Explaining why $x^{p^{n}}-x$ is the product of all irreducibles of degree dividing n in $\mathbb{F}_{p}[x]$?
 by Some Undergrad

The main point of this short essay is to outline exactly why $x^{p^{n}}-x$ is the product of all the irreducible polynomials in $\mathbb{F}_{p}[x]$ of degree dividing n, because whenever I attempt to find a proof of this statement online I only find either incomplete answers or appeals to a Wikipedia page which is missing the relevant reference for this result. Once we have proven the statement we can then easily obtain a function that gives us the exact number of irreducible polynomials of any degree in $\mathbb{F}_{p}[x]$ for any prime p.
In order to establish that $x^{p^{n}}-x$ is the product of all the irreducible polynomials in $\mathbb{F}_{p}[x]$ of degree dividing n, I first need to prove a couple of Lemmas.

Lemma 1. d divides n if and only if $x^{d}-1$ divides $x^{n}-1$.
Proof. (\Rightarrow)
Let $n=d q$, then clearly

$$
\begin{aligned}
\left(x^{d}-1\right)\left(\sum_{i=0}^{q-1} x^{d i}\right) & =\sum_{i=1}^{q} x^{d i}-\sum_{i=0}^{q-1} x^{d i} \\
& =x^{d q}-1 \\
& =x^{n}-1 .
\end{aligned}
$$

Which shows that $x^{d}-1$ divides $x^{n}-1$
(\Leftarrow)
Let $n=d q+r$, where $0 \leq r<d$ then we can write

$$
x^{n}-1=x^{d q+r}-1=x^{d q+r}-x^{r}+x^{r}-1=x^{r}\left(x^{d q}-1\right)+\left(x^{r}-1\right)
$$

Since we know $x^{d}-1$ divides $x^{n}-1$ and $x^{d q}-1$ this means that it must divide $x^{r}-1$, but since $0 \leq r<d$ this means that $x^{r}-1=0$ which implies $r=0$, hence it follows that d divides n

Lemma 2. $\mathbb{F}_{p^{d}} \subseteq \mathbb{F}_{p^{n}}$ if and only if d divides n,
Proof. (\Rightarrow)
Since the prime subfield of both $\mathbb{F}_{p^{d}}$ and $\mathbb{F}_{p^{n}}$ is isomorphic to \mathbb{F}_{p} we have the following field inclusion

$$
\mathbb{F}_{p} \subseteq \mathbb{F}_{p^{d}} \subseteq \mathbb{F}_{p^{n}}
$$

since field extensions are multiplicative it follows that

$$
\left[\mathbb{F}_{p^{n}}: \mathbb{F}_{p}\right]=\left[\mathbb{F}_{p^{n}}: \mathbb{F}_{p^{d}}\right]\left[\mathbb{F}_{p^{d}}: \mathbb{F}_{p}\right]
$$

Since $\left[\mathbb{F}_{p^{n}}: \mathbb{F}_{p}\right]=n$ and $\left[\mathbb{F}_{p^{d}}: \mathbb{F}_{p}\right]=d$ this shows that d divides n.

(\Leftarrow)

Since d divides n then by Lemma 1 we have that

$$
\begin{array}{rlr}
x^{d}-1 \mid x^{n}-1 & \Rightarrow p^{d}-1 \mid p^{n}-1 & \text { (Substitute } p \text { for } x \text {) } \\
& \Rightarrow x^{p^{d}-1}-1 \mid x^{p^{n}-1}-1 & \text { (Apply Lemma } 1 \text { again) } \\
& \Rightarrow x^{p^{d}}-x \mid x^{p^{n}}-x & \text { (Multiply by } x \text { on both sides) }
\end{array}
$$

This then implies that the splitting field of $x^{p^{d}}-x$ is a subfield of the splitting field of $x^{p^{n}}-x$, in other words $\mathbb{F}_{p^{d}} \subseteq \mathbb{F}_{p^{n}}$.

Lemma 3. Let $f(x)$ be an irreducible monic polynomial of degree d, then $f(x)$ divides $x^{p^{n}}-x$ if and only if d divides n.

