not valid at most excitation 

frequencies, only at a few, particularly 

high frequencies it approaches validity 

due to decreasing influence of friction. 

However, the current state of research 

also leaves much room for further re-

search. Therefore, I will further develop 

my computer simulation to answer also 

the question of the consequences and to 

prove the instability of limit cycles or 

the broken dimension of phase space. 

And above all, I will not be deterred by  

this complex topic, but will continue to 

research and bring order into chaos.  


