
BACKYARD ASTRONOMY

A Physics profile project on the topic of Astrophysics
presented with the use of LATEX

Northgo college, Noordwijk,
The Netherlands

February 2017

Valentijn Götz
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Abstract

Having built a telescope and walked through every part of its construction we understood the basic
functionality of a telescope but felt like we wanted a better and more in depth understanding of
its workings and capabilities. This profile project presents two investigations: The first being an
investigation to the mass of Jupiter. The results indicate that the mass is around 1,7969·1027 This
result around an 5% difference to the accepted Value for the mass of Jupiter. The second being:
Measuring the depth of a moon crater. The depth we hypothesized was 3.4km, with a margin
of error of 2km. The depth we calculated is 5.1km, this is within the measurement uncertainty.
The final subject we included is to display an in depth understanding in the topic by simulating a
telescope in Python. Displaying the path light rays will follow before they reach a viewer’s eye.
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Introduction

The universe, a cold and infinitively large space. Mankind has been amazed time and time again
by the most amazing sight it has to offer. From planets, distant stars and galaxies like our
own milky way all hidden somewhere and waiting to be found. So when given the opportunity
to construct a telescope for our profile project, resisting wasn’t an option and we grabbed this
opportunity with both hands.

Although constructing a telescope and looking at some pretty dots in the sky would have been
enough for some people we wanted more out if it. When looking up into the night-sky, what is
the most prominent object visible? The moon and what a beauty it is, when viewed through our
very own telescope various features of its marked surface can be distinguished. When gazing upon
the lunar surface the opportunity of conducting some measurements had to be taken. Farther in
our solar system there is a gas giant. Although visible with the naked eye as a bright speck on the
night-sky, Jupiter is the most massive planet of them all. This makes one wonder: How massive
exactly would this giant be? So we took it upon ourselves to accurately calculate the mass of
Jupiter.

While collecting all the data, sitting and waiting one has time to wonder: How does this
mechanism work? What happened to a light beam between entering our telescope and reaching
our eyes. Finding the answer to this question we programmed a Python based simulation.
Replicating what happens to this light beam while showing the path it followed.

To summarize: the goal of this profile project is to find out the depth of a lunar crater, Jupiter’s
mass, understand the workings of a telescope and simulate them in Python.
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Chapter 1

Scientific cosmology through the ages

1.1 The history of scientific
cosmology

1.1.1 Object location in the sky

The human awareness of the universe began
when people realised that they could observe ob-
jects in the sky, and saw that the position of
these objects changed over days, months, and
years. To an observer who is looking at the
sky with the naked eye, the sky appears to be
a spherical bowl, ”a celestial sphere” that ex-
tends from all points along the horizon to the
zenith, the point directly overhead. Since the
objects seen in the sky are so far away and with-
out the aid of any specialised equipment other
than the human eye, ability to see depth is lost.
This lack of depth perception causes everything
to appear at equal distances on the night-sky.
To determine the location two coordinates are
needed on the ”celestial sphere”. (figure: 1.1)
These coordinates determine the object’s hori-
zontal and vertical position. The vertical coor-
dinate is determined by measuring an altitude
angle upwards from the nearest point on the
horizon, and the horizontal coordinate is found
by measuring an azimuth angle from the rotat-
ing eastwards along the horizon to that nearest

point. [1]

Figure 1.1: Naked-Eye Astronomy [1]

1.1.2 Early tools

Figure 1.2:
Ptolemy using
a quadrant.

Early astronomers used
many kinds of instruments
to study the heavens. All
were basically tools for mea-
suring or calculating the
positions of objects in the
sky. With the help of these
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instruments, astronomers mapped the stars and
made timetables to accurately predict the future
positions of the planets, sun and moon. This
knowledge was then used for calendar making
or for navigational purposes on the sea.

The Quadrant [2] is an example of one of the
many instruments used to measure angles.(1.3)It
can be used to measure angles up to 900 de-
grees. As a general rule the larger the instru-
ment, the more precisely it could measure an-
gles. One of the largest is a mural (”wall”)
quadrant a large 90-degree arc attached to a
north-south wall, with a sighting tool to measure

Figure 1.3: Geo-
metric quadrant.

the altitudes of stars and
planets. The most famous
mural quadrant was ”The
great mural quadrant” of
Thycho Brahe, built in Den-
mark as part of a grand ob-
servatory supported by the
king. [3]

1.2 The telescope

Back in the early 17th century, a new instrument
for studying the heavens was introduced. The
so-called telescope revolutionised cosmology, it
became the astronomer’s most essential tool to
observe the night sky. Objects previously invis-
ible suddenly became visible. Suddenly the uni-
verse was no longer limited to what the human
eye could see.

1.2.1 The invention

Manufacturing lenses and the properties of them
were known since the time of ancient Greece.
However, they were only introduced in Europe
in the 13th century. With the first being avail-
able in cities like Venice and Florence. It is not

clear why it took so long for the first person to
request a patent for a telescope, this was done by
a Dutch eyeglass maker named Hans Lippershey
in the year 1608. [4]

Figure 1.4: The earliest illustration known of a tele-
scope

1.2.2 Galileo’s optic tube

The news of this revolutionary invention

Figure 1.5: A 1754
painting by H.J. Detouche
shows Galileo Galilei
displaying his telescope to
Leonardo Donato and the
Venetian Senate.

spread very rapidly
throughout Europe.
The first telescope
made by Galileo was
a simple tube con-
taining two lenses.
After this, he made
improvements on his
initial design and
presented his device
to the Venetian Sen-
ate. The Senate,
in turn, set him up
for life as a lecturer
at the University of
Padua and doubled
his salary. While Galileo did not invent the
telescope, he did design and built telescopes
with higher magnifying power for private use
and others. He was a skilled instrument maker
and his telescopes were known for their high
quality.
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1.2.3 Pointing the telescope skyward

Galileo became the first person to point a
telescope skyward [5]. Although the tele-
scope he used was small and the images were
fuzzy, Galileo was able to make out mountains
and craters on the moon’s surface and discov-
ered that Jupiter had its own set of moons:
”The Galilean satellites”. After Galileo’s and
Sir Isaac Newton’s time, astronomy flourished,
much larger and more complex telescopes were
invented. With their advancement in technol-
ogy, astronomers discovered many new objects
in the sky and were able to do a more accurate
calculation.
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Chapter 2

The working of a telescope

A telescope is an instrument that collects the
radiation emitted by distant sources. The name
”telescope” covers a wide range of instruments.
All of the telescopes collect and detect electro-
magnetic radiation, but the way they do it dif-
fers a lot. Every telescope can detect a specific
part of the electromagnetic spectrum, the collec-
tive term for all know frequencies of light. Elec-
tromagnetic radiation differs in frequencies, the
higher the frequency the more energy the light
wave has and the smaller the wavelength is. The
electromagnetic spectrum is divided into 6 main
categories depending on their energy level.

2.0.1 Electromagnetic radiation

These 6 categories are from lowest to highest en-
ergy level: [6]

• Radio wave radiation is electromagnetic
radiation with the lowest energy level and
frequency. With the wavelengths varying
between a meter to several kilometers.

• Micro wave radiation is a form of electro-
magnetic radiation with wavelengths rang-
ing from as long as one meter to as short
as one millimeter; with frequencies between
300 MHz (0.3 GHz) and 300 GHz.

Figure 2.1: Spectrum of electromagnetic radiation

• Infrared radiation is also invisible electro-
magnetic radiation with just longer wave-
lengths than those of visible light. Most
of the thermal radiation emitted by objects
near room temperature is infrared.

• Visible light radiation Is the part of the
electrical magnetic spectrum that is visible
to the human eye. Visible light is usually
defined as having wavelengths in the range
of 400–700 nanometers.