Proof. Let α be a root of $f(x)$ in some field extension, it then follows that $\left[\mathbb{F}_{p}(\alpha): \mathbb{F}_{p}\right]=d$, by uniqueness of finite fields it follows that $\mathbb{F}_{p}(\alpha) \cong \mathbb{F}_{p^{d}}$.
(\Rightarrow)
If $f(x)$ divides $x^{p^{n}}-x$ this means that the splitting field of $f(x)$ (denote it by \mathbb{F}) is a subfield of the splitting field of $x^{p^{n}}-x$ which is $\mathbb{F}_{p^{n}}$. This gives us the field inclusion $\mathbb{F}_{p^{d}} \subseteq \mathbb{F} \subseteq \mathbb{F}_{p^{n}}$, in particular this means $\mathbb{F}_{p^{d}} \subseteq \mathbb{F}_{p^{n}}$, which by Lemma 2 implies that d divides n
(\Leftarrow)
If d divides n then by Lemma 2 we have that

$$
\alpha \in \mathbb{F}_{p}(\alpha) \cong \mathbb{F}_{p^{d}} \subseteq \mathbb{F}_{p^{n}}
$$

Since α can be any root of $f(x)$, this shows that every root of $f(x)$ has an isomorphic image in $\mathbb{F}_{p_{n}}$ and since any isomorphism between fields fixes the prime subfield (In this case \mathbb{F}_{p}) it follows that $\alpha \in \mathbb{F}_{p^{n}}$, and hence is a root of $x^{p^{n}}-x$ (because its splitting field is $\mathbb{F}_{p^{n}}$), which implies that every linear factor of $f(x)$ is also a linear factor of $x^{p^{n}}-x$, this shows that $f(x)$ divides $x^{p^{n}}-x$.

Theorem 1. Let $\mathcal{F}_{p, n}:=\left\{f(x) \in \mathbb{F}_{p}[x]: f(x)\right.$ is an irreducible monic polynomial of degree $\left.n\right\}$, then we have that

$$
x^{p^{n}}-x=\prod_{d \mid n}\left(\prod_{f(x) \in \mathcal{F}_{p, d}} f(x)\right)
$$

Proof. By Lemma 3 we know that the only irreducible factors of $x^{p^{n}}-x$ are precisely the polynomials in $\mathcal{F}_{p, d}$ where d divides n, hence $\prod_{d \mid n}\left(\prod_{f(x) \in \mathcal{F}_{p, d}} f(x)\right)$ is the unique factorization of $x^{p^{n}}-x$ into irreducibles.

It is now easy to see that we might be able to establish the cardinality of the set $\mathcal{F}_{p, n}$ that is defined in Theorem 1, and in the end we can use the equation in Theorem 1 to derive $\left|\mathcal{F}_{p, n}\right|$ explicitly. The following corollary is the result of that calculation.

Corollary 1.1. Let p be a prime and $n>1$, and let $\phi_{p}(n)$ denote the number of irreducible monic polynomials of degree n in $\mathbb{F}_{p}[x]$. Then the value of $\phi_{p}(n)$ is given by

$$
\phi_{p}(n)=\frac{1}{n} \sum_{d \mid n} \mu(d) p^{\frac{n}{d}}
$$

where $\mu(d)$ is the Möbius function.
Proof. By comparing powers of the equation given in Theorem 1 we get the equation

$$
p^{n}=\sum_{d \mid n} d\left|\mathcal{F}_{p, d}\right|
$$

Since $\phi_{p}(d)=\left|\mathcal{F}_{p, d}\right|$ we have a relation between arithmetic functions given by

$$
p^{n}=\sum_{d \mid n} d \phi_{p}(d) .
$$

This allows us to use the Möbius inversion formula to get

$$
n \phi_{p}(n)=\sum_{d \mid n} \mu(d) p^{\frac{n}{d}}
$$

which after division by n yields the result to be proved

$$
\phi_{p}(n)=\frac{1}{n} \sum_{d \mid n} \mu(d) p^{\frac{n}{d}} .
$$

