Chapter Eight: Problem Set

1. Give the reduced form of the following set of equations.

$$
\begin{gathered}
A=\beta_{1}+\beta_{2}+\beta_{3} \\
\beta_{1}=(A, \lambda)
\end{gathered}
$$

Can an explicit reduced-form solution be obtained? Why?
2. Give the approximate and exact change in y when x goes from 2 to 3 . What does this tell us about derivatives and differentials?

3. Find the total differential of the following functions.
(a)

$$
g\left(x_{1}, x_{2}\right)=a x_{1}-b x_{1} x_{2}
$$

(b)

$$
g\left(x_{1}, x_{2}\right)=x_{1}^{2} x_{2}^{2}+a x_{3}
$$

(c)

$$
g\left(x_{1}, x_{2}\right)=x_{1}^{a}+x_{2}^{b}+x_{1} x_{2}
$$

4. Find the total derivatives $\frac{d y}{d q}$ of the following functions.
(a)

$$
y=f(x, q)=3 x+x q-2 q
$$

where

$$
x=g(q)=q^{2}
$$

(b)

$$
y=f(x, q)=(x q)(2 x-3 q)
$$

where

$$
x=g(q)=5-2 q
$$

5. Find $\frac{\delta y}{\delta a}$ for the following equations and state whether they are explicit or implicit.
(a)

$$
y^{3} b c^{2}+2 y b+3 c^{3}=0
$$

(b)

$$
y=4 a+b c+a c^{2}
$$

6. Given the following model, determine the equilibrium values of the endogenous variables and show them as implicit functions of the other coefficients $\left(\pi^{*}, y^{*}, i^{*}\right)$.

$$
\begin{gathered}
\pi-e-\lambda(y-o)-\epsilon_{1}=0 \\
y-z+a(\pi-r-i)-\epsilon_{2}=0 \\
i-k+\theta y=0
\end{gathered}
$$