• Ultra violet radiation (UV) is an electro-
magnetic radiation with wavelengths from
10 nanometers - 400 nanometers shorter
than that of visible light.
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• X-radiation Most X-rays have a wave-
length ranging from 0.01 to 10 nanometers.
Due to their penetrating ability, hard X-rays
are widely used to image the inside of ob-
jects.

• Gamma radiation is penetrating electro-
magnetic radiation arising from the radioac-
tive decay of atomic nuclei, black holes and
supernovae. These light ray consists of the
highest range of energy.

2.0.2 Collecting electromagnetic radi-
ation

The atmosphere is impenetrable for most of the
electromagnetic spectrum. Only a small por-
tion of UV spectrum, visible light, some por-
tions of the infrared spectrum and radio waves
are able to reach the earth surface. (figure: 2.4)

Figure 2.2: Artist’s
impression of the
Fermi gamma-ray
space telescope

For this reason, X-ray,
gamma, Infrared and
microwaves have to be
observed from outside the
earth his atmosphere. We
shall quickly describe a
few of the telescopes used
to observe these types of
electromagnetic radiation.
An example of this is the
Fermi Gamma-ray Space
Telescope. [7] (figure:
2.2) It is used to map the
gamma radiation emitted

by black holes, quasars and other universal
events that are capable of generating this much
energy.

Figure 2.3: Artist’s
impression of the
Planck spacecraft.

The Planck space obser-
vatory (figure: 2.3) [8] is
another example of a tele-
scope in orbit around the
Earth. It was operational
from 2009 to 2013. During
this period one of its main
tasks was mapping the mi-
crowave background radia-
tion in greater detail than was previously pos-
sible.

Figure 2.4: A diagram of the electromagnetic spec-
trum with the Earth’s atmospheric transmittance (or
opacity) and the types of telescopes used to image
parts of the spectrum.

Because getting a telescope in orbit is a much
harder task than making a ground telescope
ground telescopes are way more abundant.

This includes professional observatory, DIY
backyard telescopes, radio aerial antenna and
giant radio dishes like the Five-hundred-meter
Aperture Spherical Telescope (FAST).

2.1 Types of optical telescopes.

In this thesis, we shall focus on the optical tele-
scopes. These telescopes are able to collect and
focus the radiation in the visible light range of
the electromagnetic spectrum. They create a
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magnified image that can be directly observed
by the human eye. In understanding how a tele-
scope works we shall first discuss the workings
of the elements that form a telescope. We define
3 main types of optical telescopes: [9]

• Reflectors: Make use of a single or combi-
nation of curved mirrors to reflect and com-
bine light to a single point.

• Refractors: Make use of a single or com-
binations of lenses to combine light beams
to a single point.

• Catadioptric telescopes Make use of a
combination of lenses and mirrors to com-
bine light beams to a single point.

2.1.1 Optical elements

In order to understand how telescopes work we
need to understand the basic principles of curved
mirrors and lenses. Once a surface is shaped like
the part of a larger sphere it is called a spheroidal
surface. Once a surface has this shape it obtains
the optical ability to focus light. Although the
focusing property’s of a spheroidal surface are
not perfect it costs much less effort hence less
money to create a spheroidal surface. The sur-
face that does has a perfect focusing property is a
parabolic (non-spherical) surface although this is
much harder to create. Both mirrors and lenses
used in telescopes can be shaped as spheroidal
surfaces, parabolic surfaces or perfectly flat.

Refraction

Refraction is the bending of the path of a light
wave as it passes from one material into the other
material. Refraction is caused by a change in the
speed of light wave as it crosses the boundary of

2 different transparent materials. For example,
light travels through a vacuum at its maximum
speed of 3.0 · 108m/s when the light wave hits a
different material such as glass its speed will go
down upon crossing the boundary. The amount
of slowing down is measured in the materials re-
fractive index. The refractive index of a medium
is the ratio of the speed of light in a vacuum to
the speed of light in the medium.

n =
c

v
(2.1)

where c is the speed op light in a vacuum, v is
the phase velocity of light in the medium and n
is the refractive index. (table: 2.1)

Figure 2.5: Light leaves the vacuum and enters the
glass which has a higher refractive index bending it
towards the normal. When it leaves the glass it will
bend away from the normal.

When light enters the glass at an angle, not
only the speed but also its direction will change.
The light will bend towards the normal when
travelling into a medium with a higher index of
refraction, and away from the normal when trav-
elling into a medium with a lower refractive in-
dex. [11] (figure: 2.5)
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Table 2.1: Index of Refraction for Some Common
Substances. [10]

Substance Index of Refraction

Vacuum 1
Air 1.0003
Water 1.3
Ethyl alcohol 1.4
Ice 1.3
Glass 1.5
Diamond 2.4

Lens

In short, a lens is a transmissive optical device
that can disperse or focus beams of light by
means of refraction. Lenses are made of clear
materials like glass or plastics and are molded
or ground into the desired shape. Materials that
can disperse or focus other radiation than light
are also called lenses. For example microwave
lenses and electron lenses. We define 3 main type
of lens forms: [12]

1. Convex Bulging outwards from the lens.

2. Concave Depressed in to the lens.

3. Planar Flat side.

With these 3 basic combinations, every type of
lens shape can be constructed. Two types of sim-
ple lenses are the biconvex and biconcave lens.
The biconvex lens (figure: 2.6) is a lens consist-
ing of 2 convex sides both with the same curva-
ture. If beams of light travel through this lens
they will converge into a single point: The focal
point. The distance from the center of the lens
to this focal point is called: The focal length.
The focal length depends on the curvature of the
convex sides of the lens.

The second simple lens type is the biconcave
lens.(figure: 2.7) This lens consists of two con-

Figure 2.6: A illustration of a biconvex lens

cave sides both having the same spheroidal sur-
face. When light beams enter the lens they get
diverged.

Figure 2.7: A illustration of a biconcave lens

To calculate the focal length of a lens in air.
We use the lensmaker’s equation.

1

f
= (n− 1)

[
1

R1
− 1

R2
+

(n− 1)d

nR1R2

]
(2.2)

In this equation: (figures: 2.6, 2.7) f is the
focal length of the lens (in m, n is the refractive
index of the lens material, R1 is the radius of
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curvature of the lens surface closest to the light
source, R2 is the radius of the lens surface far-
thest from the light source and d is the thickness
of the lens.

Mirror

Like lenses mirrors are able to focus light, the
main difference is the way they do it. Mirrors
make use of the law of reflection. [13] Wen a
light-ray is approaching a mirrored surface it is
called the incident ray. When a light ray is leav-
ing the mirrored surface after reflecting is called
the reflected ray. The point of incidence is the
spot where the ray strikes the mirror. From this
point a line can be drawn perpendicular to the
mirror surface, this line is called the normal line.
The normal line always divides the angle be-
tween the incident- and reflected ray into two
equal angles. The angle between the normal line
and the incident ray is called the angle of inci-
dence, the angle between the normal line and the
reflected ray is known as the angle of reflection.
To summarise the law of reflection states that
when a ray of light reflects off a mirrored sur-
face, the angle of incidence is equal to the angle
of reflection.

Θi = ΘR (2.3)

In this equation: Θi is the angle of incidence
and ΘR is the angle of reflection.

The curvature of a mirror has the opposite ef-
fect on the bending of the light than lenses have.
This means that concave mirrors converge light
to a single point in front of the mirror whereas
convex lenses converge light in to a single point
behind the lens. (figure: 2.9)

Figure 2.8: An illustration of the mirror law that
states angel of incidents Θi is equal to ΘR

Figure 2.9: An illustration of the behavior of lenses
and mirrors when light strikes it.

