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The main point of this short essay is to outline exactly why xp
n − x is the product of all the

irreducible polynomials in Fp[x] of degree dividing n, because whenever I attempt to find a proof of
this statement online I only find either incomplete answers or appeals to a Wikipedia page which
is missing the relevant reference for this result. Once we have proven the statement we can then
easily obtain a function that gives us the exact number of irreducible polynomials of any degree in
Fp[x] for any prime p.

In order to establish that xp
n−x is the product of all the irreducible polynomials in Fp[x] of degree

dividing n, I first need to prove a couple of Lemmas.

Lemma 1. d divides n if and only if xd − 1 divides xn − 1.

Proof. (⇒)

Let n = dq, then clearly

(
xd − 1

)(q−1∑
i=0

xdi

)
=

q∑
i=1

xdi −
q−1∑
i=0

xdi

= xdq − 1

= xn − 1.

Which shows that xd − 1 divides xn − 1

(⇐)

Let n = dq + r, where 0 ≤ r < d then we can write

xn − 1 = xdq+r − 1 = xdq+r − xr + xr − 1 = xr
(
xdq − 1

)
+ (xr − 1)

Since we know xd − 1 divides xn − 1 and xdq − 1 this means that it must divide xr − 1, but since
0 ≤ r < d this means that xr − 1 = 0 which implies r = 0, hence it follows that d divides n

Lemma 2. Fpd ⊆ Fpn if and only if d divides n,

Proof. (⇒)

Since the prime subfield of both Fpd and Fpn is isomorphic to Fp we have the following field inclusion

Fp ⊆ Fpd ⊆ Fpn .

since field extensions are multiplicative it follows that

[Fpn : Fp] = [Fpn : Fpd ][Fpd : Fp]

Since [Fpn : Fp] = n and [Fpd : Fp] = d this shows that d divides n.



(⇐)

Since d divides n then by Lemma 1 we have that

xd − 1|xn − 1⇒ pd − 1|pn − 1 (Substitute p for x)

⇒ xp
d−1 − 1|xpn−1 − 1 (Apply Lemma 1 again)

⇒ xp
d − x|xpn − x (Multiply by x on both sides)

This then implies that the splitting field of xp
d − x is a subfield of the splitting field of xp

n − x, in
other words Fpd ⊆ Fpn .

Lemma 3. Let f(x) be an irreducible monic polynomial of degree d, then f(x) divides xp
n − x if

and only if d divides n.

Proof. Let α be a root of f(x) in some field extension, it then follows that [Fp(α) : Fp] = d, by
uniqueness of finite fields it follows that Fp(α) ∼= Fpd .

(⇒)

If f(x) divides xp
n−x this means that the splitting field of f(x) (denote it by F) is a subfield of the

splitting field of xp
n − x which is Fpn . This gives us the field inclusion Fpd ⊆ F ⊆ Fpn , in particular

this means Fpd ⊆ Fpn , which by Lemma 2 implies that d divides n

(⇐)

If d divides n then by Lemma 2 we have that

α ∈ Fp(α) ∼= Fpd ⊆ Fpn

Since α can be any root of f(x), this shows that every root of f(x) has an isomorphic image in Fpn

and since any isomorphism between fields fixes the prime subfield (In this case Fp) it follows that
α ∈ Fpn , and hence is a root of xp

n − x (because its splitting field is Fpn), which implies that every
linear factor of f(x) is also a linear factor of xp

n − x, this shows that f(x) divides xp
n − x.

Theorem 1. Let Fp,n := {f(x) ∈ Fp[x] : f(x) is an irreducible monic polynomial of degree n},
then we have that

xp
n − x =

∏
d|n

 ∏
f(x)∈Fp,d

f(x)


Proof. By Lemma 3 we know that the only irreducible factors of xp

n−x are precisely the polynomials

in Fp,d where d divides n, hence
∏

d|n

(∏
f(x)∈Fp,d

f(x)
)

is the unique factorization of xp
n − x into

irreducibles.



It is now easy to see that we might be able to establish the cardinality of the set Fp,n that is defined
in Theorem 1, and in the end we can use the equation in Theorem 1 to derive |Fp,n| explicitly. The
following corollary is the result of that calculation.

Corollary 1.1. Let p be a prime and n > 1, and let φp(n) denote the number of irreducible monic
polynomials of degree n in Fp[x]. Then the value of φp(n) is given by

φp(n) =
1

n

∑
d|n

µ(d)p
n
d ,

where µ(d) is the Möbius function.

Proof. By comparing powers of the equation given in Theorem 1 we get the equation

pn =
∑
d|n

d|Fp,d|

Since φp(d) = |Fp,d| we have a relation between arithmetic functions given by

pn =
∑
d|n

dφp(d).

This allows us to use the Möbius inversion formula to get

nφp(n) =
∑
d|n

µ(d)p
n
d ,

which after division by n yields the result to be proved

φp(n) =
1

n

∑
d|n

µ(d)p
n
d .


