CS352: Computer Architecture

Spring 1998

Homework 3 - Solutions

1. In a two-level memory hierarchy, let $t_{1}=10^{-7} \mathrm{~s}$ and $t_{2}=10^{-2} \mathrm{~s}$. If t_{a} denotes the average access time of the memory hierarchy, and if we define the access efficiency to be equal to t_{1} / t_{a}, then what must the hit ratio H be in order for the access efficiency to be at least 80% of the maximum value?
Solution: For a 2-level hierarchy, the average access time is given by:

$$
t_{a}=t_{1}+(1-H) * t_{2}
$$

where H is the hit ratio, t_{1} is the hit time, and t_{2} s the miss penalty. Note that when on a cache miss, the amount of time it takes to service the memory access request is $\left(t_{1}+t_{2}\right)$, and hence, the miss penalty is t_{2}.
Hence, we want to find H such that the access efficiency $t_{1} / t_{a} \geq 0.8$. That is,

$$
\begin{gathered}
t_{1} / t_{a} \geq 0.8 \Rightarrow t_{1} \geq 0.8 *\left(t_{1}+(1-H) * t_{2}\right) \\
\Rightarrow 0.2 t_{1} \geq 0.8 *(1-H) * t_{2} \\
\Rightarrow H \geq 1-\frac{t_{1}}{4 * t_{2}}
\end{gathered}
$$

Substituting the values for t_{1} and t_{2}, you can get:

$$
H \geq 0.9999975
$$

2. In an n-level memory hierarchy, let H_{i} denote the hit ratio associated with the memory M_{i} at level i. If $t_{1}, t_{2}, \ldots, t_{n}$ denote the access times of the n levels of the memory hierarchy, what is the average access time a memory request?
Solution: For a 2-level hierarchy, the average access time for a memory request is:

$$
t_{a}=t_{1}+\left(1-H_{1}\right) * t_{2}
$$

For a 3-level hierarchy, this equation generalizes to:

$$
t_{a}=t_{1}+\left(1-H_{1}\right) *\left\{t_{2}+\left(1-H_{2}\right) * t_{3}\right\}
$$

Note that $t_{2}+\left(1-H_{2}\right) * t_{3}$ is the average time to access data from the 2 nd and the 3 rd level of the memory hierarchy.
In general, for a n-level hierarchy, we get:

$$
\begin{gathered}
\left.t_{a}=t_{1}+\left(1-H_{1}\right) *\left\{t_{2}+\left(1-H_{2}\right) *\left\{t_{3}+\left(1-H_{3}\right) * \ldots\left\{t_{n-1}+\left(1-H_{n-1}\right) * t_{n}\right\}\right\}\right\} \ldots\right\} \\
\Rightarrow t_{a}=t_{1}+\sum_{i=2}^{n} \prod_{j=1}^{n-1}\left(1-H_{j}\right) * t_{i}
\end{gathered}
$$

3. Consider a 3-level memory hierarchy as shown below:

Level i	Access time t_{i} time $t_{i}(\mathrm{sec})$	Access Probability p_{i}	Block transfer time $b_{i}(\mathrm{sec})$
M_{1}	10^{-6}	0.999900	0.001
M_{2}	10^{-5}	0.000099	0.1
M_{3}	10^{-3}	0.000001	-

Here p_{i} denotes the fraction of memory access requests that are satisfied at level M_{i} of memory. When a miss occurs at level M_{i}, a block swap takes place between memory levels M_{i} and M_{i+1}; the average time for this block swap is b_{i}.
(a) Calculate the average access time t_{a} for the memory hierarchy.

Solution: The average access time for a 3-level hierarchy is:

$$
t_{a}=t_{1}+\left(1-H_{1}\right) * \text { MissPenalty }_{1}
$$

where

$$
\text { MissPenalty }_{1}=\left(t_{2}+b_{1}\right)+\left(1-H_{2}\right) * \text { MissPenalty }_{2}
$$

and

$$
\text { MissPenalty }_{2}=\left(t_{3}+b_{2}\right)
$$

Also, $H_{1}=0.9999$ and $H_{2}=0.000099 / 0.000100=0.99$. Using these values and the above equations, we get MissPenalty ${ }_{2}=0.101$, MissPenalty $y_{1}=0.00202$, and hence

$$
t_{a}=10^{-6}+10^{-4} * 0.00202=1.202 * 10^{-6}
$$

(b) It is desired to make $t_{a} \leq 1.15 \times 10^{-6} \mathrm{~s}$. This speedup is to be achieved by replacing M_{3} by a faster memory that reduces b_{2} to a new value b_{2}^{\prime}. What should b_{2}^{\prime} be?
Solution: If you substitute $t_{a}=1.15 * 10^{-6}$ in the above equations, then given the values of t_{1}, $t_{2}, t_{3}, b_{1}, H_{1}$, and H_{2}, you can calculate the value of b_{2}^{\prime}. The Solution is $b_{2}^{\prime}=0.048$.
4. Consider a system containing a 128-byte cache. Support that set-associative mapping is used in the cache, and that there are four sets each containing four cache blocks. The physical address is 32 bits, and the smallest addressable unit is a byte.
(a) Show how the memory address is used for cache addressing?