Spherical vs parabolic

Both spheroidal shaped mirrors and lenses share
a problem. Both suffer from spherical aberra-
tion.(figure: 2.10) This means that all the light
beams that passed through a spherical lens or
have been reflected by a spherical mirror, aren’t
converging to a single point but instead are form-
ing many smaller focal points close together.
This will result in a blurred image.

The Solution to spherical aberration, is chang-
ing the spheroidal surface to a parabolic surface.

13



Figure 2.10: The top illustration is a perfect lens
without spherical aberration, the bottom lens is a
spherical lens with spherical aberration.

As can been seen in figure: 2.11 a parabolic mir-
ror has 1 focal point and no spherical aberration.
In figure 2.11 the focal point is referred to as F.
This can be mathematically proven as following:
We have a light-beam that comes from a star
very far away, at these distances we can assume
it will be traveling in a perfectly straight line
when it hits the mirror. This light-beam hits the
mirror in point P. We can extend the light-beam
with line PV . Both the light-beam and PV are
parallel to the axes of symmetry S. Since the
definition of parabola is equal distance from a
focal point to the directrix | FP |=| PV |. If we
draw the bisector PM 6 FPM = 6 V PM

4FPM = 4V PM =


| FP |=| PV |
6 FPM = 6 V PM

| FP |=| PV |
(2.4)

6 MPV = 6 between the light-beam and the mir-
ror. (vertical angles). Since the normal line is
perpendicular to the mirror in point P and a

Figure 2.11: An illustration of the workings of a
parabolic mirror

straight angle is 180◦

Magnification

The size of an image produced by a lens or mirror
is proportional to the focal length. The longer
the focal length the larger the image. The bright-
ness of an image projected by a telescope depend
on how much light is being collected by the tele-
scopes lenses or mirrors. Larger lenses or mirrors
means that the telescope can collect more light,
doubling the diameter increases the light gath-
ering power by a factor 4. It might seem that
magnification is the most important aspect of a
telescope, but there are limits to how sharp an
image a telescope can produce. Magnifying a
blurred image makes it bigger but not clearer,
so the priority when building a telescope is hav-
ing the greatest light gathering power possible.
Gathering more light makes it easier to see faint
details. Magnification can be displayed in the
following equation:

M =
fo
fe

(2.5)
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Where M is the magnification factor, fo the fo-
cal length of the objective lens and fe the focal
length of the eyepiece.

For example a telescope with a focal length of
120 cm and a eye piece with a focal length of 4.0
cm. Will give a magnification of 30 times the
original image (30x).

2.2 Refracting telescopes

The earliest as well as many amateur telescopes
uses lenses to focus light and make distant ob-
jects appear bright an magnified. This type of
telescope is called a refracting telescope. [14]
There two main designs in use: Galilean refract-
ing telescope and the Keplerian refracting tele-
scope:

The Galilean refracting telescope

The design Galileo Galilei used in 1609 is com-
monly called the Galilean telescope. This design
uses a converging plano-convex lens as its objec-
tive lens. This lens consist of one convex side
and one flat side. And a plano-concave converg-
ing lens as the eyepiece. This lens consist of one
concave side and one flat side. (figure: 2.12)

Figure 2.12: Optical diagram of Galilean telescope

Galileo managed to create telescopes with 30x
magnification.

Keplerian telescope

The keplerian telescope invented by Johannes
Kepler(figure: 2.13, is an improvement on
Galileo’s original design. This design uses a con-
vex lens as the eye eyepiece lens instead of the
plano-concave lens. The advantage of arrang-
ing the lenses in this way is that the light en-
tering the eyepiece is converging. This allows
for a much wider field of view. A downside to
this technique is that the projected image is in-
verted and much longer focal points are needed
to project a sharp image.

Figure 2.13: Optical diagram of the keplarian tele-
scope

2.2.1 Reflecting telescopes

The reflector telescope is an optical telescope
which uses a single or combination of curved mir-
rors to reflect and combine light to a single point.
[15] The idea that curved mirrors behave like
lenses dates back to the 11th century. But they
where only put to use in telescopes in the year
1663.

Their are 3 popular reflecting telescope design.

Newtonian telescope

The Newtonian telescope is a type of reflecting
telescope invented by Sir Isaac Newton. This
design uses a primary concave mirror and a sec-
ondary flat mirror placed at an angle. (figure:
2.14)
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Figure 2.14: Light path in a Newtonian telescope

Gregorian telescope

The Gregorian telescope (figure: 2.15, described
by James Gregory in his book Oprica Promota.
This reflecting telescope design features a con-
cave primary mirror and a concave secondary
mirror. The special thing to this design is that
the secondary mirror reflects the light from the
primary back through a hole in the center of the
primary mirror.

Figure 2.15: Light path in a Gregorian telescope

Cassegrain telescope

The Cassegrain telescope was designed in 1672
by Laurent Cassegrain. This reflecting telescope
design features a concave primary mirror and
convex secondary mirror. The secondary mirror
reflect the light back through a hole in the cen-
ter of the primary mirror. The convex secondary
mirror allows the telescope to have a long focal
length while having a short tube length.

Figure 2.16: Light path in a Cassegrain Telescope

16



Chapter 3

Building a telescope

3.1 introduction

In early 2016 we got the offer from our physics
teacher mr. Ockhorst to construct a telesope
as our profile project. Without hesitation we
accepted his offer and came in to contact with
mr. Grootaerd from univeristy Gent. He guided
us step by step through the building process and
answered questions where needed.

3.2 Gathering the materials

When building something you need materials.
To get our materials we went to university Gent
to meet our co-mentor mr. Grootaerd in person.
The materials we received:

• Two circular glass plates

• Wood for the telescope frame

• Informative books about astrophysics

• Carbon grain for grinding(in various sizes)

• Polishing equipment

While we were visiting university Gent, we got
a quick course on how to grind the glass for a

Figure 3.1: The materials in the back of the car.

spherical mirror and a tour of the facility. Hav-
ing thanked mr. Grooteard we transported the
materials back to the Netherlands and started
the construction of our very own telescope.

3.3 Mirror

3.3.1 Grinding table

To begin grinding of the mirror glass we needed
a grinding table. Not having one already at
our school we had to improvise by modifying a
100 liter oil drum. Equipping it with a circular
wooden top with a clamping mechanism for the
glass plates build in to it. One important fac-
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tor was that the grinding table had to be placed
level.

Figure 3.2: Our grinding table.

3.3.2 Grinding

The grinding of the mirror glass is done by means
of moving two circular glass plates over one an-
other with fine carbon abrasive grains in be-
tween. Persistent grinding of the glass plates
makes one concave-shaped and the other sphere-
shaped, It also makes the glass plates less coarse
as the size of the carbon grain decreases. The re-
sult is a concave-shaped circular glass plate with
a predetermined depth, Which was given to us

by our co-mentor. After the right depth is met
the carbon grain size is so small it barely has an
effect on the depth anymore, The carbon grain
will only affect the plate coarseness. The grind-
ing process took 11 hours to complete.

Figure 3.3: Grinding the 2 glass plates.

When the glass plate was completely smooth
seen through a microscope we started the polish-
ing process. We polish the glass plate to fill the
holes that we might have missed with the mi-
croscope. The polishing starts with heating up
black tar and pressing it onto the concave-shaped
plate to create a sphere-shaped plate that will
not grind the glass plate.

When the black tar was the right shape we
started moving the concave-shaped glass plate
over the sphere-shaped black tar with dissolved
polishing powder in between. The polishing pro-
cess took 5 hours to complete.

3.3.3 Coating

To make the mirror glass into an actual mirror
the mirror glass is put into a vacuum-chamber.
In the vacuum-chamber a layer of aluminium is
sublimated onto the mirror which gives the mir-
ror it’s reflective properties, then a protective
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Figure 3.4: Standing on top of the black tar.

layer of silicon dioxide is sublimated on the mir-
ror.

