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Regulation of antioxidant enzymes: a significant role for melatonin

Introduction

Aerobic organisms require ground state oxygen to live.
However, the use of oxygen during normal metabolism

produces reactive oxygen species (ROS), some of which are
highly toxic and deleterious to cells and tissues. The most
abundant ROS formed in the course of cellular metabolism

is the superoxide radical (O��
2 ). This radical is mainly

produced during electron transport in the mitochondria
and in the endoplasmic reticulum, although it is also a
byproduct in several enzymatic reactions (oxidases and

oxygenases); likewise, it is formed during the hepatic
metabolism of some molecules and also as a result of the
decomposition of oxyhemoglobin [1].

Dismutation of the O��
2 gives rise to hydrogen peroxide

(H2O2). This molecule is not a free radical per se but, in the
presence of transition metals via the Fenton reaction, it is

rapidly converted to the hydroxyl radical (•OH). The •OH is
widely accepted as being the most damaging ROS produced
by cells [2]. Free radicals in general and the •OH in

particular react with virtually every molecule in living cells
(i.e. lipids, sugars, amino acids, nucleotides) with very high
rate constants [3]; the resulting damage ultimately may lead
to diseases such as cancer, neurodegeneration and autoim-

mune conditions [4–6].

To protect cells from the damage caused by free radicals
and related reactants, organisms have evolved several
defense mechanisms to rapidly and efficiently remove
ROS from the intracellular environment. When the equi-

librium between free radicals (oxidants) and antioxidant
defense systems is imbalanced in favor of oxidants, the
condition causes what is known as oxidative stress. The

oxidants that are not directly scavenged or otherwise not
metabolized attack cellular components producing useless
molecular debris and sometimes cell death.

Antioxidant defense systems may be generally classified
into indirect enzymatic antioxidant enzymes and into small
molecular weight molecules which directly scavenge free

radicals and related reactants. The antioxidant enzymes
represent a first line of defense against these toxic reactants
by metabolizing them to innocuous byproducts.

The first enzymatic reaction in the reduction pathway of

oxygen occurs during the dismutation of two molecules of
O��

2 when they are converted to hydrogen peroxide (H2O2)
and diatomic oxygen. The enzyme at this step is one of two

isoforms of superoxide dismutase (SOD); CuZnSOD is
present in the cytosol while (MnSOD) is located in the
mitochondrial matrix. These enzymes possess transition

metals (Cu2+ or Mn3+, respectively) at their active sites;
this allows for the rapid exchange of electrons between the
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two superoxides. Although H2O2 is not a radical itself, it is
reactive and it is rapidly converted into the highly reactive
•OH in the presence of ferrous ion (Fe++) via the Fenton
reaction unless it is efficiently removed. Two enzymes

participate in the removal of H2O2 from the cellular
environment, peroxidases and catalase. The most abundant
peroxidase is the glutathione peroxidase (GSH-Px), which

is present in both the cytosol and mitochondria. This
enzyme has the transition metal selenium at its active site
and uses reduced glutathione (GSH) as a substrate to

transfer electrons to H2O2 (and other peroxides) thereby
converting it into two molecules of water. The second H2O2

metabolizing enzyme is catalase (CAT); it is present mainly

in the peroxisomes, presents a molecule of ferric ion at its
active site and converts two molecules of H2O2 into one
molecule each of water and diatomic oxygen [7].

Antioxidant enzymes are regulated by multiple factors.

Oxidative status of the cell is the primary factor regulating
gene expression and activity of these enzymes [8–10]. Both
endogenous [11] and exogenous agents [12, 13] act as

oxidants and alter cellular oxidative equilibrium and

therefore antioxidant enzyme gene expression. There are,
however, several other factors which influence antioxidant
enzymes. In addition to developmental changes, differenti-
ation and aging influences [14–18], inflammation [19, 20]

and hormonal regulation of antioxidative enzymes have
been reported [21–23]. Additionally, several antioxidants
and cell protectors are believed to regulate gene expression

and antioxidant enzyme activity [24–29].
Although, melatonin is known to be an indole secreted

by the pineal gland, other organs may produce melatonin

where it has functions without being released. Besides its
properties as a circadian rhythm transducer [30], several
other actions for this interesting molecule have been in

uncovered in the last two decades [31, 32]. Its direct free
radical scavenging activity [33, 34] and its regulation of
gene transcription [35] for antioxidative enzymes are of
special interest in the present review. The antioxidant

properties of melatonin have been extensively studied and
the use of this molecule as a cell protector and as a potential
disease-preventing agent have been summarized [36–40].