Solution: Since the cache contains 4 sets, each with 4 blocks, the total number of blocks in the cache is 16 . Also, since the total cache size is 128 bytes, each cache block contains $128 / 16=8$ bytes. Hence, of the 32 bit address, you will need to use the least significant 3 bits to identify a byte within a selected block.
Of the remaining 29 bits in the address, you will need to use the least significant 2 bits to identify one of the 4 sets in the cache. The remaining 27 bits constitute the tag.
(b) To what cache blocks can the address $000010 A F_{16}$ can be assigned?

Solution: Since $A=1010_{2}$ and $F=1111_{2}$, the least significant 5-bits of the address $000010 A F_{16}$ are 01111. Since the last 3 bits are used to identify the byte being accesses and the first two bits identify the set, address $000010 A F_{16}$ can be assigned to set " 01 ".
(c) If the addresses $000010 A F_{16}$ and $F F F F 7 A x y_{16}$ can be simultaneously assigned to the same cache set, what values can the address digits x and y have?
Solution: As we have shown above, to be assigned to the same cache set, the least significant $4^{t h}$ and $5^{t h}$ bit of the address must be identical. For address $000010 A F_{16}$, the least significant $4^{t h}$ and $5^{t h}$ bits are 01 . Hence, x must be such that its last bit is 0 , and y must be such that its first bit is 1 . Hence, x can be one of $0,2,4,6,8, \mathrm{~A}, \mathrm{C}$, or E ; while y can be $8,9, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, or F.
5. Consider a fully associative cache of size 2 blocks. Consider a program that accesses memory blocks in the following order:

$$
a b a c a b d b a c d
$$

(a) What is the number of cache misses that will result if the cache uses FIFO replacement policy?

Solution: For a fully associative cache of size 2 blocks, assuming the FIFO replacement policy, here is what the access sequence will look like.

$$
\widehat{a}, \widehat{b}, a, \widehat{c}, \widehat{a}, \widehat{b}, \widehat{d}, b, \widehat{a}, \widehat{c}, \widehat{d}
$$

where \widehat{x} denotes a cache miss that occurs while accessing location x. Hence, with FIFO, the access sequence will see 9 misses.
(b) How does this change if the LRU policy is used?

Solution: With LRU policy, the access sequence will look like the following:

$$
\widehat{a}, \widehat{b}, a, \widehat{c}, a, \widehat{b}, \widehat{d}, b, \widehat{a}, \widehat{c}, \widehat{d}
$$

Hence, LRU will see 8 misses.
(c) How will both of these results change if the cache size is increased to 3 blocks?

Solution: With FIFO, the access sequence is:

$$
\widehat{a}, \widehat{b}, a, \widehat{c}, a, b, \widehat{d}, b, \widehat{a}, c, d
$$

Hence, there will be 5 misses. Note that the access to d causes a miss, and hence the replacement of a from the cache. Hence, the subsequent access to a causes a miss.
With the LRU policy, the access sequence is:

$$
\widehat{a}, \widehat{b}, a, \widehat{c}, a, b, \hat{d}, b, a, \widehat{c}, \widehat{d}
$$

Here, the total number of misses are 6. Note also that in this case, when access to d causes a miss, c is replaced from the cache (since it is the least recently used memory location). Consequently, a subsequent access to c causes a miss and the replacement of d, which at that time is the least recently used memory location. Hence, the final access to d also causes a miss.
(d) Intuitively, both FIFO and LRU would seem to be better than a most recently used (MRU) replacement scheme. How does MRU perform on the access trace shown above assuming a cache of size 2 blocks?
Solution: Assuming a cache of size 2 blocks and the MRU replacement policy, the access pattern will be as follows:

$$
\widehat{a}, \widehat{b}, a, \widehat{c}, \widehat{a}, b, \widehat{d}, \widehat{b}, a, \widehat{c}, \widehat{d}
$$

That is, there will be 8 misses, which is smaller than FIFO, and the same as LRU.
6. Consider the following code fragment:

1. $\mathrm{a} \leftarrow \mathrm{b}+\mathrm{c}$;
2. $\mathrm{b} \leftarrow \mathrm{a}+\mathrm{d}$;
3. $\mathrm{a} \leftarrow \mathrm{e}+\mathrm{f}$;
4. $\mathrm{x} \leftarrow \mathrm{a}+\mathrm{b}$;
5. $\mathrm{y} \leftarrow \mathrm{c}+\mathrm{d}$;
6. $\mathrm{c} \leftarrow \mathrm{e}+\mathrm{f}$;

Consider a system that employs Tomasulo's algorithm to issue and execute requests. Assume that the system fetches/decodes at most one instruction in each cycle. Let the system contain a 2 -stage integer ALU (i.e., the execution stage of an integer ALU operation takes 2 clock cycles). What is the order in which requests will complete? Show your work. What is the total number of clock cycles required to execute these instructions?
Solution: If we can represent the state of the system using 4 states: fetch, reservation station (RS), ALU-execute-1, and ALU-execute-2, then the following table represents the execution sequence:

Clock Cycle	FETCH	RS	ALU-Execute-1	ALU-Execute-2
1	1			
2	2		1	1
3	3	2		
4	4	3	2	2
5	5	4	3	3
6	6	4	5	5
7		6	4	4
8			6	6
9				

Hence, the instructions will finish in the order $1,2,3,5,4$, and 6.

