
18th Linux Audio Conference

Proceedings

25-27 Nov 2020
Online conference (originally Talence, France)

https://lac2020.sciencesconf.org

https://lac2020.sciencesconf.org

Table of contents

PipeWire: A Low-Level multimedia subsystem
Taymans Wim 3

OMAI: an AI Toolkit for OM#
Vinjar Anders 9

Applications of Jupyter Notebooks for Audio Plugin Development
Skare Travis et al. 13

Pd-Faust Mackie Control
Gräf Albert 19

Express Data Path Kernel Objects for Real-Time Audio Streaming Optimization
Kuhr Christoph et al. 24

Synthberry Pi: an autonomous synthesizer based on Raspberry Pi
Rizzuti Costantino et al. 28

OSPW 2.0 - An Open Source Linux-based DSP server for audio applications
Resch Thomas et al. 36

Pict2Audio : Sound Generation by Hand-Drawn Images using Convolutional Neural
Networks
Calandra Joséphine et al. 41

Author Index 42

1

Papers

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

PIPEWIRE: A LOW-LEVEL MULTIMEDIA SUBSYSTEM

Wim Taymans ∗

Principal Software Engineer
Red Hat, Spain

wim.taymans@gmail.com

ABSTRACT

PipeWire is a low-level multimedia library and daemon that facili-
tates negotiation and low-latency transport of multimedia content be-
tween applications, filters and devices. It is built using modern Linux
infrastructure and has both performance and security as its core de-
sign guidelines. The goal is to provide services such as JACK and
PulseAudio on top of this common infrastructure. PipeWire is media
agnostic and supports arbitrary compressed and uncompressed for-
mats. A common audio infrastructure with backwards compatibility
that can support Pro Audio and Desktop Audio use cases can poten-
tially unify the currently fractured audio landscape on Linux desk-
tops and workstations and give users and developers a much better
audio experience.

1. INTRODUCTION

In recent years, a lot of effort has been put into improving the deliv-
ery method for applications on Linux. Both Flatpak [1] (backed by
Red Hat and others) and snappy [2] (backed by Canonical) aim to
improve application dependencies, delivery and security.

Due to the increased security policy of these sandboxed appli-
cations, no direct access to system devices is allowed. Access to
devices needs to be mediated by a portal and controlled by a dae-
mon.

Linux and other operating systems have traditionally used a dae-
mon to control audio devices. For consumer audio, the Linux desk-
top has settled around PulseAudio [3] and for Pro-Audio it has adop-
ted JACK [4].

The initial motivation for PipeWire [5] in 2017, came from a
desire to support camera capture in a sandboxed environment such as
Flatpak. PipeWire was initially conceived as a daemon to decouple
access from the camera and the application, not very different from
the existing audio daemons. Later on, the design solidified and with
input from the LAD community it went through a couple of rewrites
and gained audio functionality as well.

PipeWire provides a unified framework for accessing multime-
dia devices, implementing filters and sharing multimedia content be-
tween applications in an efficient and secure way. This framework
can be used to implement various services such as Camera access
from browsers, Screen sharing, audio server, etc.. The design al-
lows to run PulseAudio and JACK applications on top of a common
framework, essentially providing a way to unify the Linux Audio
stack.

This paper will focus on the Audio infrastructure that PipeWire
implements.

∗ This work was supported by Red Hat

2. LINUX AUDIO LANDSCAPE

Audio support on Linux first appeared with the Open Sound System
(OSS) [6] and was until the 2.4 kernel the only audio API available
on Linux. It was based around the standard Unix open/close/read-
/write/ioctl system calls.

OSS was replaced by the Advanced Linux Sound Architecture
(ALSA) [7]from Linux 2.5. ALSA improved on the OSS API and
included a user space library that abstracted many of the hardware
details. The ALSA user-space library also includes a plugin infras-
tructure that can be used to create new custom devices and plugins.
Unfortunately, the plugin system is quite static and requires editing
of configuration files.

OSS — and also ALSA — both suffer from the fact that only one
application can open a device at a time. Some hardware can solve
this by doing mixing in the audio card itself but most consumer cards
or even pro audio cards don’t have this functionality. ALSA imple-
ments a software mixer as a plugin (Dmix) but its implementation is
lacking and its setup inflexible.

2.1. First sound servers

EsoundD (or ESD) was one of the first sound servers. It was de-
veloped for Enlightenment and was later adopted by GNOME. It
received audio from multiple clients over a socket and mixed the
samples before writing to the hardware device. Backend modules
could be written for various sound APIs such as ALSA and OSS.

The first sound servers used TCP as a transport mechanism and
were not designed to provide low-latency audio. Applications were
supposed to send samples to the server at a reasonable speed with
some limited feedback about the fill levels in the server.

BSD has another audio API called sndio [8]. This is a very
simple audio API that can also handle midi. It is based on Unix pipes
to transport audio and has, like ESD, no real support for low-latency
audio.

2.2. Pro audio with JACK

The JACK Audio Connection Kit (JACK) was developed by Paul
Davis in 2002 based on the audio engine in Ardour. It provides real-
time and low-latency connections between applications for audio and
midi.

JACK maintains a graph of applications (clients) that are con-
nected using ports. In contrast to the previous audio servers, JACK
will use the device interrupt to wake up each client in the graph in
turn to process data. This makes it possible to keep the delay be-
tween processing and recording/playback very low.

There are 2 implementations of the JACK API with different
features. Work is ongoing to bring the JACK2 implementation to the
same level as JACK1, eventually rendering JACK1 obsolete.

3 sciencesconf.org:lac2020:307881

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

JACK is missing features that are typically needed for regular
desktop users such as format support, power saving, dynamic de-
vices, volume control, security etc.

2.3. Consumer audio with PulseAudio

PulseAudio is a modern modular sound server. In contrast to other
sound servers on Linux it handles the routing and setup of multiple
devices automatically and dynamically. One can connect a bluetooth
device and have the sound be routed to it automatically, for example.

It is possible to write rules into a policy module to perform vari-
ous tasks based on events in the system. One can for example, lower
or pause audio streams when an incoming call is received.

PulseAudio is optimized for power saving and does not handle
low-latency audio very well, the code paths to wake up a client are
in general too CPU hungry.

Most desktops nowadays install PulseAudio by default. And it is
possible to let PulseAudio and JACK somewhat coexist. PulseAudio
can automatically become a JACK client when needed although this
will cause high CPU load with low-latency JACK setups.

3. PIPEWIRE MEDIA SERVER

When designing the audio infrastructure for PipeWire we need to
build upon the lessons learned from JACK and PulseAudio. We
will present the current design and how each part improves upon
the JACK and PulseAudio design.

ALSA pipewire-pulse libjack.so

libpipewire

V4l2 alsabluetooth va-api DRM

GStreamer VLC App1 App2

App

JACK Wayland

Session
Manager

vulkan

Figure 1: Overview

Figure 1 shows where PipeWire is situated in the software stack.
It sits right between the user-space API to access the kernel drivers
and the applications. It takes on a similar role as PulseAudio or
JACK but also includes video devices, midi, Firewire and bluetooth.
It allows application to exchange media with each other or with de-
vices.

Applications are not supposed to directly access the devices but
go through the PipeWire API. There is a replacement JACK and
PulseAudio server that go through PipeWire to provide compatibility
with existing applications. There is no urgent reason to port applica-
tions to PipeWire unless they would want to use newer features that
cannot be implemented in the other APIs.

The core functionality of PipeWire is simple and consists of:

• Provide a set of core objects. This includes: Core, Client,
Device, Node, Port, Module, Factory, Link along with some
helper objects.

• Load modules to create factories, policy or other objects in
the PipeWire daemon or client.

• Allow clients to connect and enforce per client permissions
on objects.

• Allow clients to introspect objects in the daemon. This in-
cludes enumerating object properties.

• Allow clients to call methods on objects. New objects can be
created from a factory. This includes creating a link between
ports or creating client controlled objects.

• Manage the negotiation of formats and buffers between linked
ports.

• Manage the dataflow in the graph.

An important piece of the infrastructure is the session manager.
It includes all the specific configuration and policy for how the de-
vices will be managed in the PipeWire graph. It is expected that this
component will be use-case specific and that it will interface with
the configuration system of the environment. PipeWire provides a
modular example session manager and work is ongoing to create an
alternative session manager called WirePlumber [9].

In the next subsections we cover the various requirements and
how they are implemented in PipeWire.

3.1. IPC

A sound/media server needs to have an efficient and extensible IPC
mechanism between client and server. The PipeWire IPC (inter pro-
cess communication) system was inspired by Wayland [10]. It ex-
poses a set of objects that can have properties, methods and that can
emit events.

The protocol is completely asynchronous, this means that method
calls do not have a return value but will trigger one or more events
asynchronously later with a result. This also makes it possible to use
the protocol over a network without blocking the application.

PipeWire has a set of core built-in interfaces, such as Node, Port
and Link that can be mapped directly to JACK Client, Port and con-
nections. It is also possible to define new interfaces and implement
them into a module. This makes it possible to extend the number of
interfaces and evolve the API as time goes by.

Extensibility of the protocol has been lacking in JACK and to
some extend PulseAudio as well.

3.2. Configuration/Policy

Configuration of the Devices and nodes in the PipeWire daemon as
well as the routing should be performed by a separate module or even
an external session manager.

With PulseAudio, the setup and policy was loaded into the dae-
mon with modules and requires editing of configuration files to
change. Modules can also only be developed inside the PulseAu-
dio repository, which makes them very inflexible and not adaptable
to the specific desktop environment.

JACK has very limited setup, it can normally only load and con-
figure 1 hardware device for capture and playback. It is up to other
processes (session managers, control applications) to add extra de-
vices dynamically (netjack, zita-a2j, zita-n2j, ...).

4 sciencesconf.org:lac2020:307881

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

PipeWire chooses the external session manager setup, like JACK
but makes it possible to choose what services to run in the daemon
and which in the session manager. Devices, for example, can run
inside the daemon for better performance or outside of the daemon
for more flexibility (Bluetooth devices need encoding/decoding that
is better run outside of the daemon).

The session manager can export any kind of device, including
Bluetooth, Firewire, ALSA, video4linux and so on.

3.3. Security

JACK and PulseAudio make it possible for clients to interfere with
other clients or even read and modify their data. PipeWire fixes this
problem with a permission system that is enforced at the PipeWire
core level.

When a client connects, it can be frozen until permissions are
configured on it. This is usually done by an access module when it
detects a sandboxed client. Usually a session manager will configure
permissions on a client based on its stored permissions or based on
user interaction.

PipeWire enforces that clients can’t see or interact with objects
for which they don’t have READ permission. Client can’t call meth-
ods on objects without EXECUTE permissions and WRITE permis-
sion is needed to change properties on an object.

It is also important that clients can only see the shared memory
they need. This is implemented in PipeWire by only handing memfd
file descriptors to clients that require the data. Seals are used to make
sure that clients can’t truncate or grow the memory in any way and
cause other clients or the daemon to crash.

3.4. Format negotiation

PipeWire uses the same format description as used in GStreamer
[11]. This allows it to express media formats with properties, ranges
and enumerations. It is possible to easily find a common format be-
tween ports by doing a generic intersection of formats.

Format conversion, however, is not something that should be
done often in a real-time, low-latency pipeline. It should typically
only be done when writing to or reading from the actual hardware.
The PipeWire audio processing graph uses a common single format
between all the processing nodes. The format is not hard-coded into
PipeWire but configured by the session manager and is currently the
same format as used by JACK: Float 32 bits mono samples.

PipeWire uses a generic control format to transport midi and
other control messages. This can include timed property updates,
OSC or CV values.

Flexible format negotiation is a requirement to implement fea-
tures like pass-through over HDMI or AAC decoding on the blue-
tooth devices. The session manager will usually define how this will
work, for example, pass-through will require exclusive access to the
device because mixing of encoded formats is not possible.

3.5. Dataflow

After a format is negotiated, PipeWire negotiates a set of buffers
backed by memory in memfd. These buffers are then shared be-
tween nodes and ports that need them by passing the file descriptor
around. eventfd is used to wakeup nodes when they need to pro-
cess input buffers and produce output buffers.

timerfd is used to measure when a devices will be empty/-
filled. The timeout is adjusted based on the fill level of the device

and a DLL. By using a timer, we can also dynamically adjust the
period size based on client requirements. It is also possible to write
the device wakeup using the traditional IRQ based approach but that
does not provide flexible period adjustments.

When a device needs more data (or has more data, in case of a
source), the graph is woken up. PipeWire uses the same concepts as
JACK2 to schedule the processing graph. It keeps track of depen-
dencies between nodes and nodes are informed about the peer nodes
they are linked to. When processing starts, all nodes without depen-
dencies are scheduled (sources). When they complete, dependencies
are satisfied on their peer nodes, which are then scheduled, and so
on until the whole graph is completed. Nodes that complete can di-
rectly wake up their peers by signaling the eventfdwithout having
to wake up the PipeWire daemon.

This allows for the same latency and complexity as JACK and
significantly better performance than PulseAudio.

3.6. Automatic slaving

PipeWire will automatically manage the master/slave relationship
between devices. For this it uses a priority property configured on
the device node by the session manager.

Devices are only slaved to each other when their graphs are inter-
connected in some way. This is an improvement compared to JACK,
which requires all devices to be slaved to one master, even if they
don’t need to be. It allows PipeWire to avoid resampling in many
cases.

The clock slaving and resampling algorithm is inspired by zita-
ajbridge [12]. It however runs in a single thread and uses a DLL
to drive the resampler by matching its device fill level to the graph
period size. This results in exceptionally good rate matching, far
superior to what PulseAudio manages and with lower latency than
what zita-ajbridge does.

3.7. Transport

PipeWire expands on the JACK transport feature with the following
additions:

• multiple transports at the same time. Each driver has its own
transport, when drivers are slaved, the transport of the master
becomes the active one. This makes it possible to avoid slav-
ing and resampling when the driver graphs are not linked in
any way.

• Seeking is supported in other formats than audio samples.
Seeking in beats or bars is possible.

• Clients can know about new position changes in advance.
There is a queue of pending position changes that clients can
look at.

• Sample accurate looping.

4. SESSION MANAGER

The PipeWire daemon is usually configured to start up with a mini-
mal set of modules. All devices and policy are typically loaded and
configured by an external session manager. This usually include a
factory for devices and a factory for making links.

PipeWire includes a modular example session manager that can
be used as a basis for a custom session manager.

5 sciencesconf.org:lac2020:307881

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

The session manage usually also implement the session manager
extension API that introduces concepts of Session/Endpoint/End-
pointStream and EndpointLink. These interfaces are used to group
and configure nodes in the graph and allows PipeWire/SessionMan-
ager to provide similar concepts to what PulseAudio uses.

5. API SUPPORT

Legacy application should run unmodified on a PipeWire system.
Depending on the API, a plugin or a replacement library is used for
this purpose.

5.1. ALSA

There is an ALSA plugin that interfaces directly with PipeWire to
support older ALSA-only applications. See Figure-3 for an example
of aplay streaming to PipeWire.

5.2. PulseAudio

PulseAudio support was initially implemented with a reimplementa-
tion of libpulse.so and some other pulse libraries that interfaces
with PipeWire directly. This however proved to be more complicated
and error prone than expected.

The lastest PipeWire version implements PulseAudio support
with a minimal reimplementation of the PulseAudio protocol in a
separate daemon. This provides excellent compatibility even for
Flatpak applications and turns out to be considerably less compli-
cated to implement.

See Figure 2 for a screenshot of pavucontrol running on top
of the PipeWire PulseAudio replacement daemon.

Figure 2: pavucontrol on PipeWire

5.3. JACK

JACK is supported with a custom libjack.so library that maps
all jack method calls to equivalent PipeWire methods. See Figure-3
for an example of catia running on top of the PipeWire libjack.so
replacement. The figure also shows how VLC (using the PulseAudio
API), aplay (using the ALSA plugin) and paplay (using the PulseAu-
dio API) can coexist with JACK applications.

Figure 3: Catia on PipeWire

6. USE CASES

In addition to the audio use case that we covered in the previous
section, in this section we briefly touch upon the other use cases that
PipeWire handles.

6.1. Camera access

In sandboxed applications, it is not allowed to directly access the
video camera. Browsers provide a custom dialog to mediate access
to cameras but this task would be better handled by the lower lay-
ers in order to have a unified access control mechanism but also a
common video processing graph.

PipeWire can provide a video4linux source that applications can
use to capture video from the camera. This has many benefits such
as:

• Access can be controlled by PipeWire. Revoking access is
easy.

• Resolutions and format are managed by the session manager.
Based on the profile and requirements of the apps using the
camera.

• Filters can be applied.

• The camera can be shared between applications.

GNOME has created a portal DBus API [13] to negotiate ac-
cess with the camera (what camera to use) and create a session with
limited permissions for this stream.

Figure-4 shows Cheese and a GStreamer pipeline sharing the
captured video of a video4linux camera served through PipeWire.

6 sciencesconf.org:lac2020:307881

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

Figure 4: Camera access and sharing

6.2. Screen sharing

Under Wayland, it is for security reasons not possible to grab the
contents of the screen. This makes it impossible to implement screen
sharing or remote desktop on top of Wayland without some extra
work.

GNOME has implemented a portal (DBus API) that can be used
to request a PipeWire stream of the desktop. The portal will ask
the user what kind of screen sharing to activate (windows, area or
whole desktop along with what monitor etc) and will then set up a
PipeWire session with the stream. The fd of the session is passed to
the application. Using the PipeWire security model, only this stream
is visible to the application and data can flow between the compos-
itor and the application. See Figure-5 to see a GStreamer pipeline
rendering the captured screen of a Wayland session.

Figure 5: Wayland screen sharing

6.3. Video processing

Some effort has been put into the Video processing part of PipeWire.
Currently there is a Vulkan compute source that can generate video
in RGBA float 32 linear light format. We expect video filters to be
made at a later stage, enabling the same kind of features JACK gives
but on video streams.

6.4. Adoption

PipeWire has been in Fedora 27 since 2017 to implement Wayland
screen sharing. FireFox, Chrome (WebRTC) have support to imple-
ment the screen sharing with native PipeWire API using the DBus
portal.