Melatonin has been proven to be an efficient oxidant

Fig. 1. Hypothetical pathways involved in melatonin regulation of antioxidant enzyme gene expression and activity. (1) Melatonin acti-
vation of MT1/2 receptors, vı́a G inhibitory protein (Gi), inhibits adenylate cyclase and reduces cyclic AMP (cAMP). This results in
inhibition of protein kinase A (PKA) and cAMP response element binding protein/activation transcriptor factor (CREB-ATF). This
pathway could modulate immediate early gene (IEG) transcription and consequently gene transcription regulation and antioxidant enzyme
concentration. (2) MT1/2 binding by melatonin activates the phospholipase C pathway. The consequent increase in Ca2+ concentration will
phosphorylate protein-kinase C (PKC) which activates CREB/ATF thereby increasing the transcription of IEG. Indeed, PKC activates
IEG. PKC activation may also activate NF kappa B (NFjB) and other transcription factors (TF). Melatonin may also, in other systems,
induce a Ca2+ decrease leading to inhibition of PKC. (3) MT1/2 activation may, through both inhibitory G (Gi) and other G proteins,
activate several mitogen activated protein kinases, i.e., extracellular regulated kinase (ERK) and Jun N-terminal kinase (JNK), which
regulate IEG activation and thereby gene transcription. (4) Melatonin may inhibit calcium-calmodulin (Ca-CaM) complex by direct binding
A lowered Ca2+ concentration mediated by MT1/2 receptors has been reported in some models. This would inhibit calmodulin-kinase
(CaMK), which in turn may regulate NFjB, the retinoid-related receptor (ROR) and other transcription factor activation, thereby
influencing gene transcription. Ca2+ -CaM inhibition may also regulate PKC. (5) Melatonin is a free radical scavenger. Although this effect
is not receptor-mediated, its possible involvement in the regulation of antioxidant enzymes should not be ruled out. Changes in the cellular
redox state towards a more reduced environment produces protein reduction which may lead to enzyme activation (a). Also this envi-
ronment may induce translational changes which would increase enzyme concentrations (b). Finally, a decrease of free radicals would allow
repression of redox-sensitive transcription factors (i.e. NFjB, AP-1) which would regulate gene transcription (c). Continuous lines indicate
previously reported melatonin actions. Dashed lines indicate general cellular mechanisms previously known but not probed with melatonin.
*These effects of melatonin have not been documented.
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scavenger of a variety of radical and non-radical reactants
[37, 41]. Control of gene expression by melatonin was
initially suggested by Menendez-Pelaez et al. [42, 43].

Thereafter, the regulation of expression of several genes
related to antioxidative enzymes was reported [24, 44–58].
Herein, the literature related to the regulation of enzyme
activity and gene expression of antioxidant enzymes by

melatonin is reviewed.

Regulation of antioxidant enzymes
by melatonin

Regulation under basal oxidative stress
conditions

Reports documenting the influence of melatonin on anti-
oxidant enzyme activity were first published in the mid-

1990s [59, 60]. These papers described the amplification of
GSH-Px activity in the brain of rat and in several tissues
of chicks after exogenously administered melatonin

(500 lg/kg) [36, 59, 60]. Thereafter, several groups showed
that melatonin increases the activity of antioxidant enzymes
in other tissues and models. Thus, Ozturk et al. [61] found

increased SOD activity in rat liver after administration of
10 mg/kg of melatonin for 7 days, while Liu and Ng [62]
reported enhancement of SOD activity in rat kidney, liver
and brain after a single melatonin injection (5 mg/kg).

Antioxidant enzyme activities exhibit endogenous
rhythms under normal light:dark conditions. This is true
both in terms of their activity and gene expression. These

changes with time suggested that these cycles might be
dependent on the circadian melatonin rhythm [63–65].
Abolition of endogenous melatonin cycle by exposure of

animals to constant light, in fact, also abolished the night-
time rise in antioxidative enzyme activity. This illustrates
that changes in physiological levels of melatonin are
adequate to alter the antioxidative defense system as

reflected in the level of activities of antioxidative enzymes.
Continuous exposure to light is known to abolish the
nocturnal melatonin rise; this was associated with a

reduction in the night-time increase in GSH-Px and SOD
activities in several tissues of chicks [64, 66]. These results
were subsequently confirmed by others in rodents [67, 68].