3.4 Telescope woodwork

When we received the wooden planks they were
bland (figure 3.1). Therefore, we coated the
outer side of the planks with a glossy black lac-
quer. We had to recoat it 3 times to make the
coating as even as possible. To absorb light not
originating from the object we are looking at in
the sky we covered the inside with matte black
paint.

3.5 Result

3.5.1 Mirror

Our goal was to get a spherical mirror, however,
we accidentally ended up with a parabolic mir-
ror. This didn’t actually cause any problems and
it actually benefits us because a parabolic mirror
reduces the spherical aberration What resulted

in a better image. On the back of the mirror we
mounted three screws to be able to adjust the
angle at which the mirror points.

3.5.2 Putting everything together

Once all parts of the telescope where finished,
construction could begin. It was just like a big
and somewhat complicated puzzle. First we con-
structed the tube and left one side open. Then
we had to put our mirror at a certain height in
the telescope tube to make sure the focal point
falls with the ocular. We had some difficulties
with placing the mirror in the right spot but in
the end we got it just right. We put the second
mirror in place and the clamp for the ocular was
screwed in tight. Everything at the right spot
we closed up the tube and attached the stand.

In the end we were very pleased with the end
result and the image the telescope created.

Figure 3.5: The finished product.
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Chapter 4

The mass of Jupiter

4.1 Introduction

Jupiter is the fifth and largest planted in our
solar system. It has over 50 moons and an enor-
mous magnetic field surrounding it. Jupiter’s
beautiful stripes and wild swirls are caused by
its dense atmosphere of hydrogen and helium
gas. Its signature red spot is a colossal storm
bigger than the earth that has been raging on
for hundreds of years.[16]

Mesmerised by Jupiter we wondered if we
could determine the mass of this giant. So in
this report, we shall try to determine the mass
of Jupiter with help of the Galilean satellites and
Kepler’s Laws of planetary motion.

4.1.1 Galilean satellites

As interesting as the planet are its moons. With
53 confirmed moons and 14 provisional Jupiter
forms its own miniature orbiting system. This
miniature system is home to some of the largest
moons in our solar system.

The largest four are known as the Galilean
satellites [17] all of which were discovered by the
famous astronomer Galileo Galilei and named in
honor of him. The Galilean satellites are Io, Eu-
ropa, Ganymede, and Callisto. Together they

contain 99.999% of the total mass that is in or-
bit around Jupiter.

Ganymede

Ganymede is the largest moon in
our solar system. It is larger than
all the dwarf planets, Mercury,

Figure 4.1:
Ganymede.

and almost three-quarter
the size of Mars. It is the
only moon to have its own
internally generated mag-
netic field and could easily
be qualified as a planet if
it weren’t in orbit around
Jupiter. The moon has
an atmosphere of oxygen al-
though it is far too thin
to support any form of life.
It completes one full orbit
around Jupiter every 172 hours.

Figure 4.2: Cal-
listo.

Callisto

With a diameter of over
4800 kilometers, Callisto is
one of the largest moons in
our solar system. Since it
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has hardly any geological ac-
tivity on its surface for the last 4 billion years, its
is heavily cratered and oldest one our solar sys-
tem. Callisto is the outermost of the Galilean
satellites with an orbital duration of 17 days.

Io

Io named after a lover of
Zeus is the innermost of the
four Galilean satellites.

Figure 4.3: Io.

With an orbital pe-
riod of just 42 hours
and a diameter of 3642
kilometers, it is the
fourth-largest moon in
the solar system. Io is
the most geologically
active object in our so-
lar system. Its surface
is scattered with over
400 active volcanoes.
As described by NASA: Looking like a giant
pizza covered with melted cheese and splotches
of tomato and ripe olives.

Europa

Europa, the second closest moon to Jupiter is
the smallest of all Galilean satellites at 3121.6

Figure 4.4: Europa.

kilometers in diam-
eter. In perspec-
tive, this is slightly
smaller than Earth’s
moon. Europa’s sur-
face is smooth and
made out of water ice.
It’s lacking the many
impact craters as can
be seen on Callisto.

The reason is a crust only 40 to 90 million years
old, youthful in geologic terms. The surface of
the moon hides a planet-wide ocean. Europa or-
bits Jupiter every 3.5 days.

4.2 Theory

In the early 1600s Johannes Kepler the famous
astronomer proposed his three laws of planetary
motion. [18] He did this after carefully studying
the data collected by his mentor Tycho Brahe.
These three laws op planetary motion describe
the motion of planets in a sun-centered solar sys-
tem. Even after 4 centuries, the laws are still
considered to be an accurate model for the mo-
tion of planets and satellites.

The three laws of Kepler can be described as
follows:

• The law of Ellipses: The path of the
planets about the sun is elliptical in shape,
with the center of the sun being located at
one of the two foci.

• The Law of Equal Areas: An imaginary
line drawn from the center of the sun to the
center of the planets will sweep out equal
areas in equal intervals of time.

• The Law Harmonies: The squares of the
periods of any two planets in relation to the
cubes of their average distance from the sun
will be a constant.

4.2.1 The law of harmonies in-depth

To calculate the mass of Jupiter we only need
Kepler’s third law and can be described in an
equation as following:

T 2

r3
= K (4.1)
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In this equation, the variables are: T the orbital
duration (in s), r: The average radius (in m)
and K Kepler’s constant (in s2m-3) As an exam-
ple, we shall use the orbital period and average
distance from the sun for Earth and mars.

Earth :
3.156 · 1014

1.495733
= 2.977−19s2m−3 (4.2)

Planet Period 107s radius 1011m KS 10-19s2m-3

Earth 3.156 1.4957 2.977
Mars 5.93 2.278 2.975
Venus 1.941 1.082 2.975

As can be seen, the ratio is the same for
Earth, Mars, Venus and all other planets orbit-
ing around the sun. The period and distance can
be described by Kepler’s third law. Important
for our research is the fact that Kepler’s third
law also describes the period and distance of a
satellite.

4.2.2 Gravitation

The gravity is a natural phenomenon that causes
all things with mass to be brought to one
another.[19] This includes planets, stars and
even a sugar grain. The force the two objects
with mass pull on one another is equal for both
objects. Even the sugar grain exerts the same
amount of force on the earth as the Earth does
on the sugar grain. Only the effect is has on
the Earth is so infinitesimal it can’t be noticed.
Whereas the grain clearly moves towards the
Earth.

The magnitude of the gravitational force de-
pends on the mass of both objects and the dis-
tance between those objects. The force can be
described with the following equation:

Fg = G · m ·M
r2

(4.3)

In this equation the variables are: Fg gravita-
tional force (in N), m: the mass of object 1 (in

kg), M : the mass of object 2 (in kg), r: The
average radius (in m)

4.2.3 Uniform circular motion

The Galilean satellites are pulled towards
Jupiter by its gravity. The only thing preventing
them from crashing into Jupiter is the constant
speed that they are orbiting around Jupiter:
Their Orbital velocity. Only at the right combi-
nation of speed and distance is a circular motion
a uniform circular motion.

Orbital eccentricity

The orbital eccentricity of an object deter-
mines the amount by witch its orbit around
another body deviates from a prefect circle.

Figure 4.5: Red: Ellip-
tic(eccentricity: 0.7), arabolic
(eccentricity = 1), hyperbolic
orbit (eccentricity = 1.3)

A value of 0 is a
perfect circular
orbit. A value
between 0 and
1 give elliptical
orbits. And a
values of 1 and
grater give es-
cape orbits. As
can be seen in
(table: 4.1) the
orbital eccen-
tricity of several
bodies in our
solar system are
displayed. Since
the eccentricity
of the Galilean
satellites is very
low, Europa
being the most eccentric. We can assume that
they are following a uniform circular motion.
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Table 4.1: Orbital Eccentricity [20]

Galilean Sattelite Eccentricity

Ganymede 0.0013
Calisto 0.0074
Europa 0.0094
Io 0.0041
Earth 0.0167
Mars 0.0935
Jupiter 0.0167

Therefore the speed of the moons is constant.
We shall keep this in mind when predicting our
measurement uncertainty.