Since Fedora 32 (early 2020), the redesigned version 3 with au-
dio support has been shipped but not enabled by default.

On September 4th 2020 [14], a tech preview can be enabled in
Fedora 32 and Fedora 33 to test out the audio functionality. This
resulted in quite a few new features and bugfixes reported by early
testers.

Currently, a plan is developing to try to enable PipeWire as the
default Audio service in Fedora 34 (april 2021) and to phase out
PulseAudio and JACK.

7. CONCLUSIONS

We showed how PipeWire provides a performant and secure multi-
media subsystem in Linux. With lessons learned from existing con-
sumer and pro audio solutions, PipeWire unifies the audio stack and
provides a future proof foundation for all kinds of new exciting mul-
timedia applications.

Future work will involve deploying PipeWire in distros and learn-
ing how to improve the design. More research and experience is
needed for writing the session manager and how this will integrate
with the desktop configuration.

More work is being done on experimenting with scripting lan-
guages to define the policy and routing in a flexible and reusable
way.

8. ACKNOWLEDGEMENTS

Many thanks to the LAD community (and in particular Robin Gareus,
Paul Davis, Len Ovens and Filipe Coelho) for letting me pick their
brains and putting me on the right track.

Many thanks to my employer Red Hat, who sponsored the de-
velopment of PipeWire.

9. REFERENCES

[1] Flatpak Comunity, “Flatpak,” https://github.com/
flatpak/flatpak.

[2] Canonical, “Snappy,” https://snapcraft.io.

[3] Lennart Poettering et al., “Pulseaudio,” https://
pulseaudio.org/.

[4] Paul Davis, “Jack audio connection kit,” http://
jackaudio.org/, 2002.

[5] Wim Taymans, “Pipewire - multimedia processing,” https:
//pipewire.org, 2017, [Online].

[6] Hannu Savolainen, “Open sound system,” http://www.
opensound.com.

[7] Jaroslav Kysela, “Advanced linux sound architecture,” http:
//alsa-project.org, 1998.

[8] Alexandre Ratchov and Jacob Meuser, “sndio: Openbsd sound
system,” http://www.sndio.org, 2008.

7 sciencesconf.org:lac2020:307881

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

[9] George Kiagiadakis and Julian Bouzas, “Wireplumber -
session / policy manager implementation for pipewire,”
https://gitlab.freedesktop.org/pipewire/
pipewire.

[10] Kristian Høgsberg, “Wayland,” https://wayland.
freedesktop.org/.

[11] The GStreamer Comunity, “Gstreamer api documenta-
tion,” https://gstreamer.freedesktop.org/
documentation/gstreamer/.

[12] Fons Adriaensen, “Zita-ajbridge,” http://
kokkinizita.linuxaudio.org/linuxaudio/
zita-ajbridge-doc/quickguide.html, 2012.

[13] Freedesktop Comunity, “A portal frontend service
for flatpak,” https://github.com/flatpak/
xdg-desktop-portal, 2016.

[14] Christian F.K. Schaller, “Pipewire late summer update 2020,”
https://blogs.gnome.org/uraeus/2020/09/
04/pipewire-late-summer-update-2020/, 2020.

[15] PipeWire comunity, “Pipewire - gitlab freedesktop,”
https://gitlab.freedesktop.org/pipewire/
pipewire.

8 sciencesconf.org:lac2020:307881

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

OMAI: AN AI TOOLKIT FOR OM#

Anders Vinjar ∗

https://www.avinjar.no
Artistic Research Residency at IRCAM, 2019–2020

anders@avinjar.no

ABSTRACT

OMAI is a toolkit for composers wanting to explore the use of
artificial intelligence and machine learning in computer assisted mu-
sic composition. The OMAI library for the OM#CAC-application
implements techniques for data classification, prediction and genera-
tion, in order to integrate these techniques in composition workflows.

Examples are provided using simple musical structures, high-
lighting possible extensions and applications.

A brief description of OM# - a new CAC environment derived
from OpenMusic - is included. OM# is a visual programming lan-
guage dedicated to musical structure generation and processing, avail-
able on Linux, MacOSX and Windows platforms.

1. INTRODUCTION

As soon as computers were conceived, composers entered the labs
and started to explore potentials for computation and representation
in search for new creative options. Computer assisted composition
(CAC) became part of the emerging field of artificial intelligence
(AI) [1].

Artificial intelligence and machine learning are commonly used
in research on computational creativity [2], “autonomous" genera-
tive and/or improvisation systems [3, 4, 5], or real-time performance
monitoring and interaction [6]. However, apart from a few examples
[7, 8], machine learning and AI are rarely explored by composers as
a means for composing music, and current techniques to assist com-
position tasks (e.g. [5]) generally do not operate directly in compo-
sitional workflows and environments.

CAC systems provide explicit computational approaches through
the use of end-user programming languages [9]. OM#[10], derived
from OPENMUSIC, is a recent newcomer amongst the visual pro-
gramming environments for music and sound, allowing users to pro-
cess and generate scores, sounds and many other kinds of musical
structures, handle scheduling, input/output and interaction with ex-
ternal systems, and provide a platform for general programming and
scripting.

This article presents ongoing work exploring the use of AI and
machine learning techniques in the OM# environment. In contrast
to approaches aimed at automatic creation or machine classification
systems, the aim of OMAI is to provide useful techniques to aid in
the composers workflow. The approach is a “composer-centered”
machine learning approach [11] allowing users of CAC systems to
implement experimental cycles including pre-processing, training,
and setting the parameters of machine learning models for data gen-
eration, decision support or solving other generic problems.

The toolkit is designed to be used in a bottom-up workflow, sup-
porting creative tasks where there’s not one correct answer. The goal

∗ This work was supported by IRCAMs Artistic Research Residency Pro-
gram

is to provide pragmatic tools, having an adequate interface for end-
users while retaining an open-ended environment in OM#s graphical
programming environment.

2. OM#

OM# (om-sharp1) is a computer-assisted composition environment
derived from OpenMusic: a visual programming language dedi-
cated to musical structure generation and processing.

Figure 1: OM# — graphical programming

1https://cac-t-u-s.github.io/om-sharp/

9 sciencesconf.org:lac2020:310446

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

The visual language is based on Common Lisp, and allows to
create programs that are interpreted in this language. Visual pro-
grams are made by assembling and connecting icons representing
Lisp functions and data structures, built-in control structures (e.g.
loops), and other program constructs. The visual language can there-
fore be used for general-purpose programming, and reuse any ex-
isting Common Lisp code. A set of in-built tools and external li-
braries make it a powerful environment for music composition: var-
ious classes implementing musical structures are provided, associ-
ated with graphical editors including common music notation, MIDI,
OSC, 2D/3D curves, and audio buffers.

OM# is available for Linux, macOS and Windows. The first
successful port of OpenMusic to Linux was done in 2013[12], and
since then the development of both OpenMusic and OM# has taken
place on these 3 platforms. This software is free, distributed under
the GPLv3 license.

3. TOOLS AND ALGORITHMS

The OMAI library for OpenMusic provides basic tools from the do-
main, with elementary algorithms to classify vectors in a multidi-
mensional feature space [13].

3.1. Vector Space

A generic data structure called VECTOR-SPACE is used to store vec-
torized data and information necessary to train and run machine learn-
ing and classification models. The structure is simple and generic;
it is initialized with a list of entries (key, value) for a hash-table of
vectors, where keys can be strings or any other unique identifiers for
the different vectors.

Feature-vectors are also stored as hash-tables using descriptor
names as keys. Descriptor names can also be input to the VECTOR-
SPACE initialization for facilitating visualization and query opera-
tions. A graphical interface allows the 2D and 3D visualization of
vectors in the feature space, selecting two or three descriptors as
projection axes (see Figure 2).

Figure 2: Simple 2-D vector space visualization.

3.2. Clustering and Classification

Within the VECTOR-SPACE, distance-functions are used to retrieve
information and compute similarity between feature-vectors. These
operations can be applied in various algorithms for automatic clus-
tering and classification.

The k-means algorithm performs “unsupervised” clustering by
grouping feature-vectors around a given number of centroids. This
process can be done in a visual program (see Figure 3) or interac-
tively from within the VECTOR-SPACE graphical interface (as in Fig-
ure 2).

Supervised classification approaches (based on preliminary la-
belling information) are also available. In our generic model, a class
is represented by a unique label and a list of IDs corresponding to
known members of this class (this is typically determined during a
preliminary training stage). Based on this information (which im-
plicitly labels all known class members), it is possible to compare
any unlabelled vector with centroid feature-vectors of the different
classes, or its similarity with an established neighbourhood in the
multidimensional feature space (k-NN). Such comparison allow to
determine a measure of likelihood for this vector belonging to a cer-
tain class.

3.3. Musical Descriptors

An extensible set of descriptor algorithms allowing to extract fea-
tures from objects are included with the system, many of which
are aimed at musical content, pitch attributes, harmonic attributes,
chord sequences, temporal attributes, variability, repeatability at var-
ious levels, degree of recurring figures etc. These features can be
combined freely to constitute the N-dimensional vectors represent-
ing musical data in different OMAI algorithms.

The set of provided feature extractors can easily be extended
using OM#s graphical programming environment or by coding in
Lisp.

An example application could be: given a set of existing or gen-
erated material, extract a feature-vector for each of these using a
selection of features, the system would cluster the input material ac-
cordingly.

For a composer these clusters could represent musical contrasts,
variations, similarities etc. Having the ability to generate new mate-
rial without necessarily knowing or caring exactly how it was gener-
ated, only that it ends up together with other material within a cer-
tain cluster, greatly reduces the amount of time needed to search for
wanted solutions.

4. AI AND CAC, MUSICAL COMPOSITION, ARTISTIC
NEEDS

Algorithms for ML, HMM, kNN, Neural Networks, Viterbi and more
are part of the OMAI project. Tools and editors based on these al-
gorithms are being developed as part of OMAI.

The Machine Learning and Clustering approaches described above
are useful together with other AI algorithms to handle musical data
traditionally worked with in CAC applications. They can also pro-
vide effective handles for more ill-defined, but arguably important
and readily perceivable musical features such as “texture”, “struc-
ture”, “entropy” etc., musical qualities many modern composers use
much time trying to control.

A possibly interesting observation of this project is that often
rather simple versions of more advanced techniques together with an

10 sciencesconf.org:lac2020:310446

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

Figure 3: An example of clustering applied to a set of input structures. The output of the k-Means algorithm is 4 clusters. One sample from
each cluster is displayed at the bottom

exploratory approach is very useful in the context of creative work.
Stochastic methods are everywhere, and here as well, exact answers
and reproducibility is often not particularly useful as such. In con-
trast: degrees of precision, possibly even errors, new solutions within
certain constraints - can all be potential triggers for cool things to
happen while composing.

Where a researcher most often would make sure to use large
amounts of data to train an HMM or Neural Network, this is not nec-
essarily interesting in our context. Just as Markov generation models
seldom provide interesting results in composition work beyond 2-3
order, an ANN can output interesting results already after 2-10 itera-
tions, and the difference between 2 given iterations are by itself very
useful, e.g. to provide variants, development, embellishment etc.

Miller Puckette is quoted in the preface to "The OM Composer’s
Book"[14], illustrating some of the challenges:

"CGM (Computer Generated Music, ie. Audio) is in
effect building instruments (which were previously made
of wood and the like), but CAC is in effect making the
computer carry out thought processes previously car-
ried out in human brains. Clearly, a piece of wood
is easier to understand than even a small portion of a
human brain. . . . Ultimately, CAC researchers will
have to settle for much less than a full understanding
of even a single musical phenomenon. The best that
can be hoped for is partial solutions to oversimplified
versions of the real problems."

Good AI integrated in CAC tools may help bridge the gap be-
tween the composers mind and the systems they work with.

5. MODELLING, GENERATIVE ALGORITHMS

The OMAI system has been used by the author during recent com-
position work, e.g. to optimize fingering positions while scoring for
guitar, and extracting generative patterns from analysis of input mu-
sical sequences using HMMs (Hidden Markov Models).

While developing the models used in this particular piece, the
resulting scores have been evaluated along the way together with a
professional guitarist to verify their level of ’guitaristicity’.

Figure 4: Tabulature composition, generative algorithms use models
of hands and fingers to suggest possible sets of notes

11 sciencesconf.org:lac2020:310446

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

6. RESOURCES AND DOWNLOAD

The sources of OMAI are open source, and distributed under the
GPLv3 license, available along with documentation and examples
at:
https://github.com/openmusic-project/OMAI

7. CONCLUSIONS

A project developing AI-based tools and techniques for Computer
assisted composition and creative work, OMAI, is presented. The
tools are part of OM# and the OpenMusic family of CAC environ-
ments.

Acknowledgments
This work is supported by IRCAMs Artistic Research Residency
Program and the Norwegian Cultural Council.

8. REFERENCES

[1] Lejaren A. Hiller and Leonard M. Isaacson, Experimental Mu-
sic: Composition With an Electronic Computer, McGraw-Hill,
1959.

[2] Philippe Pasquier, Arne Eigenfeldt, Oliver Bown, and Shlomo
Dubnov, “An Introduction to Musical Metacreation,” Comput-
ers in Entertainment, vol. 14, no. 2, 2016.

[3] F. Ghedini, F. Pachet, and P. Roy, “Creating Music and Texts
with Flow Machines,” in Multidisciplinary Contributions to
the Science of Creative Thinking (Creativity in the Twenty First
Century), G. E. Corazza and S. Agnoli, Eds. Springer, 2015.

[4] Gérard Assayag, Shlomo Dubnov, and Olivier Delerue,
“Guessing the Composer’s Mind: Applying Universal Predic-
tion to Musical Style,” in Proc. International Computer Music
Conference (ICMC’99), Beijing, China, 1999.

[5] Léopold Crestel and Philippe Esling, “Live Orchestral Piano, a
system for real-time orchestral music generation,” in Proceed-
ings of the Sound and Music Computing Conference (SMC’17),
Espoo, Finland, 2017.

[6] J. Françoise, N. Schnell, and F. Bevilacqua, “A Multimodal
Probabilistic Model for Gesture-based Control of Sound Syn-
thesis,” in ACM MultiMedia (MM’13), Barcelona, Spain, 2013.

[7] David Cope, Experiments in Musical Intelligence, A-R Edi-
tions, 1996.

[8] Shlomo Dubnov and Greg Surges, “Delegating Creativity: Use
of Musical Algorithms in Machine Listening and Composi-
tion,” in Digital Da Vinci: Computers in Music, Newton Lee,
Ed. Springer, 2014.

[9] Gérard Assayag, Camilo Rueda, Mikael Laurson, Carlos Agon,
and Olivier Delerue, “Computer Assisted Composition at IR-
CAM: From PatchWork to OpenMusic,” Computer Music
Journal, vol. 23, no. 3, 1999.

[10] Jean Bresson, Dimitri Bouche, Thibaut Carpentier, Diemo
Schwarz, and Jérémie Garcia, “Next-generation Computer-
aided Composition Environment: A New Implementation of
OpenMusic,” in International Computer Music Conference
(ICMC’17), Shanghai, China, 2017, Proceedings of the Inter-
national Computer Music Conference.

[11] Marco Gillies, Rebecca Fiebrink, Atau Tanaka, Baptiste
Caramiaux, Jérémie Garcia, Frédéric Bevilacqua, Alexis
Heloir, Fabrizio Nunnari, Wendy Mackay, Saleema Amershi,
Bongshin Lee, Nicolas D ’alessandro, Joëlle Tilmanne, and
Todd Kulesza, “Human-Centered Machine Learning Workshop
at CHI’16,” in Proc. CHI’16 – Extended Abstracts on Human
Factors in Computing Systems, San Jose, USA, 2016.

[12] Anders Vinjar and Jean Bresson, “OpenMusic on Linux,” in
Linux Audio Conference, Karlsruhe, Germany, 2014.

[13] C. D. Manning, P. Raghavan, and H. Schütze, An Introduction
to Information Retrieval, Cambridge University Press, 2009.

[14] Miller Puckette, ,” in The OM Composer’s Book 1, Jean Bres-
son, Carlos Agon, and Gérard Assayag, Eds. Editions Delatour
France / Ircam-Centre Pompidou, 2006, cote interne IRCAM:
Agon06a.

12 sciencesconf.org:lac2020:310446

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

APPLICATIONS OF JUPYTER NOTEBOOKS FOR AUDIO PLUGIN
DEVELOPMENT

Travis Skare

CCRMA
Stanford University, USA

travissk@ccrma.stanford.edu

Jonathan Abel

CCRMA
Stanford University, USA

abel@ccrma.stanford.edu

ABSTRACT

Notebook interfaces in computing, introduced in the late
1980s, are in active modern use by data science and machine
learning communities. Related to literate computing, note-
books encourage interleaving expository text with data, code,
and figures, making for intuitive presentation of results. Dur-
ing development, they allow for nonlinear or exploratory de-
velopment, and encourage building on prior research. We
consider the application of such notebooks in audio plugin de-
velopment and analysis, providing short example notebooks
covering scenarios in DSP tutorials, white-box testing, black-
box testing, and automation of third-party tools. While not-
ing these workflows have been supported by commercial tools
for decades, we exclusively use a range of FOSS languages
and tools in our samples.

1. INTRODUCTION

We consider the scenario of developing a new phaser effect
plugin for digital audio workstations. This involves tasks such
as researching what a phaser is, learning how it operates, per-
haps exploring the underlying filters we will use, generating
some sound samples from competing products, and then mov-
ing to write and debug our own plugin.

We demonstrate a set of workflows using Jupyter[1] note-
books to explore accomplishing these tasks with notebook in-
terfaces. Many of these workflows will be immediately famil-
iar to researchers fluent in MATLAB, which offers a similar
notebook paradigm, and indeed supports all these use cases
with relevant tools and toolboxes. However, in this work we
concentrate on open-source tools, libraries, and languages,
without loss of generality.