Similarly, Baydas et al. [69] reported that melatonin
deficiency caused by pinealectomy reduced GSH-Px activity
levels in several tissues of rats.

Melatonin administration during pregnancy has also
been shown to stimulate antioxidant enzyme activity in the
fetuses. Okatani et al. [70, 71] have reported this finding in
both rats [70] and humans [71]. They initially showed that

relatively high doses of melatonin (10 mg/kg), administered
to pregnant rats, caused incremental changes in the
concentration of the indole in both maternal serum and

fetal brain as early as 1 hr after its administration.
Concomitantly, GSH-Px and SOD activities were likewise
increased in fetal brain. This indicates that melatonin may

be potentially beneficial in the treatment of stressful
conditions that involve free radical production such as
fetal hypoxia and preeclampsia. Subsequently, they admin-
istered much lower doses of melatonin (100 lg/kg bw)

to pregnant women before they underwent voluntary

interruption of pregnancy and they found an increase in
GSH-Px activity in chorionic homogenates with a peak 3 hr
after indole administration. This again supports the idea

that melatonin may have potential usefulness as a fetal
protector under conditions of elevated oxidative stress.

Melatonin has also been shown to influence antioxidant
enzyme gene expression. As first reported by Antolin et al.

[24], melatonin causes incremental changes in mRNA levels
for both CuZnSOD and MnSOD in the Harderian gland of
female Syrian hamsters after its exogenous administration

(500 lg/kg). Increases in antioxidant enzyme gene expres-
sion following melatonin injections (50 and 500 lg/kg) were
later confirmed by the same group [52] in rat brain cortex.

Finally, Mayo et al. [72] showed that mRNA levels for
antioxidant enzymes were elevated in non-differentiated
PC12 cells and the human neuroblastoma cells SK-N-SH
after melatonin was added to the medium in which the cells

were grown. These workers reported that the increases in
CuZnSOD and gene HnSOD expression were maximal at
24 and 6 hr, respectively, following melatonin administra-

tion. This effect was induced with a melatonin concentra-
tion of 10)9

m, the physiological levels of this indole in
night-time serum; conversely, no effect was observed when

higher doses of the indole were used. Regulation of
antioxidant enzyme gene expression by melatonin is
dependent on new protein synthesis, as use of an inhibitor

of protein synthesis, i.e., cycloheximide, prevents mRNA
increases after melatonin administration. The indole also
reduced the half life of CuZnSOD and GSH-Px while it did
not affect that of MnSOD indicating that a larger amount

of less stable mRNA may be generated for GSH-Px and
CuZnSOD. Finally, the presence of melatonin in the culture
medium for 1 hr only is sufficient to increase mRNA for

antioxidant enzymes 24 hr later, indicating a possible role
for melatonin receptors in the regulation of antioxidant
enzymes by this indole.

Regulation under elevated oxidative stress
conditions

When cells are exposed to oxidative stress they increase the
activity and expression of antioxidant enzymes as a
compensatory mechanism to better protect them from the

damage induced by free radicals. In many cases the number
of free radicals generated may be so great that even the
increased activity of the antioxidative enzymes are insuffi-

cient to counteract the potential damage. When antioxidant
enzyme activities and/or gene expression were examined
under highly elevated oxidative stress conditions, it was

found that they are sometimes diminished; thus, it has been
proposed that moderate levels of toxic reactants induce
rises in antioxidant enzymes while very high levels of
reactants reduce enzyme activities as a result of damage of

the molecular machinery that is required to induce these
enzymes [18, 73]. Melatonin has a lengthy history of
beneficial actions. For example, almost two decades ago it

was reported as a protector against glucocorticoid damage
[74, 75], against some degenerative neurological conditions
[76], as an anticancer agent [31, 77–79], and also as an

enhancer of immune function [32, 79]. Subsequently, the
multiple antioxidant properties of melatonin were described
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[33, 34, 80, 81] and research on its protective effects against
oxidative processes have now been identified under a very
wide range of conditions in both experimental animals [82–

84] and humans [85, 86]. Some of the earliest studies
documented the antioxidant properties of melatonin in the
central nervous system [87], in the prevention of cataract
formation [88], and in the reduction in the severity of colitis

[89]. At roughly the same time, Pablos et al. [60] described
the regulation of antioxidant enzyme activities by melato-
nin; this was quickly followed by studies confirming the

original findings and extending the observations of the
influence of melatonin on gene expression for antioxidative
enzymes.