4.2.4 Centripetal force

To successfully perform a uniform circular mo-
tion a force is needed that is always perpendic-
ular to the orbital velocity. This force is called
centripetal force. The origin of the centripetal
force working on the Galilean satellites is the
gravity of Jupiter. The strength of the cen-
tripetal force depends on the mass, orbital ve-
locity and the orbit radius. The force can be
represented by the following equation:

Fmpz =
m · v2

r
(4.4)

In this equation the variables are: Fmpz the cen-
tripetal force (in N), m the mass (in kg), v the
speed (in ms-1) and r the average radius (in m)

4.2.5 Orbital velocity

When objects are following a uniform circular
motion the time needed for one full orbit is the
same every rotation. In this time the object will
cover a distance equal to circumference of a cir-
cle. So the orbital velocity will be given by the
following equation:

v =
∆s

∆t
=

2πr

T
(4.5)

In this equation the variables are: v the speed
(in ms-1), s the distance(in m), T the time (in
s) and r The average radius (in m)

4.2.6 Rewriting the equation’s

All the necessary theory has been explained we
start by rewriting the equations First equate the
gravitational force to the centripetal force.

Fmpz =
m · v2

r

Fg = G · m ·M
r2

m · v2

r
= G · m ·M

r2

Then we rewrite the equation for orbital velocity:

v =
2πr

T
=⇒ v2 =

4π2r2

T 2
(4.6)

Then via substitution we get the following equa-
tion:

m · 4π2 · r2

r · T 2
= G · m ·M

r2
(4.7)

T 2

r3
=

m · 4π2

G ·m ·M
(4.8)

T 2

r3
=

4π2

G ·M
= K (4.9)

As can be seen the only variables left are the
radius, orbit duration and the mass of Jupiter.
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4.3 Research question and hy-
pothesis

The research question we have chosen: What is
the mass of Jupiter? Our hypothesis: We ex-
pect the mass of Jupiter that we calculate to
be around 1,898·10-27kg based on a source from
NASA [21].

4.3.1 Measurement uncertainty

For the measurement uncertainty in this experi-
ment we expect the following sources to resolving
power:

• Quality of the telescope Since we can’t
zoom in forever with our telescope. There-
for the distance from the moons to Jupiter
has to be estimated. We expect here the
measurement uncertainty to be around half
the radius of the moons.

• Quality of our camera A camera has its
limits, the camera we use is the ASI130 mm
monochrome high frame rate camera with a
pixel density of 1280 x 1080. We expect each
pixel to be around 1/10 the size of the image
of the moons and for every measurement we
expect to be off by one or two pixels.

• Elliptical orbit As described in the theory
the orbits of the Galilean satellites aren’t
perfectly spherical. When looking at the
largest eccentricity we expect there to be a
measurement uncertainty of 7500 km based
on the periapsis and apoapsis (the closest
and the furthest point in an orbit)

These uncertainty’s combined we expect the final
mass will be of by around 10 percent the mass
of Jupiter.

4.4 Test assembly

1. Telescope, In our case a 150mm F8 Newto-
nian Dobson telescope

2. Camera, We used a ASI130 mm
monochrome high frame rate camera

3. Computer with photo edit software and Ex-
cel

Figure 4.6: Test assembly.

4.5 Process

4.5.1 Known variables

Before performing this experiment one variable
has to been known.

1. The diameter of Jupiter in meters. We as-
sume it is: 1.42984·108m [21]

Now to calculate the mass we performed the
following procedures. First we took a set of
photo’s. We did this with the program Fire-
capture a planetary capture tool. [22] (NOTE:
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It is important that all 4 moons are visible on
the same photo.) These photo’s have to be
taken in a sequence of at least 9 days. This
is because the longest orbital period of the
Galilean Satellite Callisto is 17 days. For ev-
ery photo we note the date and time it was
taken. (4.1.1) A example picture is shown in 4.7

Figure 4.7: Jupiter and Galilean Satellites.

4.5.2 Distance from the moons to
Jupiter

Once we had taken all the pictures, we had to
calculate the scale of each picture. To get the
scale we divided the real diameter of Jupiter as
given with the diameter of Jupiter on the picture
(in millimetre). Then we measured the distances
from the center of the moons to the center of
Jupiter (in millimetre) and multiply this value
by the scale. Now we have the distance from the
moons to Jupiter. Note that if the moons are
on the left side of Jupiter the distance is nega-
tive, this is very important to get a good result
We have repeated these steps for all the pictures
and written the distances in a table. The result
should look somewhat like this:

Distance Galilean satellites to Jupiter
Ganymede Callisto Io Europa

Days Distance Distance Distance Distance
Day 0 3.2·109m 1.5·109m 3.0·109m 3.2·109m
Day 1 ... ... ... ...
Day 2 ... ... ... ...

(NOTE: ”Day 0” Is the first day of mea-
suring. When we missed a measurement day we
left the distance values empty.)

We the collected data and placed it in a graph.
Then for each moon we let a computer program
like Excel generate a sinusoid through the
measurement points. 4.8

Figure 4.8: Sinusoid graph of the Galilean satellites.

The last step is to extract the Orbital Radius
and the Orbital duration from the sinusoids. The
orbital radius is equal to the amplitude of the
sinusoid and the orbital duration is equal to the
the wavelength of the sinusoid 4.9

Figure 4.9: Sinusoidal example

4.6 Research results

4.6.1 Quick remark

Before discussing our results we have found,
A.Q.R.: Since we are heavily dependent on clear
weather it is challenging to observe Jupiter sev-
eral days in a row. On top of that comes that
on the date of writing and conducting research
Jupiter is only visible from 3 AM till sunrise.
This makes observing in a team hard.
We had to fill in some of the blank data days
with data we found on the online. [23]
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4.6.2 Images

The first step in calculating the mass of Jupiter
is taking a streak of images. As can be seen in
figure: (4.10). In this image the center sphere
is Jupiter and the surrounding dots are the
Galilean satellites. We marked them with the
first letter of their name.

Figure 4.10: The moons of Jupiter through our 15cm
F8 Newtonian telescope. Date: 28-12-16, 7AM

4.6.3 Distances

After measuring the distance and calculating the
scale in all the pictures the following table was
constructed (table 4.3)

Table 4.2: Galilean satellites distance to Jupiter
Ganymede Callisto Io Europa

Days 1 · 109m 1 · 109m 1 · 109m 1 · 109m
0 -0,44 0,12 0,20 -0,41
1 0,45 0,78 0,62 0,38
2 1,03 1,35 -0,37 -0,26
3 0,89 1,73 -0,43 0,17
4 0,08 1,87 0,60 -0,01
5 -0,75 1,75 0,24 -0,15
6 -1,03 1,40 -0,63 0,26
7 -0,54 0,87 0,07 -0,37
8 0,34 0,22 0,66 0,43
9 1,00 -0,48 -0,28 -0,36
10 0,94 -1,10 -0,50 0,29
11 0,35 -1,57 0,52 -0,07
12 -0,64 -1,81 0,35 -0,09
13 -1,03 -1,81 -0,61 0,26
14 -0,67 -1,53 -0,06 -0,34
15 0,21 -1,05 0,68 0,43

When transferring these points into a graph it
leads to some very rough result as can been seen

Table 4.3: Galilean satellites

Ampitude Period
1 · 109 m in days

Ganymede 1.1 7,2
Calisto 1.9 16
Europa 0,67 3,6
Io 0,41 1,8

in figure: (4.12) We can’t retrieve correct data
from the graph in its current state. So the next
step that had to be done was refining the data.
To do this the data had to be loaded in to Excel
and the MS Solver function was used to gener-
ate a sine function. This function is the average
sinusoidal of all measurement points. Now the
amplitude and period can be determined from
the generated functions. (figure:4.13)

4.6.4 The mass of Jupiter

For the final step the mass of Jupiter shall be
approximated.