A study of the field of the phaser effect is orthogonal to
this work, since it is only an example. For very brief context,
the effect is accomplished by applying a chain of time-varying
allpass filters with a feed-forward signal path. This results in
a pleasant modulation-class effect commonly used on electric
guitar, electric piano, synthesizers, and more. We provide
sound examples in our first example notebook, and more de-
tail on the history and approaches is available in[2, 3], or in
DAFX[4]1.

Our notebooks during development of this hypothetical
plugin include:

• Python–Shows combining prose and code to generate
an allpass filter, and plotting the filter response.

1Section 2.4.2 in the Second Edition

• Julia[5]–calling C++ instances of an STK[6] biquad
class via a foreign function interface and wrapper li-
brary. This may be considered a “virtual breadboard”
for development; we may edit our native C++ directly
and have it driven with test signals by a higher-level
language.

• Python–loading an arbitrary LADSPA plugin for which
we may or may not have the source, and driving it with
a test signal. This can be used for black-box validation
of our own plugins or studying third-party effects.

• Faust[7] (via Python and the shell)–driving external
tools in the course of implementation of a phaser. Faust
is a very powerful domain-specific time-domain lan-
guage and lets us code up a phaser in a few lines of
code–in fact the standard library includes such modu-
lation effects as primitives! Because the language does
not yet integrate with Jupyter notebooks directly via
a kernel or similar, we demonstrate shelling out to the
Faust tools to have a notebook act as a build automa-
tion or report generation tool

These notebooks have been uploaded as part of this work;
readers may wish to browse them after scanning this pa-
per. However the descriptions in the paper are intended
to stand on their own, and a screenshot of the first note-
book is provided. The direct URL at the time of writing
is https://github.com/tskare/lac2020demo; a redirector has
been set up at at https://bit.ly/2TqcQuG in case this changes
in the future, which is not expected.

We note some source repository browsers have notebook-
viewing facilities for .ipynb and similar formats, which is con-
venient; we use GitHub for this work to demonstrate. In case
the viewer does not support audio widgets, phaserdemo.mp3
is provided as a standalone file for this case.

A side note on machine learning: Machine Learning and
Deep Learning are very popular topics across many domains
of research. Such notebooks are a common workflow in ML
and Data Science; many getting started guides use them. Be-
cause they are so prolific, we intentionally avoid discussing
ML workflows in this work and aim to stay within the digital
audio effect development domain.

Finally, to aid in conveying motivation and use case, a
demonstration video developed for the conference presenta-
tion will be provided/linked with the repository.

1.1. Installation

Readers may follow along by installing the following software:

13 sciencesconf.org:lac2020:310873

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

Python: likely already installed on your system. We
use Python 3 for this work; noting that Python 2 has been
officially sunset as of January 1, 2020. We would suggest
that if you do not have Python installed already, consult your
system administrator or package manager, as this may affect
your system in a wide manner.

Conda (Optional): This work was developed using Conda,
a package manager that is supported on Linux, MacOS, and
Windows, and allows switching between different environ-
ments for different projects. https://docs.conda.io/en/latest/

Jupyter via conda or pip: https://jupyter.org/install
Julia via Conda, your package manager of choice, or from

their homepage at https://julia-lang.org. The Julia Project
homepage may offer the most up-to-date version; we updated
to 1.3.1 before paper submission.

STK, the Synthesis Toolkit in C++[6]. This is for fol-
lowing along with the second example. A mirror is available
at https://github.com/thestk/stk

Julia’s CxxWrap package via the built-in package man-
ager (press right-bracket,], in the Julia REPL and enter
“add CxxWrap”). This is for easily wrapping C++ classes.
This is only one of a handful of methods for wrapping or
calling C/C++ code. This seemed to work better than the
built-in libraries when running inside Jupyter, but readers are
encouraged to evaluate the others for their use case.

Faust via some package managers, or the Faust Home-
page at https://faust.grame.fr/.

Next, we present the four use cases.

2. USE CASE: EDUCATION (PYTHON)

In this section we explore a standard use of notebooks, presen-
tation of interleaved prose, code, and results. We note that
this use of notebook interfaces is common in other domains.

Here we explain a simple digital phaser effect. In the
opening paragraphs, we list some commercial phaser effects
from MXR, Electro-Harmonix, and Eventide, and fetch a Cre-
ative Commons image of an MXR Phase 90 pedal from the
web (local filesystem works as well and is better for posterity).

We provide an inline audio example of the phaser, so the
reader may immediately understand what our desired end
result may sound like.

A screenshot of the second half of this notebook is pre-
sented in Figure 1 [after the main paper text and bibliog-
raphy]. Note we interleave explanatory text, an equation,
Python numerics code, and filter response plots.

There, we explain the digital allpass filter that will be
a building block for our implementation. The introduction
links to resources we cite here, to guide readers to deeper
study. LATEX-style equations are rendered in the Markdown
prose via MathJax.

Finally, we use SciPy’s freqz implementation to obtain
the frequency and phase response of the first-order digital
allpass filter. We leverage the example code from the freqz
documentation to plot the frequency and phase responses in-
line in the notebook.

Readers who wish to dive deeper may download the note-
book and experiment. For instance, they may wish to alter
the allpass parameters gi, or extend the notebook from an in-
troductory level to a deep-dive level by adding text discussing
virtual analog considerations.

While again we emphasize this exploration is a standard
use of data science notebooks, rather than a novel work, we
call out the benefits of interleaving product images, under-
lying equations, study of the building blocks, implementa-
tion, and sound example in a single browser window. Be-
yond display in a browser, JupyterLab also allows export-
ing notebooks with code, data, results, and commentary all
“baked in” to slide-style presentations, HTML, lecture-note-
style PDFs, or LATEXwhich could be integrated directly into
an academic paper.

Tools also exist to host live versions of the notebook, or
have multiple researchers working in the same session; these
are outside the scope of this paper.

3. USE CASE: WHITE-BOX PRODUCTION C++
ANALYSIS (JULIA)

Next, we consider the case of using notebooks to provide a
“report” on production C++ code.

A variety of workflows for plugin development exist. Anec-
dotally, we hear it is common to prototype in a high-level
language such as MATLAB before porting algorithms to op-
timized code, usually in C++. In recent years, Mathworks
has even introduced compilation direct to plugins to facilitate
prototyping and experimentation directly in DAWs.

In this section we propose use of notebooks to call C++
code in development. The hypothetical code under test is
considered “white box;” that is, in this section our imaginary
company has developed both the notebook and the plugin
code. We may be porting C++ from a Matlab prototype, and
wish to make sure inputs and outputs match, or we may be
building our plugin from scratch and would benefit from a test
bench that drives the plugin and obtains various plots, inputs,
and outputs for analysis, or sharing with our development
team.

The Julia language is used without loss of generality; we
note that in the next section we will call C++ from Python
for a different application. While outside the scope of this
paper, interested readers might consider the cffi module (C
Foreign Function interface) in Julia, or CPython extension
capabilities. Finally, C++ interpreter kernels exist for note-
book computing and we could write our plugin code directly
in the notebook.

Development of this notebook is fairly straightforward.
We imagine a use case is that we are debugging the Biquad fil-
ter present in the Synthesis Toolkit (STK)–this may be found
in src/BiQuad.cpp in the STK repository. Julia supports
multiple ways of calling C/C++ code, including a built-in
ccall2, designed to be a low-overhead, no-glue method of
calling C and Fortran numerics libraries. Other methods such
as Cxx and CxxWrap packages may be added from the built-
in package manager. We use the latter, CxxWrap, currently
available via GitHub3, and installable via the built-in package
manager as discussed in Section1.1.

2https://docs.julialang.org/en/v1/manual/calling-c-and-
fortran-code/

3https://github.com/JuliaInterop/CxxWrap.jl

14 sciencesconf.org:lac2020:310873

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

3.1. C++ Work Required: Wrapping the Class

The CxxWrap approach requires some prep work outside of
the notebook, but this is straightforward. We write some
standardized glue code then use CMake to build a .so shared
library.

We must define a function to expose our method as a Julia
module. This is as follows; not all methods are included for
brevity.

#include "jlcxx/jlcxx.hpp"
JLCXX_MODULE define_module_biquad(

jlcxx::Module& mod)
{

mod.add_type <stk::BiQuad >("STKBiQuad")
.constructor <>()
.method("setCoefficients", &stk::BiQuad::

setCoefficients)
.method("sampleRateChanged", &stk::BiQuad

::sampleRateChanged)
.method("setB0", &stk::BiQuad::setB0)
.method("setB1", &stk::BiQuad::setB1)
.method("setB2", &stk::BiQuad::setB2)
.method("setA1", &stk::BiQuad::setA1)
.method("setA2", &stk::BiQuad::setA2)
.method("tickOne",&stk::BiQuad::tickOne);

}

Whereas most functions like setCoefficients are native STK
functions, tickOne was added to work around specifying an
overloaded function in the call to add_type. STK’s tick has
several variants and this was currently the easiest way we
found to disambiguate between them. Also, this way we do
not depend on familiarity with the StkFrames class and only
deal with primitive types in the notebook. We provide our
modified source in BiQuadJulia.cpp and associated CMake
file; the only other addition for the sake of completion is a
tickOne implementation. A minimal one:

float BiQuad::tickOne(float in) {
StkFrames frames(1, 1);
frames[0] = in;
StkFrames framesout = tick(frames);
return framesout[0];

}

On the module side, loading the library begins with the min-
imal:

module STKBiquad
using CxxWrap
@wrapmodule("/home/$USER/src/third_party/

stk/src/lib/libbiquadtestlib", :
define_module_biquad)

function __init__()
@initcxx

end
end

Now we may drive and plot our C++ function in Julia.
Next, we explore loading shared libraries from another

language, Python:

4. USE CASE: BLACK-BOX BINARY PLUGIN
ANALYSIS (PYTHON)

We may wish to drive and analyze a plugin on a “virtual lab
bench.” Perhaps we wish to black-box test our build artifacts
to validate with a test suite, or perhaps we wish to script an
analysis of which third-party saturation plugins alias when
running at 44.1kHz, for example.

In this section we load and drive a simple LADSPA plugin.
A simple v1 plugin is launched directly as a standard library;
we note a complete production workflow would instantiate
and call LV2 plugins through the Liiv library. We note the
existence of Python-LADSPA projects on GitHub; we did not
evaluate these so that our notebook requires no dependencies
beyond the built-in ctypes.

Here, we enumerate available LADSPA plugins from the
commandline (via the listplugins program included with
the SDK) and then in our notebook, use the ctypes module to
load any of those plugins. We declare the LADSPA interface
to ctypes in terms of relevant structures and functions, then
may load the library and create a plugin in memory. LADSPA
is fairly unique in that the plugin libraries expose only one
function, which retrieves a reference to the Nth plugin in
the library. The reference structure in turn contains function
pointers which allow connecting control and sound buffers,
reading metadata, and processing audio data.

Because a LADSPA wrapper may be more immediately
useful than our notebooks, we include the wrapper code di-
rectly in Listing 1. Users may load and call into a plugin with
Python code such as:
plugHandle = 0
Load the second plugin in a shared library.
plugPtr = loadPlugin(

'/myhome/dev/testplugin.so', 1)
plugInst = plugPtr[0] # dereference pointer
print("Plugin: %s by: %s, (c) %s" % (

plugInst.Name,
plugInst.Maker ,
plugInst.Copyright))

print('ports:')
for i in range(plugInst.PortCount):

print("%s - %s" % (
plugInst.PortNames[i],
plugInst.PortDescriptors[i]))

As we provided type information to ctypes, runtime type
checking is performed. LADSPA typedefs were included in
the wrapper to help avoid type confusion and increase read-
ability.

5. USE CASE: CALLING EXTERNAL TOOLS
(FAUST)

A final, fourth notebook considers the case where we would
like to use the exploratory, cross-media notebook paradigm
but have existing tools and do not want to use C foreign
function tools or write a new notebook kernel.

As a concrete case, consider that we wish to report on the
architecture and results of a Faust plugin in development.

We do note the existence of faust_python4 from 2015
4https://github.com/marcecj/faust_python

15 sciencesconf.org:lac2020:310873

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

and a wrapper for Julia widgets that leverages this, currently
in development over the last months5.

Development of this notebook is perhaps the most straight-
forward. A notebook cell that begins with the exclamation
point operator will execute that command in the shell.

!echo hi world

will output “hi world”, for example. We can use this func-
tionality to display a .dsp file in development, call faust to
compile it, invoke faust2svg to generate the system diagram,
and display that artifact with IPython’s native SVG render-
ing support in the notebook.

This may be seen as build automation, though extending
things a bit further, it could be used to combine algorithm de-
scriptions, relevant Faust code, plots of system response, and
generated audio demos. There are opportunities for signifi-
cant further work here, as described in the next section. On
its own, this style of notebook can demonstrate that processes
spanning multiple tools may be combined and automated in
place of a Makefile or script. We can glue together exist-
ing workflows quickly, and spend more time on exploration
and development of our hypothetical plugin–a common goal
among all these processes.

6. FURTHER WORK

The “virtual test bench” that runs LADSPA plugins would
ideally be extended to use LV2 and/or VST, as development
has moved to those platforms for Linux (for MacOS, Au-
dioUnit is worth considering).

There are many opportunities for extending the Faust
notebook. As mentioned, there are some open-source libraries
in the field for loading plugins or wrapping Faust’s compila-
tion functionality with the Python foreign function interface.
This could be investigated, toward having the full Faust de-
velopment workflow available to a notebook. We could also
call the excellent Faust web-based tools and compiler as an
API, or have those system-local, to be able to develop, build,
and test actual plugin binaries within one notebook. Espe-
cially once inline coding opportunities are added, this could
be the framework for a set of interactive articles on introduc-
tory effects plugin signal processing.

7. CONCLUSIONS

We suggested the use of notebook workflows, popular in data
science and machine learning communities, for subtasks in-
volved in plugin development. Both Python and Julia were
used at different times, and we shelled out to Faust to demon-
strate driving tools not yet integrated in the notebook ecosys-
tem. Markdown provides prose and equation support for all
notebooks.

As a secondary tangible result, we provide generic wrap-
per code for loading LADSPA v1 plugins in Python.

8. ACKNOWLEDGMENTS

Thanks to the anonymous reviewers and conference organiz-
ers, especially for this unique year. And of course to the au-

5https://github.com/hrtlacek/faustWidgets

thors and contributors to all the FOSS software mentioned in
these workflows. They combine to make audio development
an exciting area for research, education, and hobby develop-
ment.

9. REFERENCES

[1] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando
Pérez, Brian Granger, Matthias Bussonnier, Jonathan
Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, Syl-
vain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla,
and Carol Willing, “Jupyter notebooks – a publishing
format for reproducible computational workflows,” in Po-
sitioning and Power in Academic Publishing: Players,
Agents and Agendas, F. Loizides and B. Schmidt, Eds.
IOS Press, 2016, pp. 87 – 90.

[2] Julius O. Smith III, Physical audio signal processing: For
virtual musical instruments and audio effects, W3K pub-
lishing, 2010.

[3] Julius O. Smith III, “An allpass approach to digital phas-
ing and flanging,” in ICMC, 1984.

[4] Udo Zölzer, DAFX: digital audio effects, John Wiley &
Sons, 2011.

[5] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Vi-
ral B Shah, “Julia: A fresh approach to numerical com-
puting,” SIAM review, vol. 59, no. 1, pp. 65–98, 2017.

[6] Perry R Cook and Gary P Scavone, “The synthesis toolkit
(STK).,” in ICMC, 1999.

[7] Yann Orlarey, Dominique Fober, and Stéphane Letz,
“Faust: an efficient functional approach to dsp program-
ming,” 2009.

16 sciencesconf.org:lac2020:310873

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

Figure 1: A screen capture of the second half of Notebook 1, described in Sec. 2

17 sciencesconf.org:lac2020:310873

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

import ctypes

Declare interfaces to the structures and functions we'll call.

typedefs and constants
LADSPA_Data = ctypes.c_float
LADSPA_Properties = ctypes.c_int
LADSPA_Handle = ctypes.c_void_p

LADSPA_PortDescriptor = ctypes.c_int
kLADSPA_PORT_INPUT = 0x1
kLADSPA_PORT_OUTPUT = 0x2

LADSPA_PortRangeHintDescriptor = ctypes.c_int;
hint constants omitted so this fits on one page; please reference the .h file.

class LADSPA_PortRangeHint(ctypes.Structure):
pass

LADSPA_PortRangeHint._fields = [
("HintDescriptor", LADSPA_PortRangeHintDescriptor),
("LowerBound", LADSPA_Data),
("UpperBound", LADSPA_Data)

]

class LADSPA_Descriptor(ctypes.Structure):
pass

LADSPA_Descriptor._fields_= [
("UniqueID", ctypes.c_long),
("Label", ctypes.c_char_p),
("Properties", LADSPA_Properties),
("Name", ctypes.c_char_p),
("Maker", ctypes.c_char_p),
("Copyright", ctypes.c_char_p),
("PortCount", ctypes.c_ulong),
("PortDescriptors", ctypes.POINTER(LADSPA_PortDescriptor)),
("PortNames", ctypes.POINTER(ctypes.c_char_p)),
("PortRangeHints", ctypes.POINTER(LADSPA_PortRangeHint)),
("ImplementationData", ctypes.c_void_p),

Interface is via function pointers in the struct.
("instantiate", ctypes.CFUNCTYPE(LADSPA_Handle , ctypes.POINTER(LADSPA_Descriptor),

ctypes.c_ulong)),
("connect_port", ctypes.CFUNCTYPE(ctypes.c_int , LADSPA_Handle , ctypes.c_ulong)),
("activate", ctypes.CFUNCTYPE(ctypes.c_int , LADSPA_Handle)),
("run", ctypes.CFUNCTYPE(ctypes.c_int , LADSPA_Handle)),
("run_adding", ctypes.CFUNCTYPE(ctypes.c_int , LADSPA_Handle , ctypes.c_ulong)),
("run_adding_gain", ctypes.CFUNCTYPE(ctypes.c_int , LADSPA_Handle , LADSPA_Data)),
("deactivate", ctypes.CFUNCTYPE(ctypes.c_int , LADSPA_Handle)),
("cleanup", ctypes.CFUNCTYPE(ctypes.c_int , LADSPA_Handle))

]

The actual library has only one function.
The argument , |index|, can choose one of N plugins in the library.
Indices beyond that range are NULL.
def loadPlugin(name = '/usr/lib/ladspa/delay.so', index=0):

plugin = ctypes.CDLL(name)
plugin.ladspa_descriptor.argtypes = [ctypes.c_ulong]
plugin.ladspa_descriptor.restype = ctypes.POINTER(LADSPA_Descriptor)
return plugin.ladspa_descriptor(index)

Listing 1: Code to define the LADSPA interface in Python via ctypes.