Antioxidant enzyme regulation by melatonin has been
shown to occur concomitant with its protection against
elevated oxidative stress in numerous experimental situa-
tions. In the first report to document this correlation it

was shown that melatonin increased GSH-Px activity and
simultaneously reduced free radical damage to the brain
and liver of rats treated with lipopolysaccharide (LPS)

[90]. In this study, LPS increased total glutathione (tGSH)
levels as well as oxidized glutathione (GSSG) concentra-
tions while reducing the activity of GSH-Px. Melatonin

(4 mg/kg) given to LPS-treated rats enhanced tGSH above
basal levels and lowered GSSG concentrations while
stimulating the activity of GSH-Px. This indicated that

melatonin may act on several points in the antioxidant
defense system, not exclusively on GSH-Px. Subsequently,
Antolin et al. [24] reported rises in both CuZn and
MnSOD gene expression in the Harderian gland after

melatonin (500 lg/kg) was administered to female ham-
sters. The female hamster Harderian gland is in continual
jeopardy of experiencing oxidative stress which causes cell

damage because of the extremely high content of porphy-
rins in this organ. The administration of melatonin
lowered porphyrin synthesis and cell damage in this

extraorbital tissue and increased gene expression for both
isoforms of SOD. In a number of subsequent studies, the
activities of both GSH-Px and the SOD were repeatedly

shown to be regulated by melatonin with these changes
being concurrent with the ability of the indole to reduce
oxidative damage.

Multiple reports on neural protection by melatonin via

its antioxidant properties have appeared subsequent to the
initial reports of this action [81, 90, 91]. In several
experiments, antioxidant enzyme activity as well as expres-

sion was studied. Mayo et al. [25] found that in an
experimental model of Parkinson disease in which dop-
aminergic PC12 cells were treated with the neurotoxin

6-hydroxydopamine (6-OHDA), low doses of melatonin
(10)7

m) provided protection against apoptotic death
induced by the neurotoxin. In this study, melatonin also
prevented the reduction in gene expression for three

antioxidant enzymes, GSH-Px, CuZnSOD and MnSOD,
which followed 6-OHDA treatments. In vivo experiments
have provided results consistent with the in vitro findings.

When rodents (rats and mice) were treated with either beta-
amyloid peptide 25–35 [92] or with d-galactose [93] both of
which cause oxidative damage to the brain, melatonin at

doses ranging from 0.1 to 10 mg/kg restored both SOD and
GSH-Px activities. Naidu et al. [94] reported reversal of

haloperidol-induced decreases in brain SOD and catalase
activities by 1–5 mg/kg melatonin. Melatonin (10 mg/kg or
2 lg/mL in drinking water, respectively) also has been

shown to be protective against oxidative stress in both fetal
[95] and aging brain of rodents [96], with these beneficial
effects being associated with increased GSH-Px activity.

In addition to the brain, antioxidant enzyme activity

regulation by melatonin has been shown to be involved in
the protection against oxidative damage in other tissues.
Restoration or even augmentation of antioxidant enzyme

activity by melatonin has been shown to be associated with
prevention of free radical damage induced by several toxins
[97–99]. For example, intestinal and gastric damage follow-

ing ischemia-reperfusion or drug administration [100–103],
multiple organ damage resulting from therapeutic and non-
therapeutic chemotherapeutic agents [104–110], ultraviolet
damage to tissues [111], free radical damage in experimental

diabetes [112, 113], as well as chemio- and radiotherapy
lesions [114, 115] are reduced by melatonin. Finally, it has
been recently shown that melatonin may retard aging of the

senescence-accelerated mouse with this being associated
with augmented antioxidant enzyme activity [96].

Intracellular pathways involved
in antioxidant enzyme regulation
by melatonin

Mayo et al. [72] provided an insight into the mechanisms by
which melatonin regulates antioxidant enzyme gene expres-
sion using cultured dopaminergic cells. They found that

melatonin induced synthesis of new protein as a condition
for regulation of gene expression of all the three antioxi-
dative enzymes, CuZnSOD, MnSOD and GSH-Px. Mela-

tonin also diminished the half-life of mRNAs coding for
both CuZnSOD and GSH-Px, without altering that of
MnSOD in this study. This indicates that, in the case of the

two former enzymes, melatonin in the medium probably
induced more abundant levels of mRNAs with shorter half-
lives. Finally, nanomolar concentrations of melatonin were
adequate to induce antioxidant gene expression with a 1-hr