In the previous step we determined the apti-
tude and period for the Galilean satellites. These
are as following:

The last thing to do is fill in the equation as
given in the theory (4.9) Ganymede is fully writ-
ten out.

T 2

r3
=

4π2

G ·M
= Ks
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For Ganymede the amplitude is 1,056·109m
and the period is 6,1·105s

Mj =
r3 · 4π2

T 2 ·G
(4.10)

Mj =
1.178 · 1027 · 4π2

3.828 · 1011 · 6, 67 · 10−11
(4.11)

Mj = 1, 8199 · 1027kg (4.12)

When taking the average of all the moons the
mass of Jupiter is:

Galilean satellite Mass of Jupiter
in kg

Ganymede 1, 82 · 1027

Calisto 1, 78 · 1027

Europa 1, 86 · 1027

Io 1, 73 · 1027

Average mass of Jupiter 1, 80 · 1027

The final mass we found after studying the
orbit of the Galilean Satellites is: 1,80·1027 The
mass for Jupiter found in BiNaS is 1.898 ·1027.
The result is a 5% difference with the accepted
value for the mass of Jupiter.

After comparing the standard orbital radius of
the Galilean Satellites with the orbital radius we
found that all the orbits are about 15000 km too
small. This corresponds to about 1mm on the
photo’s .

Figure 4.11: Measurement uncertainty of Jupiter

When displayed in an image (figure: ) we
can see that the accepted mass of Jupiter over-
laps with our measurement uncertainty and thus
we have succeeded in calculating the mass of
Jupiter.

4.7 Conclusion

In this report, we tried to accurately calculate
the mass of Jupiter with help of the Galilean
satellites and Kepler’s Laws of planetary motion.
With the measurement data we where able to an-
swer the research question: What is the mass of
Jupiter. As result determined the mass to be
1,7969·1027 a result with an 5% difference to the
accepted Value for the mass of Jupiter. We can
conclude from this that our hypothesis is cor-
rect. We expected a measurement uncertainty to
be around 10% with only 5% percent deviation
from the accepted value we can say that this was
overestimated and that our measurements where
more precise than we expected them to be.

4.7.1 Discussion

If we where to repeat this experiment again, we
would do the following things different:

• Take the measurements in one row, if you
are waiting for to long between measure-
ments. Data can be misinterpreted and it
becomes harder to construct an accurate si-
nusiod from the data points.

• Use a stable try-pod, the one we used for our
telescope had the tendency to move during
our measurements
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Figure 4.12: The distance of the Galilean
satellites from Jupiter (rough data)

Figure 4.13: The distance of the Galilean
satellites from Jupiter (fit)
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Chapter 5

The depth of craters on the Moon

5.1 Introduction

Earth’s moon is the fifth largest moon of the So-
lar system and is, as of writing this, the only
place beyond Earth where humans have set foot.
The moon was likely formed after a Mars-sized
body collided with Earth. The moon is the
brightest and largest object in our night sky. It
makes Earth a more livable planet by moderat-
ing our home planet’s wobble on its axis, lead-
ing to a relatively stable climate. It also causes
tides, creating a rhythm that has guided humans
for thousands of years.

5.2 Measuring the depth in
theory

The depth of a crater on the moon is easily
measured when you are standing on the moon
with a giant ruler. However, our school does
not have a large enough budget for a manned
mission to the moon, so we used our telescope
and selenography techniques. Selenography is
the study of the surface and physical features of
the moon.

5.2.1 The shadow

The moon does, like all other star orbit-
ing bodies, have a light and a dark side.

Figure 5.1: moon crator.

The line that can
be drawn between the
two sides is called the
terminator. A crater
that is on the light
side casts a shadow on
its self. As shown in
the diagram (5.1), a
crater with a depth D,
casts a shadow with a
length (as seen from
above) L. The angle θ is the angle of the Sun
above the horizon. Displayed as an equation:

tan θ =
D

L
(5.1)

The length of the shadow we observed is not the
true length as seen from above. The shadow is
foreshortened, the length we measured is shorter
than the true length. To compensate we divided
the measured length of the shadow by the cosine
of the crater’s selenographic longitude to get the
true length of the shadow. Displayed as an equa-
tion:

Lc =
Lm

cos(Y C)
(5.2)
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In this equation the variables are: Lc the cor-
rected length, Lm the measured length of the
crater and YC the selenographic longitude.

5.2.2 The angle

To calculate the angle θ we used spherical
trigonometry. The figure 5.2 shows the lunar
disc.

• Point C is the crater.

• Point E is the point closest to earth, also
called sub-earth point.

• Point P is the pole.

• Point S is the point closest to the Sun, also
called the sub-solar point.

• Point T is the point on the Terminator in
line with point C and S.

The angular distance from S, through the crater
C, to the terminator at T, is 90◦. (If you were
standing on the terminator then the Sun would
be on the horizon). We are interested in the
angle of Sun above the horizon at C, which we
called θ.
The angle CY is the selenographic latitude of
the crater, and angle EY is the selenographic
longitude of the crater. Similarly, angle SX is
the selenographic latitude of the sub-solar point,
and angle EX is its selenographic longitude. We
used the cosine equation for a spherical triangle
to get:

cos(CS) = cos(PC) cos(PS) + sin(PC) sin(PS) cos(CPS)
(5.3)

This equation is rewritten as:

6 CS = arccos(cos(PC) cos(PS)+sin(PC) sin(PS) cos(CPS))
(5.4)

• CPS: Is the vertex angle, and is the dif-
ference in longitudes between the sub-solar
point and the crater.

• PS: Is the angle between point P and S.

• PC: Is the angle between points P and C.

• CS: Is the angle between points C and S

The last step in the calculation is:

θ = 90◦ − CS (5.5)

Using equation 5.1:

D = tan(θ) · Lc (5.6)

In this equation the variables are: D the depth
of the crater, θ the angle and Lc the corrected
length of the shadow.

Figure 5.2: Lunar disc
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5.2.3 Using external data

A picture of the moon does not include the coor-
dinates of the sub-solar point. Therefor we used
an astronomers program called Ephemeris to de-
termine the coordinates of the sub-solar point at
the moment of photographing the moon. We
used these coordinates to calculate the angle be-
tween the sub-solar point and the crater.

5.3 Research question and Hy-
pothesis

The research question we chose: What is the
depth of a crater on the moon? We have
measured the depth of a crater called Nean-
der. Our hypothesis: We expect the depth of
the Neander crater to be 3.4km. Our Hypothe-
sis is based on the NASA Lunar Nomenclature
database. From this Database we also gath-
ered its latitude(31.3◦S), longitude(39.9◦E) and
Colongitude(321◦ at sunrise).

5.3.1 Measurement uncertainty

For the measurement uncertainty in this exper-
iment we expect that the following components
culdwill cause measurement uncertainty:

• Quality of the telescope Since we can-
not zoom in forever with our telescope, the
length of the shadow has to be estimated.
Since we know the diameter of the crater we
can use this to calculate the scale of the im-
age and so the length of the crater. Because
of the image getting blurry the exact border
of the crater can be a bit of an so will the
scale be. Therefore we have a measurement
uncertainty of 1 kilometer.