18 sciencesconf.org:lac2020:310873

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, Nov 25–27, 2020

PD-FAUST MACKIE CONTROL

Albert Gräf

IKM, Music-Informatics
Johannes Gutenberg University (JGU) Mainz, Germany

aggraef@gmail.com

ABSTRACT

The paper describes faust-mcp, a Pd abstraction which inter-
faces Faust to control surfaces utilizing the Mackie Control
Protocol (MCP). It builds on the author’s Pd-Faust software
which enables you to run dsp programs (such as synthesizers
and effects) written in Grame’s Faust programming language
inside Pd. The add-on can be used to control Faust dsps in Pd
using MCP-compatible controller hardware and software.

1. INTRODUCTION

Grame’s Faust is a functional programming language which
greatly facilitates the programming of audio processing and
instrument plugins [1]. Faust programs can be compiled to
native code for an abundance of different signal processing en-
vironments and plugin standards. Pd-Faust is a plugin which
allows Faust programs to run in Miller Puckette’s graphical
real-time patching software Pd1. It offers dynamic loading
(and reloading) of Faust modules, MIDI2 and OSC3 control
and sequencing, as well as automatic GUI generation (in the
form of graph-on-parent subpatches), cf. [2].

Faust dsps typically offer a number of different controls
for various parameters, such as the cutoff frequency and reso-
nance of a filter, oscillator and envelope parameters of a syn-
thesizer, etc. These are represented in a Faust program by
means of so-called UI (user interface) elements, cf. [3]. While
Pd-Faust lets you generate Pd GUIs for all UI elements of a
Faust dsp in an automatic fashion, it is often desirable to con-
trol such parameters by means of some external, physical con-
trol surface instead. To these ends, Faust lets you map MIDI
messages to each UI element by corresponding meta-data in
the UI element specifications. For instance:

res = hslider("res [midi:ctrl 20]", 3, 0, 20, 0.1);
cutoff = hslider("cutoff [midi:ctrl 21]",

6, 1, 20, 0.1);

The controller mappings are in the square brackets follow-
ing the control names. The midi:ctrl tag specifies the kind
of MIDI message to be received by the program, in this exam-
ple CC20 for the resonance and CC21 for the cutoff control, re-
spectively. These input values can then be used in the Faust
definition of the dsp as needed, e.g., for computing the re-
quired filter coefficients. UI elements for output (so-called bar-
graphs) are available as well, and all of these can be mapped
to different kinds of MIDI messages (pd-faust only supports
MIDI CC bindings at this time, however).

1http://puredata.info/
2http://midi.teragonaudio.com/
3http://opensoundcontrol.org/

So Faust dsps can already be controlled by plain old MIDI
controllers with a few knobs or faders quite easily, by just
adding a small amount of meta-data to the Faust program.
However, this method quickly becomes unwieldy when using
a lot of different Faust programs in the same patch, since most
MIDI fader boxes won’t easily accommodate a large amount
of parameters, and remapping the controls is often a tedious
task. Thus some form of automatic mapping of the controls
is needed, and you also want to be able to quickly switch be-
tween different banks of controls.

As luck would have it, this kind of functionality is readily
provided by so-called DAW (digital audio workstation) con-
trollers, and there is an established MIDI-based protocol for
these, the Mackie Control Protocol (MCP). This is what faust-
mcp uses to interface pd-faust to compatible controllers. In
the paper, we give a quick introduction to MCP, discuss how
the faust-mcp package utilizes it, illustrate faust-mcp’s usage
with an example, and finally discuss some future work to fur-
ther improve the interface.

2. MACKIE CONTROL

DAW controllers were invented to ease the operation of digital
audio workstation (DAW) software [4]. They often resemble a
mixer control surface, which seems sensible because mixing is
a big part of what a DAW program does, and most musicians
and studio engineers will be well familiar with that kind of
interface.

Thus DAW controllers typically have a number of faders
and knobs used to input track parameters such as volume,
panning, sends, etc., along with buttons for playback control
and various other functions. On the output side, they may
also provide useful feedback through motor faders indicating
the current values, LED strips showing meter values in real-
time, a timecode display, and “scribble strips” (little LCD dis-
plays) to denote track and parameter information. The knobs
and faders are typically organized into banks of 8 which can
be switched at the push of a button to accommodate a large
number of different parameters (which is why you need the
scribble strips to figure out which tracks and parameters are
actually represented on the control surface at any one time).

The first DAW controller was produced by the mixer man-
ufacturer Mackie for Logic by emagic, and was subsequently
modified to support a number of other DAW programs, see
Fig. 1 [5]. The Mackie Control also set the de facto standard
MIDI protocol for this kind of gear, although there are some al-
ternatives, most notably the HUI protocol developed for Digi-
design’s Pro Tools.

Nowadays, DAW controllers can take many shapes and
forms, ranging from tiny gadgets just providing playback con-

19 sciencesconf.org:lac2020:305074

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, Nov 25–27, 2020

Figure 1: Mackie Control [5].

trols, keyboard controllers with added knobs and faders, and
even foot controllers with switches and expression pedals, to
full-blown mixer-like control surfaces. Most of these speak the
Mackie Control Protocol (MCP), which is also supported by
most DAW programs these days. Some prominent examples
of these are the Mackie Control Universal, the Icon Platform
M, Behringer’s X-Touch series, as well as the Presonus Fader-
port controllers. There are also software implementations on
mobile platforms, such as humatic’s TouchDAW4, which em-
ulates a full Mackie-compatible DAW controller on Android
devices, and can be connected to PCs either via USB or LAN
(using RTP-MIDI or ipMIDI in the latter case); see Fig. 2.

MCP is in fact just a subset of MIDI, so it can be transmit-
ted over any kind of MIDI connection, but it uses MIDI in its
own, somewhat idiosyncratic way. Here is a brief summary of
the most important features relevant for our purpose:5

• The knobs are usually rotary encoders which transmit
relative changes in sign-bit encoding (thus, e.g., the CC
values 1 and 65 denote an incremental change by +1 and
-1, respectively). This includes pan (mapped to CC16
to CC23), and often there’s also a big jog wheel (CC60)
used to change the position of the playback cursor on
the timeline.

• The faders emit pitch bend messages on the first eight
MIDI channels (rather than MIDI CC) to take advantage
of the 14 bit resolution these messages provide.

• The buttons used to control playback and other func-
tions emit note messages such as note 94 and 93 for
transport control start and stop. Thus MCP always needs
a separate MIDI connection to the DAW where only MCP

4https://www.humatic.de/htools/touchdaw/
5Although MCP is widely used, there doesn’t seem to be an offi-

cial specification of the protocol anywhere on the internet. However,
a fairly comprehensive overview of the protocol (albeit without the
feedback messages) can be found at http://www.jjlee.com/qlab/
MackieControlMIDIMap.pdf.

Figure 2: TouchDAW running on Android.

data is transmitted, lest you risk the knobs being pushed
triggering actual notes in some synthesizer plugin.

• MCP controllers also receive data to properly set the cur-
rent values of encoders and faders. In addition, on the
back connection, channel pressure (monophonic after-
touch) messages are employed to denote meter values,
MIDI CCs 66 to 73 represent the timecode display, and
sysex messages encode the contents of the scribble strips.

It is also worth noting here that while the encoders, faders,
and transport controls should work the same with any DAW,
the other (button) controls are much less standardized and
may vary a lot in function depending on the DAW program
that you use. Therefore many Mackie-compatible controllers
ship with overlays for popular DAWs. Likewise, TouchDAW
lets you configure the target DAW and changes some of its
button layout and labeling accordingly.

3. THE FAUST-MCP PACKAGE

faust-mcp is distributed as open-source software on Github.6
The package contains a Pd abstraction mcp.pd, along with
some helper abstractions and externals, and a few examples.
To use it, you’ll obviously need Pd to run the patches, an in-
stallation of Grame’s Faust compiler (and gcc) to compile your

6https://github.com/agraef/faust-mcp

20 sciencesconf.org:lac2020:305074

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, Nov 25–27, 2020

Faust programs, and an MCP-compatible controller. We have
tested the package with the Behringer X-Touch controllers (in-
cluding the X-Touch One and Mini), the Studiologic Mixface,
the Korg nanoKontrol2, and humatic’s TouchDAW, but any
MCP-compatible controller should work according to the ca-
pabilities it offers.

faust-mcp is built on top of pd-faust, and the accompa-
nying externals are written in the author’s Pure programming
language [6], so both pd-faust and pd-pure need to be installed
and enabled in Pd. Sources and binary packages for all of
these can be found on the Pure website, which also provides
detailed installation instructions.7

4. HOW IT WORKS

Basically, faust-mcp is a specialized MIDI mapper which trans-
lates MCP to standard MIDI control change (CC) messages
and vice versa. Apart from the requisite MIDI bindings in the
Faust programs, no manual setup is required; once the patch
has been loaded, the mcp.pd abstraction keeps track of all the
MIDI controls in all Faust dsps and configures itself accord-
ingly in a fully automatic fashion. Note that in the current
implementation, only controls with MIDI bindings will show
on the MCP surface.

The faders and encoders of the MCP device are linked to
the MIDI controls of your Faust dsps, so moving them changes
the controls of the dsp accordingly. Conversely, changing the
controls in the Pd GUI sets the controls of the device (if it sup-
ports feedback). In faust-mcp, the faders and encoders in each
strip can be used interchangeably (and will move in lockstep
if the device supports feedback), to accommodate any kind of
MCP device which has any faders or encoders at all. Passive
Faust controls (bargraph elements which output control val-
ues rather than reading them) are also supported and will be
displayed using the meter strips of the MCP device if it has
those (for instance, you can see these in the left and right
strips of the fx3 unit in Fig. 2).

The controls are organized into banks of eight faders and
encoders. The abstraction provides as many banks as needed
to represent all MIDI controls of all Faust dsps, ordering the
controls by increasing MIDI CC numbers. The usual bank and
channel controls on the MCP device can be used to switch be-
tween different banks as needed, so that all controls with MIDI
bindings become accessible.

Scribble strips are also supported (as can be seen at the top
of Fig. 2); they will show the name of the Faust units and con-
trols assigned to each fader and encoder, or display the corre-
sponding parameter values. Also, if you’re using the included
midiosc.pd abstraction, the transport keys of the device can be
used to control playback. There are a number of other useful
features like these, which will be described in Section 6.

The faust-mcp package contains a few examples which can
be run straight from the source directory. The sources also in-
clude a small collection of sample Faust instruments and ef-
fects in the dsp subdirectory. Before running any of the ex-
amples, you’ll have to compile these with the Faust compiler.

7See https://agraef.github.io/pure-lang/. Binary packages
for Arch, Debian, and Ubuntu can be found on the Open Build Ser-
vice, please check the “Pure on Arch” and “Pure on Debian/Ubuntu”
wiki links on the website.

Figure 3: Pd patch running faust-mcp.

A Makefile is included, so you can just type make in the dsp
folder to do this. The provided examples have all been set up
so that the MCP device is expected to be connected to Pd’s sec-
ond MIDI port, so you’ll have to configure your Pd MIDI con-
nections accordingly. The included README file describes
this in more detail.

Of course, you can also use the abstraction in your own
patches. To do this, it’s enough to copy the mcp folder to the
directory containing your patch and Faust modules, or to any
folder on Pd’s library search path. To insert an instance of the
abstraction into your patch, create an object (Ctrl+1) and type
mcp followed by the MIDI port number to which the MCP de-
vice is connected.8 Then connect the abstraction’s single outlet
to whatever faust~ objects you wish to control, or just send it
to the faustdsp receiver which is read by all Faust modules
present in the patch. In either case, MIDI CC data emitted by
the abstraction is encoded in the author’s SMMF Pd message
format9, which is also the format used by pd-faust to encode
all MIDI messages.

For instance, mcp 2 connects to the device on Pd’s second
MIDI port. In principle any of Pd’s MIDI ports can be used
there (port 1 being the default). But as we already mentioned,
MCP uses note and control data in its own peculiar way, thus
you should make sure that live MIDI input to the Faust dsps
is kept separate from the MCP data.

5. EXAMPLE

Fig. 3 shows the synth2.pd example from the faust-mcp pack-
age; please also revisit Fig. 2 to see how the same patch looks
on the MCP device (TouchDAW in this case). In both figures
the third (and last) bank of controls is shown. This example il-
lustrates all the various elements: several faust~ objects along

8Note that only a single instance of the mcp patch is needed for any
running Pd instance, not one per toplevel patch!

9https://bitbucket.org/agraef/pd-smmf

21 sciencesconf.org:lac2020:305074

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, Nov 25–27, 2020

Figure 4: mcp abstraction closeup.

with their Pd GUIs, the midiosc abstraction which can be used
to play back a MIDI file and record automation data, and the
mcp abstraction itself. Note that faust-mcp ships with a special
version of the midiosc abstraction which has been modified so
that the MCP transport controls can be used with it.

Let’s have a closer look at the mcp abstraction in the exam-
ple (cf. Fig. 4). It shows a mirror of the scribble strips, as they
will render on the MCP device, as well as a few buttons and
toggles in the top row. All these functions are also available
using corresponding controls on the MCP device, as described
below; in the following list we give the equivalent MCP func-
tions in parentheses.

• The first two bang controls, labeled < and >, switch to
the previous and next bank of eight faders, respectively.
(MCP: bank left/right keys)

• The value toggle, when engaged, shows the current val-
ues of the controls in the top row of the scribble strips.
(MCP: touch a fader, or push an encoder)

• The dspname toggle switches the scribble strips between
showing the instance and the dsp name of the Faust
unit. (MCP: F1 key)

• The encoder toggle switches between two alternative
display styles (fan and pan) for the encoder LED rings.
Fan style (the default) shows an arc from 0 to the current
value, while pan style shows just a single tick between
min and max markers. (MCP: F2 key)

• The bang control on the right resets the internal state of
the abstraction and re-displays the scribble strips. (MCP:
F3 key)

Note that the controls in the abstraction are not meant to
replace a real MCP device; they merely provide you with the
most essential functions in case your MCP device lacks some
of these controls. Also, the facsimile of the scribble strips will
be helpful if your device has no display.

In the following section, we discuss the meaning of all
available MCP controls in some detail.

6. CONTROLS

The primary purpose of the mcp abstraction is to take con-
troller input from the mixer strips (faders and encoders) of
your device and map them to the corresponding MIDI con-
trol changes of the Faust units in your patch. It also does
the reverse translation, providing feedback to the MCP device
(moving motor faders or lighting up LEDs if your device has
any of those) if you change the Faust controls in the patch. In
addition, the abstraction offers various other useful functions,
mostly accessible through special keys on the MCP device:

• Bank changes: As already mentioned, the controls are
organized into banks of size eight (which matches the
number of strips on most MCP devices). The bank left
and right buttons can be used to switch between these,
so that all Faust controls become accessible. The chan-
nel left and right buttons, if available, move through the
controls one strip at a time; this is useful, in particular,
with single-strip devices like the X-Touch One.

• Scribble strips: Instance/dsp and control names are
shown in the scribble strips of the device (if available),
and touching the faders or pushing the encoders toggles
the value display in the top line of each scribble strip.

• Special dsp controls: Each Faust dsp has three special
controls, which correspond to the buttons in the upper
right corner of the generated Pd GUI (cf. Fig. 3): record
(a toggle which arms the unit for recording of OSC au-
tomation data when used with the midiosc abstraction),
reset (a bang control which resets all controls to their
initial values), and active (a toggle which turns the unit
on or off). With the mcp abstraction these are assigned
to the record, solo/select and mute buttons of the de-
vice, respectively. The rec and mute buttons also pro-
vide feedback, i.e., the buttons light up when the option
is engaged. In the case of mute this actually means that
the unit is deactivated, so the corresponding GUI toggle
is off. Pressing the select or solo button simply resets all
controls of the dsp to their initial values, without light-
ing any buttons.
Note that the special dsp controls always apply to the
dsp as a whole, so pressing the button on any strip cur-
rently assigned to a given dsp will change the mute or
record status of all the other buttons currently assigned
to the same dsp.

• Display options: The following options are assigned
to some of the function keys of the MCP device: F1
switches the scribble strips between instance and dsp
name of the Faust units; F2 switches the encoder style
between fan and pan, as discussed in the previous sec-
tion; and F3 tells the abstraction to update its internal
state and re-display the scribble strips (which can be
used to force an update of the display, e.g., after edit-
ing and reloading Faust units).

• Playback and transport: When used with the included
(modified) version of the pd-faust midiosc player, the
transport controls will work as follows: the rewind key
moves the playhead to the beginning of the MIDI file,
fast forward moves it to the end; stop stops, and play
toggles playback; record toggles the player’s OSC au-
tomation recording; cycle toggles the player’s loop func-
tion; and the big jog wheel and the cursor left/right
keys move the playhead in smaller and larger steps, re-
spectively. In addition, the function keys F4, F5 and F6
are assigned to some special OSC recording functions
(save: save the currently recorded automation data to a
text file; abort: delete the automation data of the cur-
rent take; and clear: delete the entire automation se-
quence). Please check the pd-faust documentation for
more details on how these operations are used.10

10https://agraef.github.io/pure-docs/pd-faust.html

22 sciencesconf.org:lac2020:305074

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, Nov 25–27, 2020

• Timecode: When used with the midiosc player, the time-
code display shows the time (in h/m/s/tenths of sec-
onds) of the current playhead position.