exposure to melatonin being adequate to sustain elevated
mRNA levels 24 hr later. As noted above, this points to the
likelihood of receptors being involved in antioxidant

enzyme gene expression.
The mechanisms involved in the regulation of antioxid-

ant enzymes by melatonin in vivo have not been precisely

determined. It is known, however, that stimulation of
antioxidant enzyme gene expression occurs at nanomolar
concentrations of melatonin in cultured cells [72]; these

melatonin levels are equivalent to the serum concentration
of melatonin at its nocturnal peak in vivo. The quantities of
melatonin used in most of the in vivo experiments, however,
very likely caused circulating levels to exceed physiological

concentrations. Thus, melatonin in these studies may have
functioned as a direct radical scavenger thereby changing
the redox state of cells, which in turn may have altered the

specific activity of these enzymes or their level of translation
[116]. Only twice, as far as could be determined, has gene
expression for antioxidative enzymes under the influence of

melatonin been analyzed in in vivo experiments [24, 52]
and, surprisingly, changes in enzyme activities after
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melatonin treatment has not been examined in cell culture
experiments.

Kotler et al. [52] found that after chronic administration

of melatonin (50 and 500 lg/kg) to rats, the lower dose
clearly had a greater stimulatory effect on antioxidant
enzyme gene expression than did the 500 lg/kg dose.
Antolin et al. [117] reported melatonin protection against

in vivo neurotoxicity of MPTP using 500 lg/kg melatonin
(the presumed equivalent melatonin used to induce nano-
molar concentrations in serum may be roughly 25–

50 lg/kg). The work of Barlow-Walden et al. [59] using
500 lg/kg and Kotler et al. [52] using 50 and 500 lg/kg,
indicate that antioxidant enzyme activity and expression,

respectively, are elevated after the administration of mela-
tonin peripherally.

What intracellular molecular pathways are involved in
the regulation of antioxidant enzyme gene expression and/

or activity by melatonin is presently unknown (Fig. 1). A
membrane G-protein-coupled melatonin receptor MT1 was
cloned and characterized by Ebisawa et al. [118]. Subse-

quently, MT2 and Mel 1c receptors have also been
identified, the former mainly differing from MT1 in terms
of the tissues in which it is expressed, while Mel 1c is not

found in mammals [119]. Melatonin also has been tenta-
tively shown to activate a nuclear orphan receptor belong-
ing to the retinoid Z receptor b and a (RZR b and a) family.

Melatonin acts on RORa receptor repressing the expression
of the 5-lipoxygenase gene [35] and inhibiting growth of the
breast cancer MCF-7 cells [120]. The results from Mayo
et al. [72] suggest that melatonin regulation of antioxidant

enzymes is receptor-mediated, thereby most likely implica-
ting the MT1/MT2 receptors via second messengers such as
cAMP, phospholipase C or intracellular calcium concen-

tration. In addition, binding of melatonin to membrane
receptors could stimulate MAP kinase cascades thereby
activating several transcription factors [121]. The possibility

exists that RZR/ROR receptors could also mediate mela-
tonin effects on antioxidative enzymes as suggested by the
results of Pablos et al. [122]; if so, the pathways involved in

their regulation obviously remain unknown. One possibility
may relate to MT1/MT2 melatonin binding that, through
second messengers and phosphorylation cascades, activates
RZR/ROR as reported by Ram et al. [120]. Another

possibility by which melatonin may regulate RZR/ROR
receptors would be via modulation of the calcium/calmod-
ulin signaling pathway, either by changing intracellular

calcium concentrations by binding to MT1/MT2 receptors
[123], or by direct binding to calmodulin [124]. The calcium/
calmodulin signaling pathway has been reported to regulate

transcriptional activity of RZR/ROR receptors via CaM
kinases [125].

Antioxidant enzymes are known to be regulated by
several factors which induce oxidative stress [12, 13, 19,

126]; these factors presumably activate oxidative stress-
sensitive transcription factors. Also, transcriptional acti-
vation of antioxidant enzyme genes has been reported after

the treatment of cells with protective agents [29] where
non-oxidative stress-dependent transcription factors are
involved. Melatonin has been shown to regulate the

activation or repression of several transcription factors
[55, 127–130], all of them present in the promoter region of

the three-antioxidant enzymes reviewed herein. Thus,
subsequent experiments should be undertaken in order to
shed light on the intracellular pathways and transcription

factors involved in the regulation of antioxidant enzyme
gene expression and activity by melatonin.
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