• Quality of our camera A camera has its
limits, the camera we use is the ASI130 mm
monochrome high frame rate camera with
a pixel density of 1280 x 1080. We expect
each pixel to be around 1/50 the size of the
crater and for every measurement we expect
to be off by three or four pixels which results
in a measuring uncertainty of 1 kilometer.

• Atmospheric distortions When light
rays travel through the atmosphere the im-
age gets distorted by the earth’s atmo-
sphere. It bends light in random directions.
When the telescope which causes a blurry
image, to remove this blur we need to stack
multiple images and this causes the shadow
to change in length.

Together these uncertainties result in an mar-
gin of error of 2 kilometers.

5.4 Test assembly

1. Telescope, In our case a 150mm F8 Dodson
telescope

2. Camera, We used a ASI130 mm
monochrome high frame rate camera

3. Computer with photo edit software and Ex-
cel

5.5 Process

Variables

Before performing this experiment a few vari-
ables have to be known:

• Sub-solar point: These two values can be
found on: [24] Enter the correct date and
time and the data will roll out.
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Figure 5.3: Test assembly.

• Diameter of the crater in question To
find this value loop up your crater in this
database: [25] It will state the diameter in
the lower left corner of the screen.

• Selenographic longitude of the crater
This data can be found in the database of
NASA: [26]

Taking photo’s

When photographing the moon we used picture
overlapping software, AutoStackert [27], to com-
bine multiple photo’s into one. We did this to
rule out any deformations in the photo’s caused
by the Earth’s atmosphere.

Calculate angle θ

To find the angle θ. Make use of spherical
trigonometry and equation (5.3)

5.5.1 The depth of the cater

The last step is to correct the length of the
shadow in the photo with equation (5.2) and

Figure 5.4: The lunar crater Neander on the our
photo

then fill in the variables in equation (5.6)

5.6 Research results

We recorded the moon with our telescope. Then
we used Autostackert to get a clear picture of
the part of the moon we wanted to observe.
From the Emphemeris program we gathered the
latitude(0.9◦N) and longitude(61.1◦W ) of the
sub-solar point. From this we calculated the ver-
tex angle between S and C:

6 CPS = 61.1◦ + 39.9◦ = 100◦ (5.7)

From the NASA Lunar Nomenclature
database we know the Neander crater is 50
kilometers in diameter, we used pixel counting
to determine that the measured shadow length
was 6.5 kilometers. The true length of the
shadow is the measured length divided by the
cosine of the Selenographic longitude of the
crater:

Lc =
6.5

cos(39.9)
= 8.47km (5.8)

Filling in the cosine equation for a spherical tri-
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angle 5.9

6 CS = arccos(cos(PC) cos(PS)

+ sin(PC) sin(PS) cos(CPS)) (5.9)

6 CS = arccos(cos(58.7) cos(−0.9)
+ sin(58.7) sin(−0.9) cos(100)) = 58.88◦ (5.10)

From 6 CS we calculate 6 θ:

6 θ = 90◦− 6 CS = 90◦−58.88◦ = 31.12◦ (5.11)

Using the shadow’s length and 6 θ we calculated
the depth of the crater:

D = tan(θ) · Lc = tan(31.12◦) · 8.47km = 5.1km
(5.12)

By our calculations the depth of the Neander
crater would be 5.1 kilometers deep.

Figure 5.5: The lunar crater Neander we pho-
tographed with the measurements we took

5.6.1 Conclusion

We answered the research question using our
telescope, data from NASA and Emphemeris,
tangent and spherical trigonometry: What is the
depth of a crater on the moon? The depth we
hypothesized was 3.4km, with a margin of error
of 2km. The depth we calculated is 5.1 kilome-
ters, this is within the measurement uncertainty.

5.6.2 Discussion

We would like to make the calculated depth to
be closer to the depth calculated by NASA. We
could stabilize the telescope, and if it is possible
we could enhance the image quality.
If we had used the excact coordinates of where
the shadow ended we could have possibly gotten
closer to the depth of the crater.
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Chapter 6

Computer simulation

6.1 Why

We wanted to create a simulation of a telescope
to get a better understanding of how light be-
haves when it comes in contact with a reflective
surface so we made our own program in Python.

6.2 Results

To be able to replicate a Newtonian telescope
better we added walls and a second mirror. The
second mirror reflects the light to the ocular
which make the light beams go parallel to each
other.

Figure 6.1 is an example of a possible outcome.

6.3 How does it work?

6.3.1 Light

To simulate light we look at it as if it behaves
as individual particles and use our self defined
object light particle. This object has the follow-
ing properties: x location, y location, angle and
speed. In the angle property right would be 0,
up 90, left 180 and down 270 degrees. The speed
property is the step size for the light. We cal-
culate the course of one light particle completely

Figure 6.1: A standard outcome.

before we move on to the next light particle, this
creates a collection of coordinates of which we
make a plot and as result gets us a line in the
graph that follows the course of a light beam and
we do this for every light particle.

6.3.2 Reflection

When a light beam hits the mirror a new an-
gle needs to be calculated, for this we use the
law of reflection. It states that the angle of in-
cidence is equal to the angle of reflection. How-
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ever the surface on which the light reflects isn’t
always straight, for example when the mirror
follows a parabolic function. This creates the
problem in Python that the new angle can’t be
directly calculated. So to solve this we cre-
ate a straight sloped line between two points
in the graph of the mirror and change the ori-
entation so that it’s horizontal and apply that
same change to the angle of the incoming light
beam, then we calculate the angle of reflection
and revert the change in orientation. This can
all be put into one equation: outwardangle =
2 ∗mirrorangle− lightangle.

Figure 6.2: Angles in Python work in respect to the
x axis.

6.4 Constants and variables

In figure 6.1 you can see a rather standard out-
come of the program. There are some variables
and constants we defined that changes the out-
come significantly. By changing the variable
steep you affect the steepness of the bottom mir-
ror by changing the slope of the mirror function,
when the bottom mirror is less steep the light
diverges more and when it’s more steep it con-
verges more. In figure 6.4 you can see an example

of a lower steepness in comparison to figure 6.1.

Figure 6.3: The mirror is less steep and as result the
light diverges more than the standard outcome.

A real mirror isn’t perfectly smooth, to repli-
cate this in our simulation we added the variable
coarse. At every y value of the mirror function it
either adds or subtracts a random value between
0 and half of the coarse value, this results in a
rough mirror. The higher the coarse is the more
the angle in which the light reflects deviates.

It can also occur that a lot of light enters the
telescope at once, for example when looking into
the sun. To simulate this we set the amount of
light beams created at a high value. What we
can see is that all those light beams that were
spread out at first are now all focused in a small
area, if you were to look in the telescope now
your eye would get damaged.
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Figure 6.4: The mirror is rougher.

6.5 Mirror

The mirror in our code is a collection of points
that follow a function that we define. We set the
boundaries for x and every x value is separated
by a predefined step size then we calculate the
corresponding y value and store the coordinates
in a list. The mirror is plotted by drawing lines
between the collection of points, those lines are
used as the reflection surface with which we can
calculate the reflection angle. We detect if a light
particle reflects on the mirror by comparing the
y value of the light with the y value of the mir-
ror. When the light is below the mirror the light
reflects.

6.6 Point of intersect

6.6.1 The problem

Since the light only reflects when it has already
passed the mirror, it reflected when it was below
the mirror. But we wanted the light to reflect on
the mirror instead of below it so we needed to

Figure 6.5: The amount of light beams is set to 80.

create a method of finding the point of intersect.
Another benefit of finding the point of intersect
is that it allows you to put in high step sizes
which increases the speed and efficiency of the
program dramatically.