Obviously, some of these functions may or may not be
available depending on the MCP device that you have. The
Mackie, Faderport 8 and X-Touch devices should enable all
features, but some lesser MCP devices may not offer transport
or function keys, push encoders, fader touch detection, scrib-
ble strips, or a timecode display.

Finally, let us mention in passing that even if your MIDI
controller does not have built-in MCP support, chances are
that if it has enough faders, knobs and buttons, you can make
it work as an MCP-compatible device using the author’s midi-
zap program [7]. For instance, faust-mcp works just fine with
the Akai APCmini, or even the Harley Benton MP-100 foot
controller, using the corresponding MCP emulations included
in the midizap distribution.

7. FUTURE WORK

While faust-mcp is perfectly usable already, we still consider
it work in progress. Here are some things we may want to
address in future versions:

• The most notable limitation right now is that faust-mcp
only covers dsp controls which already have MIDI bind-
ings. This simplifies the implementation a lot. How-
ever, another option would be to go through pd-faust’s
OSC layer instead. This would allow arbitrary controls
to be mapped, without having to configure MIDI bind-
ings beforehand.

• It would be nice to offer more layout options (i.e., how
“pages” for different Faust units are organized, and how
the controls are ordered).

• Currently controls mapped to the same MIDI CC in dif-
ferent Faust units will be mapped to the same MCP con-
trol. This is an outright bug and will hopefully be fixed
by the time you read this.

• faust-mcp is currently hard-wired to use 8-fader banks,
which is what most dedicated DAW controllers offer.
But there are devices with smaller and larger bank sizes
(as well as extender units which can be added to exist-
ing DAW controllers), so it makes sense to provide alter-
native versions of the mcp abstraction to accommodate
all common sizes.

• For DAW controllers without motorized faders, the cur-
rent fader positions will often be way off from the ac-
tual Faust control values, especially after bank switches.
The usual way to deal with this is a “pickup” (a.k.a.
“takeover”) mode which makes sure that controls start
moving only when the fader “picks up” the actual value.
Obviously, it would be nice to have this in faust-mcp as
well, at least as an option.11

11As a remedy for the time being, if your controller doesn’t have
motor faders, then it may be safer to just use the encoders of your de-
vice instead, because these always emit changes relative to the current
control value.

• There should be some form of musical timecode dis-
play. Currently only physical time in h/m/s/tenths is
shown. This is due to limitations in the current pd-faust
implementation which doesn’t report musical time.

8. REFERENCES

[1] Yann Orlarey, Albert Gräf, and Stefan Kersten, “DSP pro-
gramming with Faust,” in Proceedings of the 4th Interna-
tional Linux Audio Conference, Karlsruhe, 2006, pp. 39–47,
ZKM.

[2] Albert Gräf, “Pd-Faust: An integrated environment for
running Faust objects in Pd,” in Proceedings of the 10th
International Linux Audio Conference, Stanford University,
California, US, 2012, pp. 101–109, CCRMA.

[3] Yann Orlarey, Dominique Fober, and Stephane Letz, “Syn-
tactical and semantical aspects of Faust,” Soft Computing,
vol. 8, no. 9, pp. 623–632, 2004.

[4] Colby N. Leider, Digital Audio Workstation, McGraw-Hill,
Inc., New York, NY, USA, 2004.

[5] Mark Wherry, “Mackie control : DAW control surface,”
Sound On Sound, Dec. 2003, https://www.soundonsound.
com/reviews/mackie-control-universal. Last access:
Dec. 2019.

[6] Albert Gräf, “Signal processing in the Pure programming
language,” in Proceedings of the 7th International Linux Au-
dio Conference, Parma, 2009, Casa della Musica.

[7] Albert Gräf, “midizap: Controlling multimedia applica-
tions with MIDI,” in Proceedings of the 17th International
Linux Audio Conference, Stanford University, California,
US, 2019, pp. 113–120, CCRMA.

23 sciencesconf.org:lac2020:305074

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, UniversitÃl’ de Bordeaux, France, November 25–27, 2020

EXPRESS DATA PATH KERNEL OBJECTS FOR REAL-TIME AUDIO STREAMING
OPTIMIZATION

Christoph Kuhr

Brühl, Germany
christoph.kuhr@web.de

Alexander Carôt

Anhalt University of Applied Sciences
Köthen, Germany

alexander.carot@hs-anhalt.de

ABSTRACT

Using a JACK media clock listener to synchronize JACK to an AVTP
media clock talker results in performance issues when used with a
raw Ethernet socket under Linux. The packet rate of a class A AVTP
audio stream of 8 kHz triggers too many interrupts in the CPU. As
a result a JACK audio cycle has only 125 µsec to process the au-
dio data of all JACK clients. This restriction prevents such a system
from real-time signal processing. The extended Berkley Packet Fil-
ter in combination with the express data path kernel features, that are
integrated in the Linux kernel since version 4.8, are investigated. We
could optimize the media clock synchronization by using a eBPF
XDP program for pre processing of the stream packets. Our de-
scribed solution is meant as an alternative to the usage of generic
raw sockets.

1. INRODUCTION

Soundjack [1] is a real-time communication software using peer to
peer connections, to connect up to five participants with each other.
The targeted user group consists mostly of musicians. It was first
published in 2006 [2]. The interaction with live music over the pub-
lic Internet is very sensitive to latencies, both round trip as well as
one-way. A rehearsal environment for conducted orchestras via the
public Internet is the the ultimate goal for this research. Up to 60
musicians and a conductor shall be able to play together live.

Signal processing requirements make a server network manda-
tory, that connects up to 60 UDP streams to each other and mixes
them. A single optimized processing server could handle the process
of mixing this amount of concurrent UDP streams with reasonably
low latency. Future research, however, shall investigate the applica-
tion of immersive audio technologies in real-time. A single server
would not be able to handle such computational load, since any fil-
ter calculation has to be done more than 60 times. Thus, a scalable
server network provides the required processing power for a sub-
set of the streams. The audio signals are routed between the signal
processing applications via JACK [3]. JACK is a professional and
open source audio server, that allows applications to share sample
accurate audio data with each other. The servers need to share the
processed audio data amongst each and have to be synchronized in
time. For this purpose the AVB technology defined by IEEE stan-
dards (IEEE 802.1AS, 802.1Qat, 802.1Qav and 1722) is used. The
AVB standards extend generic Ethernet networks with precise time
synchronization, network resource reservation and bandwidth shap-
ing. These properties avoid the Soundjack client streams from inter-
fering with each other and also ensures the sample accurate synchro-
nization of audio data across multiple servers.

This media clock synchronization of the multiple JACK instances
on all servers, with the JACK AVB media clock listener (avb-mcl)

backend was presented in [4]. Further investigations have shown
that JACK is not able to keep the media clock in sync, if the local
processing demand rises to the intended amount. The reason for this
is the asynchronicity between the AVB AVTP packet rate for stream
reservation class A traffic with a transmission interval of 125 µsec.
At a sampling rate of 48 kHz, each AVTP packet contains 6 audio
samples. The JACK sample buffer, however, always has a size of the
power of 2 (e.g. 26 = 64 samples), which 6 is not. Thus, with any
sample buffer setting, multiple AVTP packets have to be received in
a single JACK audio cycle. With 64 samples 11 AVTP packets are
required. This means, that for any one of the eleven AVTP packets,
the kernel has to allocate meta data and switch the process context to
call the user space application. A JACK audio cycle for 64 samples,
which requires 1.3334 msec at 48 kHz to complete, is therefore
interrupted any 125 µsec. But the situation is even worse, since the
design of avb-mcl blocks until the next arrival of an AVTP packet.
Consequently, it blocks 10 times and only leaves 125 µsec for the
processing of an audio cycle overall. This is exactly the duration
between the arrival of the 11th packet and the deadline of the au-
dio cycle. This makes it nearly impossible to deploy avb-mcl in a
productive environment.

A common solution to this problem is the outsourcing of the
packet reception into a different thread. However, this would require
synchronization of the threads and would introduce latency by lock-
ing or busy waiting. The achievement of the lowest possible kernel
latency for this desired behavior with classical methods, would re-
quire to write a specific kernel module. This is a difficult task due to
several reasons. Another possible solution has found its way into the
Linux kernel in 2016, which we will explore in this paper: eXpress
data path (XDP).

1.0.1. extended Berkley Packet Filters and eXpress Data Paths

Network traffic nowadays may easily require bandwidths,
e.g. 100 Gbps, of a computer system’s data bus and CPU that a
generic software stack is unable to handle. Thus, it makes it hard
to process packets within a reasonable reaction time. The reason for
this limitation can be found in the allocation of meta data for billions
of packets per second by the kernel. Not every packet, however, re-
quires handling by the software stack. Use cases exist, that can be
significantly sped up by preprocessing of packets inside the kernel.
For most software developers this meant to write their own kernel
modules, which is a very delicate and complex process. Three differ-
ent strategies to accelerate and optimize network packet processing
on a Linux computer exist:

• Kernel Bypassing
• Customized Kernel Module
• extended Berkley Packet Filter (eBPF) with eXpress Data Path

(XDP)

24 sciencesconf.org:lac2020:307835

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, UniversitÃl’ de Bordeaux, France, November 25–27, 2020

Kernel Bypassing disables all features of the kernel. Several
techniques exist that can be used for kernel bypassing. All of which,
however, require dedicated network adapters. A customized kernel
module requires a significant development effort. The source code
of kernel modules for network adapters easily contains tens of thou-
sands of lines of code, that are carefully tuned. Adding even small
features may create unforseen development and debugging effort.
Therefore, these two strategies are not further discussed in this paper.

In 2014, the well known Berkley Packet Filter (BPF) kernel fa-
cility, to filter network packets in the kernel-space, has been
rewritten and extended [5]. An extended Berkley Packet
Filter (eBPF) [6] [7] program is a small snippet of code that is com-
piled to byte code by a just-in-time (JIT) compiler. It gets loaded into
the kernel, which then executes this code in a dedicated virtual ma-
chine, explicitly handling only this code. Before this code is loaded
by the kernel, a pre-verifier checks the code to avoid malicious code
to be executed in kernel-space - i.e. it is checked, whether the pro-
gram contains out-of-bounds memory accesses, loops or
global variables. Loops require to be rolled out explicitly and global
variables require to be stored in memory maps, that are shared with
the respective user-space application.

In 2016, a patch set for high performance networking has been
added [8]. The so called eXpress data path (XDP) has been merged
in the Linux kernel in version 4.8. This new approach deals with net-
work packets taken right from the NIC, before the kernel is setting
up a socket buffer structure, and rejects unwanted, passes desired or
redirects packets. A good example for the power of XDP is the de-
fense of a denial-of-service attack. When such an attack is noticed it
is possible to drop the packets inside the NIC with such an eBPF pro-
gram. Thus, the CPU does not have to deal with them and the system
stays operational. To use this feature, however, a network driver has
to support XDP programs, which can then be accessed via the newly
introduced AF_XDP socket type - with specialized hardware, the of-
floading of eBPF programs to the hardware is possible. But even
without driver support for XDP programs, it can make sense to use
XDP in software mode, as shown in figure 1. Driver mode has been
described above. The software mode uses the network driver and al-
locates a socket buffer structure. For the given example XDP would
not make much sense. On the other hand it enables new ways of pre-
processing network packets, which can save a significant amount of
CPU time for other tasks.

2. CONCEPT

We investigate two different use cases: AVB Listener JACK Client
(jackd_listener) and JACK AVB Media Clock Listener Backend (avb-
mcl). Both use cases have the same bottle neck with different conse-
quences for the application.

The first use case is our proof of concept, since it involves all re-
quired functionalities: Integration into the build system, pre-
processing of AVTP packets and sharing data between kernel- and
user-space via memory maps, i.e. the audio samples. As build sys-
tem the Linux native make is used. Both the existing application and
the provided tutorials for XDP use the make build system [10]. The
pre-processing involves three steps. In the first step, AVTP pack-
ets shall be filtered on arrival for their destination MAC address and
stream ID. This step shall drop any packet that does not match the
criteria and prevents a lot of context switches to the host applica-
tions waiting raw Ethernet socket. The second step is to store the
audio samples contained in the AVTP packets in its integer represen-
tation to a memory map, that can be shared with the host application

Figure 1: Components of the XDP subsystem are shown in light blue
and reside in the device driver as well as the network stack [9].

in user-space. The final step is to pass the last AVTP packet, whose
contained samples are required to completely fill a sample buffer to
the host applications raw Ethernet socket. The raw Ethernet socket in
the host application jackd_listener is waiting, it receives only AVTP
packets for its own registered destination MAC address and stream
ID. In fact only the last received AVTP packet is passed. On the re-
ception of the last AVTP packet, it reads the integer-formated audio
samples from the memory map, converts them to float format and
writes them to a JACK ring buffer.

The second use case requires the integration of the XDP eBPF
build process into the Waf build system [11], since Waf is the build
system that is used to build JACK. The pre-processing involves two
steps, namely the first and the second step of the first use case - fil-
tering for destination MAC address and stream ID and passing only
the last AVTP packet of a sample buffer period.

3. REALIZATION

A prerequisite for XDP and eBPF to work is a kernel later than
version 4.8. We deployed a customized real-time kernel of version
5.2.17-rt9 in our test environment.

The implementation of an eBPF program with the host appli-

25 sciencesconf.org:lac2020:307835

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, UniversitÃl’ de Bordeaux, France, November 25–27, 2020

0 1000 2000 3000 4000 5000 6000

128 Samples
XDP

128 Samples
NO XDP

64 Samples
XDP

64 Samples
NO XDP

t [µsec]

Figure 2: Kernel traces showing the context switches of the JACK sound server for 64 and 128 samples per buffer with and without XDP.

cation jack_listener has been used as proof of concept. An inte-
gration in the make build system already existed, which only re-
quired adoption to the host application. The Waf build system that
is used for JACK, however, does not support the LLVM compiler
framework [12]. Furthermore, it had not been possible to integrate
the loading process of the eBPF program object file into the JACK
backend. Libbpf [13] needs to find the main symbol of the ap-
plication it is linked against, which could not be achieved until now.
Thus it is necessary to compile the eBPF program in a preparing
step and load it with a stand alone loader. If the make build sys-
tem is used directly, as is the case for the jackd_listener application,
the memory maps can be accessed by the host application via a file
descriptor and a name string.

The eBPF kernel programs need to be customized, configured
and compiled for each application that uses it. In which way param-
eters can be changed during runtime is still open for investigation.

After the eBPF program has been successfully hooked to the de-
sired NIC, the generic command ip link show ’dev’ can be
used to verify this, i.e. the last line of the following console output.

$ ip link show enp5s0

enp5s0: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP>
mtu 1500 xdpgeneric qdisc mq state UP mode
DEFAULT group default qlen 1000

link/ether a0:36:9f:bd:95:46 brd ff:ff:ff:ff:ff:ff
prog/xdp id 217

Regarding our first described use case the current lack of finan-
cial and in turn hardware resources prevents the required implemen-
tations with corresponding complexity: Theoretically a significant
number of concurrent AVB listeners may be deployed on a single
server, however, in order to test it our test environment lacks a sig-
nificant amount of AVB talkers. A test would comprise the result-
ing streams to trigger the corresponding amount of interrupts by the
NIC, each of which would be pre-processed by the eBPF XDP pro-
gram that has been installed for that stream’s listener application.
Therefore, the evaluation of a setup, in which the jackd_listener ap-
plication benefits from XDP is not possible at the moment. In con-
trast our second described use case represents a solid base for the
technical implementation and evaluation as described in section 4.

4. EVALUATION AND DISCUSSION

The kernel network stack needs to keep working, although a filter is
implemented with XDP. This might sound obvious, but it is a devel-

opment experience worth noting. It is important for the XDP pro-
gram to pass all Ethernet frames up to the kernel network stack even
if they are not subject to our intentions. Filtering for a specific AVTP
stream for example, requires PTP and MRP to keep receiving pack-
ets, otherwise the NIC does support neither IEEE 802.1AS nor IEEE
802.1Qat. Thus, such packets need to be passed up to the kernel stack
and cannot be filtered, e.g. for debugging purposes. This becomes
even more important when multiple XDP programs are attached to
the same NIC. It has to be ensured that those XDP programs do not
interfere with each other by filtering packets the other XDP program
requires for its successful operations.

The runtime optimizations provided by the XDP eBPF are real-
ized with kernel traces. A comparison of the context-switch schedul-
ing events of the Linux kernel task scheduler is shown in figure 2.
It shows the JACK sound server process with the avb-mcl backend
configured at 64 and 128 samples per buffer, both with and without a
XDP filter program attached to the AVB NIC. The impact of the XDP
programs can be seen clearly. When a XDP program is attached to
the NIC, fewer context-switches take place, which provides more
CPU time to the JACK clients. The JACK clients context-switches
are represented by the spikes at the end of the JACK sound server
context-switches at the beginning of an audio cycle. Without XDP,
those spikes appear much earlier in the cycle and have less time to
complete, namely until the next JACK sound server context-switch
≈ 125 µsec later.

During situations with heavy load generated by the entire system
in a production scenario, the XDP improvements provide a much
more robust signal processing and audio signal routing. No buffer
over- or underruns occur. An in depth evaluation, however, does not
provide further insights and is therefore omitted.

5. CONCLUSIONS

Integration into the Waf build system used for JACK is not possible
at the moment, because Waf is not able to use the LLVM compiler
framework.

The lack of ability to perform floating point operations in the
kernel-space, is a limitation for further applications of XDP, i.e. for
the first discussed use case. Otherwise, it would be possible to di-
rectly write the float-formated audio samples to the JACK ring buffer
and eliminate any user-space interaction.

The JACK AVB audio stream listeners do not suffer from the
asynchronicity between the JACK sound server and the AVB media
clock, since multi threading and the JACK ring buffers decouple the

26 sciencesconf.org:lac2020:307835

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, UniversitÃl’ de Bordeaux, France, November 25–27, 2020

two clock domains. In a scenario where a massive amount of lis-
teners is required, listener with XDP programs in place might be an
improvement to listeners without XDP. This is still open for investi-
gation.

