
Swarm Training

Shawn Presser

January 2020

Abstract

We present a method for training large machine learning models using dozens of independent
TPUs. We are able to fine-tune GPT-2 1.5B using 80 preemptible TPUv3-8’s on a 10GB dataset
in less than a week, a speed comparable to TPU pods, resulting in equivalent training performance
at significantly lower costs. Our technique can be applied to any codebase that can interact with
TPUs, such as Tensorflow and PyTorch. Finally, we experimentally verify that TPUv2-8’s can
allocate up to 300GB of RAM during training, showing that TPUs may be the most convenient
way to train massive models.

1 Introduction

When training very large machine learning models, one problem is that models often require more
memory than is available to most GPUs. Even if the model itself fits into available memory, the
training process can sometimes consume an order of magnitude more memory due to backpropagation
requirements. Gradient checkpointing [1] offers a way to reduce the backpropagation memory cost by
trading CPU time for memory usage. Still, for the largest models, researchers have often resulted to
using bfloat16 precision [2] rather than full float32 precision, or using Adafactor rather than Adam
optimizer, both of which can be harmful to final model quality or training time.

Other techniques for fitting large models into available memory include Megatron [3], which
uses model parallelism to split backpropagation across multiple GPUs. Although model parallelism
offers impressive scaling performance, it is often time-consuming to implement in practice, requiring
intensive analysis of how to partition each type of layer in the model. Additionally, not every type of
layer can be partitioned using model parallelism, rendering model parallelism an incomplete solution
for certain model architectures.

Ideally, for training massive models, a training technique would satisfy several requirements:
1. No tradeoffs: Use full float32 + Adam optimizer during training.
2. Easy to implement: The overall design of the training system should be conceptually simple

to understand and deploy.
3. Realistic: The technique should be deployable on a variety of hardware configurations circa

2020.
4. Cost-scalable: There should be a linear relationship between money and effectiveness. 1

In this work we show that TPUs satisfy all of these requirements. We demonstrate that GPT-2
1.5B can be fine-tuned in a matter of days by using a ”swarm” of TPUs. We also show that the
technique is straightforward to implement for other model architectures, e.g. StyleGAN.

1Effectiveness is a combination of training speed and final quality. Training speed must be minimized and quality
maximized simultaneously.

1



2 Related Work

Hogwild [4] proposes a technique of lock-free training, allowing each device access to shared memory
with the possibility of overwriting each other’s work. The authors provide emperical evidence that
this technique can be hunreds of times faster than traditional lock-step training approaches (where
gradients are calculated by each device and then applied to all devices synchronously).

Data parallelism is a popular technique for accelerating machine learning. It distributes a set of
training samples among a number of processors, each of which trains in parallel, then the results are
combined together. Typically the results take the form of gradient updates, which are broadcasted
to all processors after each training step using an all-sum operation. Google Brain conducted an
extensive study of data parallelism [5].

3 Method

We observe that Hogwild’s lock-free technique is closely related to data parallelism: In both cases, a
set of processors each train independently on part of the training data, then the results are combined
together. The key insight of this paper is to apply Hogwild’s lock-free training technique at scale.

Basically, the Swarm Training algorithm is to spawn N training sessions, one for each processor
available (GPU, TPU, etc), and to average the model parameters as quickly as possible across all
processors. Training and averaging happen simultaneously.

Unlike Hogwild, Swarm Training does not broacast gradient updates. Instead, we continuously
average the actual model parameters. This design eliminates much code complexity (a central focus
of Swarm Training), freeing engineers to focus on two objectives:

1. Spawn N training sessions in parallel
2. (a) Gather model parameters from all training sessions
2. (b) Compute the average
2. (c) Write the result back to each training session
We will use GPT-2 1.5B as our example. GPT-2 1.5B contains 1,558 million 32-bit floating point

values, or roughly 5.8GB of data. Each processor participating in Swarm Training receives its own
copy of the model and immediately begins to modify it via training. Our goal is therefore to read
5.8GB of data from each processor, compute the average, and write the averaged result back to each
processor, as quickly as possible.

Suppose there are 80 processors participating in swarm training. If we naively apply step 2, we
would read all values from each processor, average them together, and then write the results. However,
this would require reading 5.8GB * 80 = 464.2GB of data before the final averaged value can be
computed, followed by writing 464.2GB of data back to each processor. In practice, it’s crucial to
minimize the time between reading values from each processor and writing results to each processor.
2

Instead, we divide up GPT-2 1.5B into ”slices”, and then perform step 2 on each slice. A slice is
simply a subset of the model. For example, GPT-2 1.5B has 48 layers; if you chose to use 48 slices,
then each slice would consist of all the model values associated with one layer.3

2The longer the time, the more training steps are lost.
3We used 73 slices for GPT-2 1.5B training, but this number was chosen more or less arbitrarily: ”Each slice should

take about 10 seconds to process, and 73 slices seem to take about 10 seconds each on our hardware configuration.”

2



4 Training Results

5 Conclusion

6 References

References

[1] Y. Bulatov, “Fitting larger networks into memory”, Jan 2018

[2] S. Wang, “BFloat16: The secret to high performance on Cloud TPUs”, Aug 2019

[3] NVIDIA ADLR, “MegatronLM: Training Billion+ Parameter Language Models Using GPU
Model Parallelism”, Aug 2019

[4] Feng Niu, Benjamin Recht, Christopher Re, Stephen J. Wright, “HOGWILD!: A Lock-Free
Approach to Parallelizing Stochastic Gradient Descent”, Jun 2011

[5] Christopher J. Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig,
George E. Dahl, “Measuring the Effects of Data Parallelism on Neural Network Training”, Jul
2019

3

https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://nv-adlr.github.io/MegatronLM
https://nv-adlr.github.io/MegatronLM
https://arxiv.org/abs/1106.5730
https://arxiv.org/abs/1106.5730
https://arxiv.org/abs/1811.03600
https://arxiv.org/abs/1811.03600
https://arxiv.org/abs/1811.03600

	Introduction
	Related Work
	Method
	Training Results
	Conclusion
	References