For the JACK AVB media clock backend, XDP provides a signif-
icant improvement and solves the context-switching problems under
load. Further investigations, however, revealed that this performance
could as well be achieved with an appropriate handling of a generic
raw socket. Thus, XDP represents a powerful and interesting alter-
native butaspects such as tedious debugging, lack of floating-point
operations and the retrieval of hardware timestamps outweigh the
benefits significantly.

6. FUTURE WORK

The workflow to create eBPF programs has to be improved. The
name for each eBPF program, that shall be loaded, has to be unique
in order for the host program to correctly address the memory map
for the kernel-/user-space interactions. Furthermore, the parameters
required at runtime, such as the stream ID, destination MAC address
and sample buffer size, need to be passed to the eBPF program at
runtime. Only then can JACK change internal parameters without
the need for a newly compiled eBPF program.

At the moment, it is not possible to access hardware timestamps
inside an XDP program. This is on the road map of the development
teams, however, it might provide further optimization for an AVB
network stack in the future.

In theory, XDP would allow to use a NIC (AVB is not required
for this) with a raw Ethernet socket to implement a custom protocol.
This way it may be used as an interface for digital signal processors
that are equipped with an Ethernet interface as well. Signal routing
could be done with XDP, so that the signal processing computations
are offloaded to the digital signal processor. An user-space applica-
tion would only manage the audio streams. This approach will be
investigated in the future.

7. REFERENCES

[1] (2019, Feb. 8) Soundjack - a realtime communication solution.
[Online]. Available: http://http://www.soundjack.eu

[2] A. Carôt, U. Krämer, and G. Schuller, “Network music perfor-
mance (nmp) in narrow band networks,” in in Proceedings of
the 120th AES convention, Paris, France. Audio Engineering
Society, May 20–23, 2006.

[3] (2019, Feb. 8) Jack audio connection kit. [Online]. Available:
https://jackaudio.org

[4] C. Kuhr and A. Carôt, “A jack sound server backend to syn-
chronize to an ieee 1722 avtp media clock stream,” in Proceed-
ings of the Linux Audio Conference 2019. Stanford, CA USA:
Linuxaudio.org, Mar. 23–26, 2019.

[5] J. Corbet. (2014, Sep. 24) Linux weekly news (lwn.net):
The bpf system call api, version 14. [Online]. Available:
https://lwn.net/Articles/612878/

[6] D. Scholz, D. Raumer, P. Emmerich, A. Kurtz, K. Lesiak, and
G. Carle, “Performance implications of packet filtering with
linux ebpf,” in 2018 30th International Teletraffic Congress
(ITC 30), vol. 01, Sep. 2018, pp. 209–217.

[7] (2019, Dec. 12) Bpf and xdp reference guide. [On-
line]. Available: https://cilium.readthedocs.io/en/latest/bpf/
#bpf-and-xdp-reference-guide

[8] J. Corbet. (2016, Apr. 4) Linux weekly news (lwn.net): Early
packet drop — and more — with bpf. [Online]. Available:
https://lwn.net/Articles/315941/

[9] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann,
J. Fastabend, T. Herbert, D. Ahern, and D. Miller,
“The express data path: Fast programmable packet pro-
cessing in the operating system kernel,” in Proceedings of
the 14th International Conference on Emerging Networking
EXperiments and Technologies, ser. CoNEXT ’18. New
York, NY, USA: ACM, 2018, pp. 54–66. [Online]. Available:
http://doi.acm.org/10.1145/3281411.3281443

[10] (2019, Dec. 12) xdp-project - xdp-tutorial. [Online]. Available:
https://github.com/xdp-project/xdp-tutorial

[11] (2019, Dec. 31) Waf 2.0.18 - the meta build system. [Online].
Available: https://waf.io

[12] (2019, Dec. 31) Waf 2.0.18 documentation - waf tools -
compiler_c. [Online]. Available: https://waf.io/apidocs/tools/
compiler_c.html

[13] (2019, Dec. 12) libbpf. [Online]. Available: https://github.
com/libbpf/libbpf

27 sciencesconf.org:lac2020:307835

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

SYNTHBERRY PI: AN AUTONOMOUS SYNTHESIZER BASED ON RASPBERRY PI

Costantino Rizzuti

Artis Lab
Cosenza, Italy

costantinorizzuti@gmail.com

Fabrizio Rizzuti

Artis Lab
Cosenza, Italy

fabrizio.rizzuti@gmail.com

ABSTRACT

SynthBerry Pi is the first prototype of an autonomous synthesizer
based on PDSynth. PDSynth is a toolkit for creating programmable
digital synthesizers made using the Pure Data visual development
environment. To run PDSynth synthesis architectures a Raspberry Pi
mini computer was used. Eight slide potentiometers are connected to
the mini computer to create a control surface that makes it possible
to control PDSynth’s architectures. SynthBerry Pi is, therefore, a
compact standalone synthesizer capable of creating sounds by using
Pure Data patches.

1. INTRODUCTION

In about the last twenty years, the miniaturization of computing sys-
tems and the growing diffusion of open software and hardware tech-
nologies allowed artists and designers to access technologies until
then only available for technicians and engineers working in large
university or business research centers. As Noble [1] mentions, all
of this has created absolutely new and never seen conditions, mak-
ing possible the emergence of new fields of research in art, design
and also music such as: Physical Computing and Interaction Design.
In fact, before that the idea of artists or designers writing code or
designing hardware was almost unheard of. Today, not only it has
become commonplace, but it has become an important arena of ex-
pression and exploration. Nowadays, this deep bound between tech-
nology and artistic creation is become a vital and vibrant phenomena
that shapes both art and technology.

Even in computer music the growth of this technologies lead to
interesting consequences like the positive convergences with already
existing trends such as the practice of self-constructing synthesizers,
the development of new musical interface and the building of ex-
perimental electronic musical instruments. These practices defined
as analog synthesizer do it yourself, in its abbreviated form: synth
DIY [2], aimed at the realization of electronic musical instruments,
have had a great diffusion in recent years especially in relation to the
increasing use of modular eurorack synthesizers.

This work presents SynthBerry Pi: a prototype of an autonomous
synthesizer based on Raspberry Pi mini computer. The prototype
uses Pure Data patches to generate and process sounds. The col-
lection of patches used for this project is called PDSynth: a toolkit
for creating programmable digital synthesizers. The Raspberry Pi
mini computer was used to run PDSynth synthesis architectures in
order to create a compact standalone synthesizer. SynthBerry Pi is
equipped with an hardware control interface consisting of eight slide
potentiometers that allow to change the parameters of the Pd patches.

Raspberry Pi1 is a well known mini computer. The project is
based on a Broadcom system-on-a-chip (BCM2836 for the Rasp-

1For more information refer to the Raspberry Pi Foundation website:
https://www.raspberrypi.org/.

berry Pi 2, or BCM2837 for Raspberry Pi 3 and BCM 2711 for the
latest Raspberry Pi 4 Model B), which incorporates an ARM proces-
sor, a VideoCore IV GPU and RAM memory (from 512 Megabytes,
to 1 Gigabyte, up to 4GB for the latest version). The boards do
not have neither hard disk nor a solid state memory unit, relying
instead on an SD card for the boot and for the management of the
non-volatile memory.

In the last years many audio projects have been realized around
the Raspberry Pi platform [3, 4, 5, 6]. Moreover, Eurorack modules,
such as the Terminal Tedium project and Nebulae 2 from Qu-Bit
Electronix, use Raspberry Pi to create reprogrammable modules that
can be used to implement audio processes developed through lan-
guages and development environments for audio (from C and C++
as programming languages, up to to Pure Data, SuperCollider and
CSound as languages dedicated to audio).

2. PDSYNTH

PDSynth is a toolkit for creating programmable digital synthesizers.2

The name derives from the acronym of the sentence: Programmable
Digital Synthesizer. But also the acronym PDSynth allows to indi-
cate a synth made with Pure Data (Pd) [7]: the well known visual
development environment for multimedia applications used to im-
plement the toolkit.

The development of this project started in the Autumn 2015 from
an initial idea to create a series of easily interfaceable Pd patches ca-
pable of simulating the behavior of the essential modules of an ana-
log synthesizer. The PDSynth modules implement different sound
generation and processing systems and are all controllable via the
Open Sound Control (OSC)3 protocol. Users can easily create and
interconnect the modules together to build high-level architecture
for real-time sound synthesis and processing. The OSC protocol
[8, 9] was choosen because it is becomed, along the years, a standard
format for sharing data related to musical performance (parameters,
sequences of notes, gestures) between musical instruments (mainly
synthesizers and electronic instruments), calculators and other mul-
timedia devices. This protocol, from the late 1990s, is becomed a
valid alternative to MIDI, especially because it is open, flexible and
extendable.

Open Sound Control was choosen because it allows to easily
create a reliable and robust communication system among the vari-
ous modules inside Pd allowing, also, a simple exchange of network
messages to and from the outside. In fact, the OSC messages can
be easily managed through the native message system provided by
Pure Data. All this simplifies the creation of the control systems of
the modules and allows to control the synthesizers through external

2The PDSynth toolkit can be downloaded from Artis Lab website:
https://www.artislab.it.

3For further information, refer to the project’s official website:
http://opensoundcontrol.org.

28 sciencesconf.org:lac2020:307904

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

controllers and control surfaces. Moreover, the OSC protocol allows
to have both an higher data resolution and greater parameter space
than what is offered by the MIDI protocol.

A library of external objects was used to implement the control
functions through the OSC protocol. The library provides useful ob-
jects only to realize the management of the OSC messages inside
Pure Data, so for the transfer of OSC packets through the network,
a second library, called IEMnet, was used. In particular, it is possi-
ble to use the udpreceive object to implement within Pd a server
listening on a given port for receiving OSC messages.

The processing of messages received from the server can then
be carried out using the objects provided by the OSC library. The
unpackOSC object is useful for converting OSC packages, made
up of binary data, into messages compatible with the Pure Data in-
ternal messaging system. Then the pipelist object is inserted to
obtain a temporally coherent message scan in the case in which mes-
sages with a given timestamps are received. Finally, the OSC library
provides an object, called routeOSC, which allows the addressing
of messages according to a hierarchical structure defined by the ad-
dress space. The arguments supplied to the object define a set of
addresses to which corresponding messages can be routed.

2.1. PDSynth architecture

The development of the toolkit, unfortunately, is still in an initial
phase, however it already provides a minimal series of modules that
can be easily used to create and process sounds. At the beginning
of the project, in fact, after the first phases of software development
we decided to move the attention to the design and the construction
of hardware devices to be used in combination with the toolkit. The
modules currently available can be classified into three distinct cat-
egories (Signal generators, Filters, Envelope generators) which will
be presented in detail below.

2.1.1. Signal generators

PDSynth currently offers five sound generation modules that emulate
the behavior of classic analog synth oscillators. The modules offer
the possibility of generating the following waveforms:

GENPULSE — band-limited pulse train generator;

GENSAWTOOTH — band-limited saw tooth wave generator;

GENSIN — sine wave generator;

GENSQUARE — band-limited square wave generator;

GENTRIANGLE — band-limited triangle wave generator.

The GENSIN module uses the Pure Data native object osc~ for
generating the sine wave. All other modules are based on reading
data saved in tables (Wave Table Synthesis) [10].

The image in Figure 1 shows the patch of the GENPULSE mod-
ule. The sound is generated by using the Pd object tabosc4~. It
allows to read the data saved in a table using a polynomial interpo-
lation of the third order (four points interpolation). The objects that
manage the OSC messages are placed in the top right corner of the
patch. The first object (r OSCMessages) is used to receive OSC
messages sent in "broadcast" within Pure Data’s native message in-
frastructure. The following object (routeOSC /$1) selects and
sends on its leftmost outlet only the messages that have as the first
tag of the address the name of the module. This can be defined dur-
ing the creation of a new instance of the GENPULSE through the first
argument of the patch (for example Pulse1 in the upper part of the

patch in Figure 1). The next routeOSC object allows to route prop-
erly the data related to the various parameters to its different outlets
accordingto the OSC name address (/Freq — frequency, /Amp —
amplitude, ...).

Figure 1: GENPULSE - patch of the pulse train generator.

The toolkit is based on digital sound generation techniques, so
there is no real difference between audio band signal generators and
LFO (Low Frequency Oscillator). Therefore, all generators can be
used both in a frequency range below the threshold of audibility, as
is typical for LFOs, and to produce audible sounds. For this rea-
son, to achieve the generation of different waveforms we tried to
make a compromise between the problems related to aliasing and
the creation of signals with a frequency spectrum as wide as possi-
ble. After some initial experiments aimed at evaluating different ap-
proaches, we finally chose to generate band-limited signals by read-
ing the waveform data stored in different tables. In order to be able
to produce spectra that are very rich in harmonics, we decided to di-
vide the audible frequency spectrum into eight distinct regions, each
corresponding to a table containing the waveform with a suitably cal-
culated harmonic frequency content to avoid aliasing phenomena.

The image in Figure 2 shows the subpatch of the GENPULSE mod-
ule in which the eight tables are defined. Each table is related to a
different region of the frequency spectrum: $0-Table1 contains
a waveform made of 511 partials that is used at the low end of the
spectrum. While, at the opposite, $0-Table8 contains a wave-
form generated using only three partials which is used to generate
the sound in the upper part of the frequency spectrum.

All the signal generators, except the sinusoidal oscillator, use
this approach based on the reading of eight tables with waveforms
characterized by a different bandwidth. The change of the frequency
parameter determines the selection of the appropriate table to be used
for reading. The image in Figure 3 shows the setTable subpatch.
It receives as input the frequency value in Hz and, by means of the
conditional structure if contained in the object expr, it controls
which is the table to be read according to the interval of frequencies
in which the oscillator is called to operate.

29 sciencesconf.org:lac2020:307904

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

Figure 2: GENPULSE — eight tables used for WaveTable synthesis.

Figure 3: GENPULSE — the setTable subpatch.

The content of the wavetables shown in Figure 2 can be gener-
ated by using the Pd command cosinesum that allows to create
a wave according to a sum of cosines harmonics (sinesum is the
command in Pd to realize the sum of sine waves). The image in
Figure 4 shows five subpatches used to create as many wavetables,
each with its own number of partials (ie. WriteTable8 — three
partials, WriteTable6 — fifteen partials, ...). The number placed
after the cosinesum command define the length of the table to be
generated expressed in number of points. In the image it is possi-
ble to notice that the number of points in the tables varies with the
number of partials. In fact, as reported in the Pure Data manual, it
is better to use tables composed of 512 points for waveforms con-
taining up to fifteen partial. Above this threshold it is convenient
to calculate the length of the table L as the number, power of two,
greater than the product shown in equation 1, where Np indicates the
number of partial

L > 32 ∗Np. (1)

For example, to generate $0-Table1 containing 511 partial
we need to use 16384 points. To calculate the frequency values to
be used for changing the table to be read as a function of the fre-
quency value, it is possible to observe that from the previous relation
the maximum number of partials can be obtained according to the
size of the table. This value can be calculated by inverting the previ-
ous relationship and subtracting one as a safety margin as shown in
equation 2:

Np =
L

32
− 1. (2)

Once this value is known it is possible to obtain the maximum repro-
ducible frequency through the equation 3:

fmax =
20000

Np
(3)

it was decided to use the frequency of 20000Hz (with respect to the
theoretical value of the Nyquist frequency equal to 22050Hz for the
standard sampling frequency of 44100Hz) as an additional safety
margin with respect to the occurrence of aliasing phenomena. Re-
turning to the example of $0-Table1, we obtain therefore:

fmax1 = 20000/511 = 39, 1 (4)

as it is visible in the image in figure 3 the first table is changed for a
frequency equal to 40 Hz. This same procedure has also been applied
for the calculation of all the other values defined to realize the change
of the table to be read using the object tabosc4~.

The pulse waveform can be generated with a series of cosines
in which all the partials have a uniform amplitude distribution. The
value of the amplitude an can be computed according to equation 5,
where N is the maximum number of partials [11].

an =
1

N
. (5)

As shown in Figure 4, the command cosinesum is followed by the
number of points of the table and by a list of numbers that defines the
amplitude factor of each partial. In the case of the pulse waveform,
this numbers are all the same and equal to the inverse of the number

30 sciencesconf.org:lac2020:307904

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

Figure 4: GENPULSE — commands to create five wavetables.

of partials. Creating this lists of amplitude coefficients for all the
different waveforms is a long and repetitive process not so easy to
do by hand. This is even more true, when it is needed to generate
a very large number of partials as in the case of $0-Table1, as
shown in the top right corner of Figure 2.

For this reason a Python script has been developed in order to
automate the creation of a text file containing the list of amplitude
coefficients. The script created for the pulse generator is shown be-
low. In the first line, inside the open function, it is necessary to
define the name of the text file where data will be stored. On the
next line, the MaxOrder parameter defines the maximum number
of partials to be generated. The content of the text files generated
by this script can be easily copied and pasted into the Pure Data
messages (see figure 4) used to populate the tables with the various
waveforms.

out_file=open("Coef-Pulse.txt","w")
MaxOrder=511
x=round((1./MaxOrder),6)
out_file.write(str(0)+" ")
#The DC component is equal to 0
for i in range(1,MaxOrder+1):

out_file.write(str(x)+" ")
out_file.close()

2.1.2. Filters and sound processing

In addition to sound generation modules, PDSynth provides also
patches implementing filters. So far, three different filters of the
fourth order have been created:

FLTBandPass – band pass filter based on the Pd object vcf~;

FLTHighPass – high pass filter based on the Pd object hip~;

FLTLowPass – low pass filter based on the Pd object lop~.

Figure 5 shows an example based on the FLTBandPass mod-
ule. The patch realizes a small bank of filters, composed of three
modules placed in parallel, used to filter white noise. Each filter is
identified through a different OSC namespaces (BP1, BP2, BP3).

Figure 5: Example patch of the FLTBandPass module.

The structure of the filters patches is analogous to those of the
generators with regard to the internal management of OSC messages.
The filters differ from the generators only because of the presence of
an audio inlet used to provide the input signal to be processed.

2.1.3. Envelope generators

Two modules were also developed to generate envelopes:

ENVTable — envelope generator defined through a table;

ENVADSR4 — ADSR type envelope generator with fourth order
polynomial interpolation.

The ENVTable module allows you to generate a time envelope
by reading data contained in a table. Python scripts have been created
for the generation of envelope tables with different temporal trends.
The image in Figure 6 shows different two traits (attack and release)
envelopes generated by Python.

The ENVADSR4 module, instead, realizes a four-state ADSR
envelope with fourth order polynomial interpolation. As shown by

31 sciencesconf.org:lac2020:307904

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

Figure 6: Two piece polynomial envelope.

Puckette [10] this type of interpolation allows to obtain a trend very
similar to the logarithmic one, but with a reduced computational cost
and a greater simplicity of implementation. As is known, the loga-
rithm function diverges towards less infinite when the argument is
approaching towards zero, which makes serious precautions neces-
sary in the realization of logarithmic envelopes through truncation
or approximation processes. On the contrary, the use of polynomial
interpolation eliminates this problem by also offering the possibil-
ity of modifying the slope of the curves in a very simple manner by
varying only the order of the polynomial used.

2.2. PDSynth-00

Starting from the initial idea to develop an exclusively software en-
vironment, we tried to use DIY controllers based on the Arduino
prototyping platform to control the modules of the toolkit. This first
experiments encuraged to broaden the vision of the toolkit by in-
corporating, therefore, both software development and the design of
hardware devices to control the software architectures. The intent
of the project has therefore been transformed into the creation of an
environment for prototyping and developing portable electronic mu-
sical instruments and synthesizers.

On the hardware side, the project was oriented towards the re-
alization of physical devices, equipped with potentiometers, sensors
and other interaction systems. PDSynth-00 (see Figures 7 and 8) is
the first DIY prototype of a controller made by Artis Lab, in Spring
2016, that is born from the idea of an hardware device useful to con-
trol the synthesis and sound processing architectures created with the
PDSynth toolkit.

Figure 7: Rear panel of PDSynth-00.

PDSynth-00 is a reprogrammable electronic musical instrument
that can perform different functions depending on the software that

is loaded into the Arduino board. It is equipped with six slide po-
tentiometers and twelve buttons. Everything is contained in a simple
and light container made of plywood shaped using a laser cutting
machine.

Figure 8: Top view of PDSynth-00.

PDSynth-00 can be interfaced with Pure Data through the Fir-
mata protocol. By this way the data relating to the position of the
six cursors and the status of the buttons can be sent to the program
listening on the serial port and used to perform action or modify pa-
rameters inside the PDSynth patches.

3. SYNTHBERRY PI

SynthBerry Pi was born as a natural evolution of the PDSynth-00.
The Arduino prototype is not autonomous, it is only useful for con-
trolling the PDSynth modules running on a computer. SynthBerry
Pi, enstead, integrates controller and computer through the use of
a Raspberry Pi mini computer allowing to create an autonomous de-
vice able to generate sound that can be modified via a control surface.

3.1. The control surface

SynthBerry Pi is equipped with an hardware control interface con-
sisting of eight slide potentiometers. The prototype was built, like
the previous one, using two panels of plywood shaped with a laser
cutting machine. Figure 9 shows the front view of the prototype.

Figure 9: The front view of SynthBerry Pi.

The slide potentiometers are mounted on the front panel of the
device, the assembly between the two panels of the prototype was

32 sciencesconf.org:lac2020:307904

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

carried out through hexagonal steel spacers of suitable length. The
image in Figure 10 shows the top view of the prototype.

Figure 10: Top view of the prototype.

3.1.1. Hardware set up

Raspberry Pi is not equipped with analog to digital converters (ADC)
allowing the connections of potentiometers. For this reason, the ana-
log to digital converters MCP3008 was used to read the voltages re-
lated to the positions of the slide potentiometers. The MCP3008 is an
integrated circuit that provides eight analog input channels with 10
bit digital resolution. Figure 11 shows the simulation of connections
among the various components using a breadboard, while Figure 12
shows the circuit schematic. For simplicity, only one potentiometer
has been inserted since all the others must be connected in a similar
way to the ADC inputs.

Figure 11: Simulation of connections using a breadboard.

The communication between Raspberry and the ADC is based
on the SPI (Serial Peripheral Interface) serial communication proto-
col. SPI is a communication system between a microcontroller and
other integrated circuits or between multiple microcontrollers. It is
a communication standard, created by Motorola, in which the trans-
mission takes place between a control device (called master) and one
or more controlled devices (called slave). The master device controls
the communication bus, emits the clock signal and decides when to
start and end communication.

Figure 12: Circuit schematic.

The SPI communication system is commonly defined as four-
wire, since for the transmission of data four distinct signals are gen-
erally used:

• SCK: Serial Clock (emitted from the master)

• MISO: Serial Data Input, Master Input Slave Output

• MOSI: Serial Data Output, Master Output Slave Input

• CS: Chip Select, Slave Select (issued by the master to choose
which slave device to communicate with).

Chip Select is the only connection that is not always necessary
in all applications since its just needed to manage multiple slave de-
vices. A connection that defines the reference level of the voltage,
often referred to as GND, must be added to these four wires.

3.1.2. Software set up

The reading of the data acquired by the ADC is realized through
a Python script, which uses the SPIDEV library for the manage-
ment of SPI devices. The following code shows a fragment of the
Python script with the commands necessary to open the communi-
cation with the ADC and to perform a reading of the data through
the ReadChannel() function. The spi.xfer2() function is
invoked, inside ReadChannel(), to request the ADC to read the
voltage value of a given channel.

#Open SPI bus
spi=spidev.SpiDev()
spi.open(0,0)
spi.max_speed_hz=1000000
#Function to read SPI data from MCP3008 chip
#Channel must be an integer 0-7
def ReadChannel(channel):
adc=spi.xfer2([1,(8+channel)<<4,0])
data=((adc[1]&3)<<8)+adc[2]
return data

The transfer of the data read by the analog to digital converter,
between the Python script and Pure Data, is achieved sending, on a
specific port, local network messages. For this purpose we use the
pdsend program provided within the standard Pd package, used as

33 sciencesconf.org:lac2020:307904

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

a sub-process within the Python script. The following code shows
the creation of the subprocess p which invokes the pdsend
program used to send data on port 9000 of the local computer. The
send2Pd() function is used to send messages through pdsend.
The last line shows the use of the send2Pd() function that take
as argument a string composed by the concatenation of two numeric
values: the first to define the channel of potentiometer and the second
to provide the ADC reading.

#Create a subprocess to send data to Pd
p=subprocess.Popen(["pdsend","9000"],

stdin=subprocess.PIPE)
#Define the function to send data to Pd
def send2Pd (message=’ ’):

print >> p.stdin, message
#How to use the function to send data to Pd
send2Pd(’0’+str(pot_Volts0)+’;’)

A simple protocol was designed to send messages from Python
to Pure Data keeping the data of the different potentiometers separate
and easily differentiable. A list of two numbers is sent, the first is a
label (from 0 to 7) useful for identifying the potentiometer, the sec-
ond number is the numeric data obtained from the reading made by
the digital converter. To receive data in Pure Data the netreceive
object is used which opens a server listening on the port correspond-
ing to that used by pdsend. The expedient used in the construction
of the message sent by Python simplifies the sorting of data that can
be easily accomplished through the native object of Pd route.

The data acquired by the ADC are filtered to reduce random
fluctuations due to noise through the use of an average filter that
generates an average output value every ten converter readings. The
following code shows the simplified structure for reading and trans-
mitting data of a single potentiometer. Within an infinite cycle, the
Count counter is incremented and the values supplied by the ADC
are read, divided by 1023 (to obtain numbers between 0 and 1) and
accumulated on the readPot0 variable. Every ten readings the
readPot0 variable is divided by ten, obtaining the average value.
If the new value has undergone a variation compared to the previ-
ous one greater than 0.5%, the value of the pot_Volts0 variable
is updated. The value of this variable is then sent to Pd through the
send2Pd function. After that the values of the counter and the ac-
comulation variable are both reset to zero and the program execution
is suspended for a time defined by the delay variable.4

while True:
readPot0+=ReadChannel(pot0_channel)/float

(1023)
Count+=1
if Count==10:
readPot0=0.1*readPot0
if abs(pot_Volts0-readPot0)>0.005:

pot_Volts0=readPot0

send2Pd(’0’+str(pot_Volts0)+’;’)
readPot0=0
Count=0

Wait before repeating loop
time.sleep(delay)

4In this way, using a value equal to 0.01s for the variable delay, the
reading is made every 10ms and a new value is sent to Pure Data every
100ms.

A script was created to start both Pure Data and the Python pro-
gram to manage the ADC. Since we want to use the prototype as a
common electronic instrument through the use of only the control
surface we have chosen to use the Raspberry Pi headless without the
connection of screen, mouse and keyboard. For this purpose, the
script must be started automatically during the startup phase of the
Raspberry Pi. To do this, a special service, launching the start script,
has been created and set up to be started automatically during the
initial phases of execution of the operating system.

3.2. The audio engine

The audio engine of the prototype is based on the use of a modified
version of the first PDSynth sample patch. The patch offers the pos-
sibility to separately control the amplitude and the frequency of three
oscillators generating different waveforms (square wave, pulses train
and sawtooth wave). Furthermore, it provides a delay line with a
feedback path. The delay line can be controlled by two parameters
that can be modified in real time through the potentiometers of the
prototype control surface: the delay time and the feedback coeffi-
cient. The eight potentiometers of the prototype have been asso-
ciated to likewise control parameters of the patch according to the
following scheme:

• A0 - square wave oscillator frequency;

• A1 - amplitude of the square wave oscillator;

• A2 - pulse generator frequency;

• A3 - amplitude of the pulse generator;

• A4 - frequency of the sawtooth oscillator;

• A5 - amplitude of the sawtooth oscillator;

• A6 - delay time;

• A7 - delay feedback.

Figure 13: Pd patch of the audio engine.

Figure 13 shows the audio engine patch and the use of three sig-
nal generation modules. The modules are placed in the top left cor-
ner of the patch. The first argument of each object is a name that is
used as an identifier for addressing OSC messages (Square1, Pulse1,
Saw1). The second argument provided in the creation of the sound
generators (PDS-Outbus in the image) allows to define the name of
the bus on which the audio signals produced by the various genera-
tors will be accumulated. In this case, all the signals are collected by
the catch~ PDS-Outbus object and sent both to the delay patch

34 sciencesconf.org:lac2020:307904

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

and to the sound card output through the dac~ object (in the lower
left part of the patch in Figure 13).

On the right side of the patch, the number boxes allow to change
the amplitude and the frequency of the various oscillators by sending
OSC messages through the send OSCMessages object. The im-
age shows also how to create the OSC message addresses to control
the parameters of the modules.

3.3. Eurorack Module

In autumn 2019 a new version of the prototype was created in the
form of a 18 hp eurorack module. The image in Figure 14 shows the
front view of the module.

Figure 14: The front view of the module.

Figure 15 shows the internal structure of the module. An hand-
crafted PCB board is connected on the GPIO pins of the Raspberry
Pi. The potentiometers are connected to the PCB where the ADC is
also housed. This second prototype made in the form of a Eurorack
module is completely analogous to the first prototype both in terms
of hardware and software.

4. CONCLUSIONS

In this work we have presented SynthBerry Pi an autonomous syn-
thesizer based on Raspberry Pi and Pure Data. The PDSynth toolkit
was used as audio engine of the prototype. This toolkit provides
a series of Pd patches that can be easily used as modules to create
high level architecture to generate and process sounds. To run the
PDSynth synthesis architectures a Raspberry Pi mini computer was
used; a control surface made up of eight slide potentiometers was
build to provide a suitable hardware device to play the instrument
controlling in real time the sound parameters.

SynthBerry Pi was used in several live performances and also in
studio recordings. In future work we intend to add a second ADC to
the prototype to have eight more input channels useful for implement
the control voltage (CV) of the synth parameters. Furthermore, we
intend to create a more intuitive and powerfull control surface by
also adding buttons, LEDs and rotary encoders.

Figure 15: The internal structure of the module.

5. REFERENCES

[1] J. Noble, Programming Interactivity. A Designer’s Guide
to Processing, Arduino and openFrameworks, OReilly, Se-
bastopol, CA, 2009.

[2] R. Wilson, Make: Analog Synthesizers, Maker Media, Se-
bastopol, CA, 2013.

[3] J. Reuter, “Case study: Building an out of the box Raspberry
Pi modular synthesizer,” in Proceedings of Linux Audio Con-
ference (LAC14). Karlsruhe, 2014.

[4] F. Meier, M. Fink, and U. Zölzer, “The JamBerry - a stand-
alone device for networked music performance based on the
Raspberry Pi,” in Proceedings of Linux Audio Conference
(LAC14). Karlsruhe, 2014.

[5] V. Lazzarini, Timoney J., and Byrne S., “Embedded sound syn-
thesis,” in Proceedings of Linux Audio Conference (LAC15).
Mainz, 2015.

[6] H. von Coler and D. Runge, “Teaching sound synthesis in
C/C++ on the Raspberry Pi,” in Proceedings of Linux Audio
Conference (LAC17). Saint-Etienne, 2017.

[7] M. Puckette, “Pure Data,” in Proceedings of International
Computer Music Conference (ICMC97), pp. 224–227. Thessa-
loniki, 1997.

[8] M. Wright, A. Freed, and A. Momeni, “Open Sound Control:
State of the art 2003,” in Proc. of the 2003 Conference on
New Interfaces for Musical Expression (NIME-03), pp. 153–
159. Montreal, 2003.

[9] M. Wright, “Open Sound Control: an enabling technology
for musical networking,” Organised Sound, vol. 10, no. 3, pp.
193–200, 2005.

[10] M. Puckette, The Theory and Technique of Electronic Music,
World Scientific, 2007.

[11] C. Dodge and T. A. Jerse, Computer Music, Schirmer, New
York, 1997.

35 sciencesconf.org:lac2020:307904

Posters

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, Nov 25–27, 2020

OSPW 2.0 – AN OPEN SOURCE LINUX-BASED DSP SERVER
FOR AUDIO APPLICATONS

Clemens Fiechter Thomas Resch
Research & Development Research & Development

Hochschule für Musik Basel FHNW Hochschule für Musik Basel FHNW
clemens.fiechter@students.fhnw.ch thomas.resch@fhnw.ch

ABSTRACT

The Open Signal Processing Workstation (OSPW) 2.0 is a Linux-
based open software platform, designed for rapid prototyping and
the development of digital signal processing (DSP) audio algorithms
and corresponding user interfaces (UIs). Since audio interface and
computer hardware can be chosen almost completely freely, the sys-
tem can be easily integrated into any existing audio network and stu-
dio environment. Besides the necessary hardware components,
OSPW 2.0 consists of the graphical programming environment Pure
Data (Pd) for the signal processing, a script for the start-up procedure
and initial configuration, and a webserver which generates browser-
based UIs for an arbitrary number of remote clients automatically.
All connected UI clients are synchronized among each other. This
enables the simultaneous operation of applications by multiple users.
Custom interfaces can be realized by extending the Javascript UI
framework.

1. INTRODUCTION

The described system OSPW 2.0 is the successor of the OSPW 1.0,
a project with a similar goal that never came into production [1]. The
promising findings of the OSPW 1.0 were analyzed and evaluated
and then adapted and re-implemented exclusively using open source
technologies. In recognition of one of the first successful music DSP
computation platforms, the ISPW [2], this prototype and the prede-
cessor were named OSPW. To facilitate readability, the version num-
ber 2.0 will not be used in the remainder of this paper.
 OSPW consists of a DSP server running Pd [3], that can be re-
motely controlled by any device on the same network that can exe-
cute a web browser. The web interface is automatically generated
based on the underlying Pd patch. In contrast to hardware currently
used in professional studio, broadcast or live sound environments
which focus primarily on standard audio formats like two-channel
stereo, or common surround formats (5.1, 7.1, etc.), algorithms de-
veloped for the OSPW are not bound to standard channel-formats.
Depending on the sound card and the performance of the computer
components used, massive multichannel operations can be realized;
for example, high-order Ambisonics, Wavefield synthesis renderers
or multiuser binaural monitoring applications.
 DSP algorithms for OSPW are implemented with the visual pro-
gramming environment Pd, which is widely used in academic and
experimental musical contexts and environments. It provides an API
in the programming language C and allows "intermediate" program-
mers and artists in the field of media technology to use the system
through its easy-to-use graphical programming interface. Using Pd
as an audio backend has the big advantage that it has been in use and
extensively tested for decades. It supports parallel programming
with multiple threads natively through the pd~ object [4]. The pos-

sibility of distributing different instances of an algorithm to all avail-
able processor cores makes optimal use of current CPUs and max-
imizes the available performance - one of the most important criteria
for an external DSP server.
 This paper starts with a brief discussion of related work in section
2. Section 3 describes the system design including necessary hard-
ware and software components and basic usage of the OSPW. Sec-
tion 4 outlines the implementation details of all components. Section
5 describes three implemented demo applications. As a part of this
project, a repository with the source code including documentation
and tutorials is available online [5]. This allows any interested per-
son to set up his/her own custom version of the OSPW.

2. RELATED WORK

There are several commercial DSP systems available whose con-
cepts are similar to those of the OSPW. SoundGrid by Waves Inc. is
a DSP server that runs on a Linux machine with a general-purpose
CPU [6]. The main difference to OSPW is that it is a closed-source
proprietary product. Only the manufacturer’s plugins and those of a
few authorized companies run on the hardware. The UAD DSP de-
vices by Universal Audio [7] follow a similar approach as Sound-
Grid. They work with special UA format plugins only. The Tesira
platform is a highly configurable DSP server by the company Biamp
[8]. It is also programmable with its own algorithms. However, the
target group of these systems are not studio environments but rather
multi room speech conferences and large-scale sound installation at
exhibitions or hotels. Also noteworthy is the Bela project. It is an
open platform for ultra-low latency audio and sensor processing [9].
It runs libpd [10] on an embedded computer with an additional, cus-
tom developed microcontroller board with sensor inputs. Bela
doesn’t provide user interfaces. Instead it is meant to be controlled
by sensors. Mira in combination with Max/MSP is conceptually sim-
ilar to the OSPW approach: a computer running the DSP combined
with a remote application [11]. In contrast to the project presented in
this paper, both tools are closed source. FreeDSP is a low-budget
open source DSP module [12] which can be configured with the
graphical programming environment SigmaStudio. Due to the lim-
ited number of inputs and outputs of the used DSP board, applica-
tions of this project are rather stand- alone effect processors.

3. SYSTEM DESIGN AND USAGE

This section provides a description of hard- and software compo-
nents used for the OSPW prototype, brief instructions for the setup
of the necessary software components and the basic usage. For de-
tails including a complete installation guide, please refer to the doc-
umentation on the Git repository [5].

37 sciencesconf.org:lac2020:310377

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, Nov 25–27, 2020

 OSPWs system architecture can be described as a server-client
model where all signal processing is executed on the server hardware
and an arbitrary number of clients can be connected for remote con-
trolling and monitoring purposes. An external computer has to be
used for the algorithm design in Pd. Once the design is completed,
the user can transfer the code to the server, where it is analysed for
automatic UI generation and executed. Any device with a browser
running in the same network can be used as remote control for the
loaded Pd patch. For OSPW server and remote client(s) to work to-
gether, they must be connected to the same network. The most ele-
gant solution (which is also used in the prototype) is to configure the
server as a wireless access point.

3.1. Hardware

The audio I/O of the OSPW platform utilizes the Advanced Linux
Sound Architecture (ALSA). The prototype was built with the LX-
Dante PCIe card by Digigram. Its 128 inputs and outputs offer flex-
ible channel routing and enabled testing with many physical inputs
and outputs. Although the card with its closed source Linux driver
does not quite fit into OSPWs philosophy, it made an easy integra-
tion into the testing environment possible (a Dante-enabled mixing
console). For a custom installation of a fully functional OSPW, ba-
sically any ALSA compatible soundcard can be used.
 An x86 processor is not required but the target operating system
must support the software components listed in the following sec-
tion. For details on the prototype specifications regarding other hard-
ware components please refer to the publication about the OSPW 1.0
[1].

3.2. Software

The software consists of two main parts: the audio backend and the
OSPW server. The audio backend of the OSPW platform is based on
a plain Pd Vanilla installation. Pd provides a graphical user interface
and a C API for DSP development and control structures. The OSPW
Server is a Node.js [13] server application which enables the user to
control and interact with the running Pd instance. Several software
components are necessary for a working OSPW installation:

• A Linux installation with ALSA support
• Pd
• Node.js
• The OSPW software package, containing scripts, the

server and the demo applications.

The GUI control elements are generated with the open source frame-
work NexusUI [14]. NexusUI is an open source project and already
implements typical audio widgets such as sliders and dials.

3.3. Usage

After installing and setting up all the necessary components from the
Git repository, the server is configured to start automatically with
Linux’s systemd init-system. After connecting a client to OSPWs
network, the server’s IP address has to be entered in the client’s
browser in order to render the main page. On this page, the user can
either select one of the demos or choose one of his own uploaded Pd
patches. After selecting an application, the server parses the corre-
sponding patch and automatically serves the UI to the connected cli-
ent(s). For each parameter to appear in the UI, a matching Open
Sound Control (OSC) string must be included in the Pd patch. This

is done as shown in figure 1 by placing a comment containing the
string somewhere in the patch (ideally close to the corresponding
parameter). The syntax for the string is /ospw/x/y/widgettype/param-
eterName/initValue:

• The string has to start with ‘/ospw’.
• x and y are grid coordinates for placing the object within a

symmetric grid.
• /widgettype defines the generated interface object. Possi-

ble values are button, toggle, number, dial, hslider, vslider.
• /parameterName can be chosen freely and results in the

rendered widget label.
• /initValue initializes the interface object with the entered

value.

Figure 1: Pd patch with two OSPW parameters.

Alternatively, the automatic rendering can be set to a channel-based
grid by placing a comment "usechannellayout" somewhere in the Pd
patch. In this case, the grid coordinates are replaced by channel num-
ber and y position within this channel. In order to implement a cus-
tom GUI for the OSPW platform, the NexusUI framework has to be
extended with new Javascript objects (widgets). The example GUI
for the binaural headphone monitoring application (see section 5.2)
is based on a pre-existing widget, a two-dimensional panning inter-
face, which has been modified and given additional functionality
specific to the application.

4. IMPLEMENTATION DETAILS

The Node program consists of two parts: the node server, and the
index.html page. They interact with each other via web sockets.

Figure 2: OSPW client/server communication scheme.

38 sciencesconf.org:lac2020:310377

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, Nov 25–27, 2020

Any parameter change in any client is sent via OSC as Universal
Data Package (UDP) to Pd. The port is configurable. The communi-
cation between server and clients works as follows:

• The server starts in the state ‘No patch loaded’. Every cli-
ent that connects to the server will render the main menu,
allowing the user to select an application.

• Once a client selects an application, the server parses the
corresponding Pd patch, searching for strings that start
with /ospw (see figure 1) and stores all obtained data
(widget type, position, name etc.).

• A broadcast message is sent to all connected clients. The
GUI of the selected application will be rendered on all cli-
ents. The state of the server changes to ‘Patch loaded’.

• If a new client connects to the server in this state, it loads
the GUI of the current application.

• Each time a parameter is changed by a client, the new
value is broadcasted to all other connected clients, allow-
ing every client to update its interface. This way all con-
nected clients are kept in sync with each other and can be
operated at the same time.

5. EXAMPLE APPLICATIONS

Three exemplary applications have been implemented and will be
described in the following section. The first two examples also serve
as tutorials for OSPWs automatic interface generation and the crea-
tion of custom user interfaces. The third example is a mono-to10-
channel convolution reverb and was used for evaluating and testing
the parallel execution of several instances with the pd~ object.

5.1. Mixer

The first demo application is a simplified version of a digital mixing
console. 16 audio input channels can be processed with a 3-band
equalizer and the gain of the audio signal can be adjusted with a
fader. The creation of a fully functional mixing desk was not the in-
tention of this demo, it rather serves as an example and tutorial on
how the OSPW server parses a patch and dynamically creates the
corresponding interface, based on the information it finds in the
patch.

Figure 3: OSPW mixer demo.

5.2. Binaural

The second application is a binaural monitoring application for eight
individual headphone mixes and serves as an example and tutorial
for creating custom OSPW GUIs. The interface provides the user
with eight circles (each representing a sound source) for each mix
which can be placed in the virtual space around the listener as shown
in figure 4 below. Each of the eight mixes can be chosen with the
tabs on top of the GUI. The number of sound sources and mixes is
only limited for this demo; in theory an infinite number of both
sources and binaural mixes can be controlled (only limited by hard-
ware resources). On every interaction with the widget, distance and
angle of each source, in respect to the zero-degree axis of the listener,
are calculated and sent to the DSP server. In addition to controlling
the position of the sources, the circle in the middle representing the
listeners’ head can be controlled with an external head tracking de-
vice (for example the open hardware tracker described in [15]), thus
providing the listeners with a dynamic binaural synthesis. The dy-
namic binaural rendering in Pd is realized with the vas_binaural~
object of the VAS library [16].

Figure 4: OSPW binaural monitoring.

5.3. Multichannel Reverb

The ten different channels for the convolution reverb were created
by sampling the same reverb preset with different reverb and pre-
delay times. The dry/wet parameter can be controlled for each chan-
nel individually. The convolution is realized with the vas_reverb~
object of the VAS library which performs a single-threaded non-
equal partitioned convolution. Ten instances of the Pd patch per-
forming the DSP are loaded from the main patch with the pd~ object
in order to distribute the different reverb instances among all of the
CPU cores.

6. CONCLUSION

OSPW is an easy-to-use open source DSP platform which can be
built with off-the-shelf hardware components. The free choice of
sound card (as long as it is ALSA compatible) makes the integration
in any existing audio environment possible.

39 sciencesconf.org:lac2020:310377

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, Nov 25–27, 2020

 By using Pd as audio backend, the signal processing can be im-
plemented both in the C programming language and graphically. The
graphical access also enables "intermediate" programmers and art-
ists in the field of media technology to use the system. Pre-existing
Pd objects and patches of the large Pd developer community can be
used as well. In order to automatically generate GUIs for existing Pd
applications, only very slight patch modifications as described in
section 3 are necessary.
 The synchronization of all connected clients allows multiple us-
ers to use an application simultaneously. The first demo app pre-
sented in section 5 illustrates this in a simple manner. Several users
can control a mixing console at the same time and even from differ-
ent positions. This can be very interesting, especially for artistic ap-
plications such as a multi-player acousmonium. The second demo -
the binaural monitoring application - can be realized at a fraction of
the cost of a commercial solution and could be easily expanded to
more binaural mixes and sources.
 OSPW enables intuitive, network-based access to Pd. Finished
patches are simply pushed into the designated folder and can then be
selected and operated via remote client. Currently only the most im-
portant UI elements (dials, sliders and number boxes) are imple-
mented for automatic interface generation. To ensure intuitive han-
dling for more complex DSP algorithms, future updates should in-
clude more sophisticated UI elements such as multisliders or fre-
quency domain editors (as they are usually used for filters). Also, a
thumbnail view of the Pd patch that is currently running would be a
nice feature in order to give the user an idea of what kind of DSP
algorithm is currently executed on the server.

7. ACKNOWLEDGEMENTS

This work was supported by the OSPW 2.0 project, funded by the
Maja Sacher-Stiftung.

8. REFERENCES

[1] H. Stenschke, T. Resch, P. Glaettli, R. Riedl, C. Fiechter,
“OSPW (Open Signal Processing Workstation) - Development
of a Stand-Alone Open Platform for Signal-Processing in AV-
Networks”, Audio Engineering Society Convention 142, 2017.

[2] E. Lindemann, M. Starkier, and F. Dechelle. “The IRCAM
Musical Workstation: Hardware Overview and Signal
Processing Features”, Proceedings of the 1990 International
Computer Music Conference. San Francisco: International
Computer Music Association, 1990.

[3] M. Puckette, “Pure Data: another integrated computer music
environment”, Proceedings of the Second Intercollege
Computer Music Concerts, 1996.

[4] M. Puckette. “Multiprocessing for Pd”, [Online], URL:
http://www.pdpatchrepo.info/hurleur/multiprocessing.pdf,
[accessed 2019, December 27].

[5] C. Fiechter, T. Resch, “Git Repository of the OSPW 2.0”,
[Online], URL: www.github.com/cfiechter/OSPW, [accessed
2020, August 30].

[6] Waves Inc., “SoundGrid Systems Website”, [Online], URL:
https://www.waves.com/soundgrid-systems, [accessed 2019,
December 27].

[7] Universal Audio, “Universal Audio Website”, [Online], URL:
https://www.uaudio.com/, [accessed 2019, December 27].

[8] Biamp, “Biamp Tesire Website”, [Online], URL:

https://www.biamp.com/products/tesira, [accessed 2019,
December 27].

[9] G. Moro, S. Bin, R. Jack, C. Heinrichs, A. Mcpherson,
“Making High-Performance Embedded Instruments with Bela
and Pure Data” in Proceedings of the International
Conference of Live Interfaces, 2016.

[10] P. Brinkmann, P. Kirn, R. Lawler, C. Mccormick, M. Roth,
“Embedding Pure Data with libpd”, URL: https://www.uni-
weimar.de/kunst-und-gestaltung/wiki/images/Embed-
ding_Pure_Data_with_libpd.pdf, [accessed 2019, December
27].

[11] S. Tarakajian, D. Zicarelli, J.K. Clayton, “Mira: Liveness in
iPad Controllers for Max/MSP”, Proceedings of New
Interfaces for Musical Expression (NIME), 2013.

[12] S. Merchel, L. Kormann, “FreeDSP: A Low-Budget Open-
Source Audio-DSP Module.”, DAFx, 2014.

[13] OpenJS Foundation, “Node.js”, [Online], URL:
https://nodejs.org/, [accessed 2020, January 11].

[14] B. Taylor, J. Allison, W. Conlin, Y. Oh, D. Holmes,
“Simplified Expressive Mobile Development with NexusUI,
NexusUp and NexusDrop”, Proceedings of the International
Conference on New Interfaces for Musical Expression
(NIME), 2014.

[15] T. Resch, M. Hädrich, “The Virtual Acoustic Spaces Unity
Spatializer with custom head tracker”, 5th International
Conference on Spatial Audio ICSA, 2019.

[16] T. Resch, C. Böhm, S. Weinzierl, „VAS – A cross platform C-
library for efficient dynamic binaural synthesis on mobile
devices“, AES, International Conference on Headphone
Technology, 2019.

40 sciencesconf.org:lac2020:310377

Pict2Audio : Sound Generation by
Hand-Drawn Images Analysis using
Convolutional Neural Networks

Joséphine Calandra, Pierre Hanna, Pierrick Legrand,
Myriam Desainte-Catherine
SCRIME, Bordeaux University, France

Scan and get more information !

The SCRIME
This project has been developed during Josephine Calan-
dra’s end-of-study internship as a student at ENSEIRB-
MATMECA, which occured at the SCRIME, the Studio
of creation and research in computer science and exper-
imental musics.

Figure: Extract from the music sheet Mycenae Alpha, Iannis Xenakis.

From electroacoustic music to new means of expression...

Electroacoustic music composition invites people to think about the instrumental composition in other ways. The use of
transformed, synthetics or artificials sounds created by a computer as a tool leads to new reflections about the process of
music creation, creation of new sounds and interaction between the tool and the composer. Since the XXth century, new
tools, languages and edition software has been developed by research centers and companies.

...To the necessity to create a dedicated support

Composers from the XX th and XXI rst century develop their own tools and languages to compose. Nevertheless these tools
may not be universal but application-specific, and they could be barely intuitive nor customizable. Sounds in edition software
are fixed, the software being more a way to edit than to express the sound. A problem has emerged : how to create a
universal tool that could facilitate the musical creation ? We would like to create an intuitive tool that leads to a natural
expression of the composer who could create her/his own language but also manipulate it easily.

Pict2Audio : A tool for composition

I Matches drawing and sounds.
I Creates a customizable graphic language.
I Uses sound databases belonging to the composer.
I Provides a drawing interface via graphic tablet augmented with a stylus.

Technologies used

I Neural Networks developed in Python with the libraries Keras and Tensorflow.
I Use of Google Colab environment, that runs neural networks on Google servers.
I Graphic Interface developed in python using the library tkinter.

The system of Pic2Audio
The system is divided into two parts :
1) The training of the system : The drawer gives sounds to the system. These
sounds are used to train a group of neural networks according to characteristics associated
with the sound. Then, the neural networks associated with pictures are trained in the
following way : the composer draws on the interface pictures such as visual characteristics
correspond to audible characteristics.
2) The use of the system : once the neural networks are trained, the composer
can draw anything that corresponds to the audible characteristic desired. The neural
networks will analyse the picture, and the system will return the associated sound thanks
to a dedicated matching algorithm.

Why do we use neural networks ?
Neural Networks are specifically efficient for classification of pictures and sounds. More-
over, it does not need to know the algorithms nor the architecture of the systems that
generate the signals at the entry of the neural networks. This enables a possible ab-
straction of music theory and sound analysis. Then, the neural network detects the
characteristics of the pictures, wich leads to a personalisation of the system.

Specific framework and improvement
In this context we limited our researches to the specific training of the neural network with a predetermined language where three visual characteristics are associated with three audible
characteristics. The drawings are lines where the colors correspond to a tone, the height of the line corresponds to the height of the note and the thickness of the line corresponds to the
volume of the sound. The sound databases are augmented databases of NSynth, the database proposed by Magenta, the music generation research project of the Google AI team.

Limits
To go towards a usability and universality of the system,
it still has to be tested with various and complex draw-
ings. Moreover, the creation of the databases can be
laborious for the composer, so the databases should be
automatically augmented. Also, there could be a bad
training of the neural networks, so there is a need to
create an assistance for the composer.

Perspectives
The future developments of this system could be the
implementation of the polyphony, the management of
time in the system, and the drawing and emission of
sound in real-time.

And why not...
We could go further by imagining the system in 3 di-
mensions, coupled with an augmented-reality system.
Moreover, even if Pict2Audio is aimed at helping com-
posers, this could also be a tool used for pedagogy, to
help learning music.

41 sciencesconf.org:lac2020:317297

Author Index

Abel Jonathan, 13–18

Calandra Joséphine, 41
Carôt Alexander, 24–27

Desainte-Catherine Myriam, 41

Fiechter Clemens, 37–40

Gräf Albert, 19–23

Hanna Pierre, 41

Kuhr Christoph, 24–27

Legrand Pierrick, 41

Resch Thomas, 37–40
Rizzuti Costantino, 28–35
Rizzuti Fabrizio, 28–35

Skare Travis, 13–18

Taymans Wim, 3–8

Vinjar Anders, 9–12

42

43

	Noto Sans Regular PipeWire: A Low-Level multimedia subsystem Noto Sans LightTaymans Wim
	Noto Sans Regular OMAI: an AI Toolkit for OM# Noto Sans LightVinjar Anders
	Noto Sans Regular Applications of Jupyter Notebooks for Audio Plugin Development Noto Sans LightSkare Travis et al.
	Noto Sans Regular Pd-Faust Mackie Control Noto Sans LightGräf Albert
	Noto Sans Regular Express Data Path Kernel Objects for Real-Time Audio Streaming Optimization Noto Sans LightKuhr Christoph et al.
	Noto Sans Regular Synthberry Pi: an autonomous synthesizer based on Raspberry Pi Noto Sans LightRizzuti Costantino et al.
	Noto Sans Regular OSPW 2.0 - An Open Source Linux-based DSP server for audio applications Noto Sans LightResch Thomas et al.
	Noto Sans Regular Pict2Audio : Sound Generation by Hand-Drawn Images using Convolutional Neural Networks Noto Sans LightCalandra Joséphine et al.
	Author Index