6.6.2 Analytical method

In our code we have constructed an analytical
method for calculating the intersect point be-
tween the light and mirror. We get two points
on the trajectory of the light particle, one point
(x1, Lighty1) with the x value of the current
position of the light particle which we call x1
and another point (x2, Lighty2) with x1 + the
aforementioned step size, both points have the
y value of the light corresponding to their re-
spective x value. We also get two points on the
mirror, since the mirror use the same x steps as
light we can use the x values of the previous two
coordinates with which we calculate the corre-
sponding y values this results to the two points:
(x1, Mirrory1) and (x2, Mirrory2). With
those four points we can draw two lines: the light
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line and the mirror line. These cross each other
at the point of intersect.

Figure 6.6: A representation of light passing the mir-
ror and what the coordinates are.

There are four variables: a,b,c and d.
a = (Lighty2-Lighty1)/(x2-x1)
b = Lighty1 - a * x1
c =(Mirrory1-Mirrory2)/(x2-x1)
d = Mirrory1 - c * x1
You get two triangles that are similar to each
other and what we’re doing is using the ratio
between the two triangles to calculate what the x
position of the point of intersect is. The x value
for the point of intersect would be: (d-b)/(a-
c). We put that x value into the function of the
mirror which returns the y value of the intersect
point then we assign the new coordinates to the
light particle.
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Discussion

Possible research subjects

Astrophysics is a extremely wide subject, if we would have had more time during this profile project
we would’ve liked to explored a few more topics:

Spectral analysis

You could detect the spectrum of a hydrogen by dispersing the light of a star. In this research
we would compare 2 different stars, for example Sirius and Betelgeuse. We would look at the
differences in their spectrum, the locations of the hydrogen lines and the composition.

Parallax method

It’s possible to calculate the distance to an object in space by using the parallax method. Due to
time shortage we were not able to perform this experiment. Parallax is the phenomenon that a
near object seems to move relative to its background when observed from different positions. To
calculate the distance using the parallax method the earth needs to do exactly half an orbit. Then
the angle can be measured on which the star has moved
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Appendix

Figure 6.7: The lunar crater Neander on the our photo.

6.7 Code
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1 import random
import math

3 import matp lo t l i b . pyplot as p l t

5

#lightAmount i s the amount o f l i g h t p a r t i c l e s you want to spawn in
7 #stepAmount i s how long you want to draw the l i g h t p a r t i c l e

lightAmount = 10
9 stepAmount = 20001

11

#These l i s t s are nece s sa ry f o r i n s e r t i n g the l i g h t
13 l i g h t L i s t X = [ ]

l i g h t L i s t Y = [ ]
15

17 #Some g l o b a l p r o p e r t i e s ( g lobDegrees = s t a r t i n g ang le o f l i g h t )
g lobDegrees = −90 #The s t a r t i n g ang le o f the l i g h t

19 globMirrorx = −0.5 #The s t a r t i n g x p o s i t i o n o f the mirror
g lobMirrory = 0 #The s t a r t i n g y p o s i t i o n o f the mirror

21 globMirrordx = 0.001 #The s t e p s i z e in which the mirror i s drawn
x i n t e r s e c t = 0 #Touching t h i s doesn ’ t change anything but i t ’ s important i t ’ s here

23

#Coarse adds roughness to the mirror and s teep determines how steep the mirror i s .
25 coar s e = 0 ∗ 10 ∗∗−5 #Recommended value = 0 .5 ∗ 10 ∗∗−5 or 0

s t eep = 0.03 #Recommended value = 0.03 but i t depends on where you want the f o c a l
po int

27

#Ocular P r o p e r t i e s
29 ocularCounter = 0 #Keep i t 0

ocularHeightBottom = 6
31 ocularHeightTop = 7

p l t . p l o t ( [ g lobMirrorx −1, globMirrorx −1 ] , [ ocularHeightBottom , ocularHeightTop ] )
33 o c u l a r R e f r a c t i o n = 3 #Not implemented

a i r R e f r a c t i o n = 1.000293 #Not implemented
35

#globMirrorLength determines the l ength o f the mirror
37 globMirrorLength = 3

39

#globCounter i s used to see i f the r e f l e c t i o n has a l r eady taken p lace (0 = not
r e f l e c t e d , 1 = r e f l e c t e d )

41 globCounter = 0
globCounter2 = 0

43 globCounter3 = 0
globCounter4 = 0

45 p l t . gca ( ) . s e t c o l o r c y c l e ( [ ’ b lue ’ , ’ red ’ , ’ green ’ ] ) #I s used to g ive the graph a
s p e c i f i c c o l o r #python3 . 5 only
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47

#Function f o r d e f i n i n g the l i g h t p a r t i c l e s
49 de f i n i t i a l i g h t p a r t i c l e s ( a a n t a l l i g h t p a r t i c l e s ) :

l i s t i n i t a l i g h t p a r t i c l e s =[ ]
51 f o r p in range (0 , a a n t a l l i g h t p a r t i c l e s ) :

l i g h t p a r t i c l e ={” x l o c a t i o n ”:−1 + p ∗ ( 0 . 2 2 5 ) , ” y l o c a t i o n ” : 3 , ” ang le ” : math .
rad ians ( g lobDegrees +0.00001) , ” speed ” : 0 .001} #speed i s the s t e p s i z e o f the l i g h t

53 l i s t i n i t a l i g h t p a r t i c l e s . append ( l i g h t p a r t i c l e )
re turn l i s t i n i t a l i g h t p a r t i c l e s

55

57 #Function f o r c a l c u l a t i n g the movement o f l i g h t in the x a x i s
de f movementPeriodX (x , speed , ang le ) :

59 dx = speed ∗ math . cos ( ang le )
x = x + dx

61 re turn x

63

#Function f o r c a l c u l a t i n g the movement o f l i g h t in the y a x i s
65 de f movementPeriodY (y , speed , ang le ) :

dy = speed ∗ math . s i n ( ang le )
67 y = ( y + dy )

re turn y
69

71 #Function f o r d e f i n i n g the func t i on o f the mirror : i n s e r t the func t i on f o r mirror in
the yVal v a r i a b l e .

de f mirrorFunct ion ( xVal ) :
73 yVal = steep ∗( xVal ) ∗∗2 + ( random . random ( ) −0.5) ∗ coa r s e

re turn yVal
75

77 de f secondMirrorFunct ion ( xVal ) :
g l o b a l x i n t e r s e c t

79 boundaryX1 = globMirrorx−1
boundaryX2 = globMirrorx − 1 + globMirrorLength

81 i f xVal > boundaryX1 and xVal < boundaryX2 :
y = −1∗xVal + 6 .5

83 re turn y
return None

85

87 de f s econdMir ro rP lo t te r ( ) :
l x = globMirrorx−1

89 dlx = globMirrordx
p lotL i s tX = [ ]

91 plotL i s tY = [ ]
f o r l in range ( i n t ( round ( globMirrorLength / globMirrordx ) ) ) :
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93 i f secondMirrorFunct ion ( lx ) != None :
p lo tL i s tX . append ( lx )

95 plotL i s tY . append ( secondMirrorFunct ion ( lx ) )
l x += dlx

97 p l t . p l o t ( plotListX , p lotL i s tY )
secondMir ro rP lo t t e r ( )

99

101 #This func t i on makes the mirror v i s i b l e as a l i n e
de f drawMirrorLine ( ) :

103 mirrorx = globMirrorx − 1
mirrordx = globMirrordx

105 mirrory = globMirrory
mirrorLineX = [ ]

107 mirrorLineY = [ ]
f o r l in range ( i n t ( round ( globMirrorLength / globMirrordx ) ) ) :

109 mirrory = mirrorFunct ion ( mirrorx )
mirrorLineX . append ( mirrorx )

111 mirrorLineY . append ( mirrory )
mirrorx = mirrorx + mirrordx

113 p l t . p l o t ( mirrorLineX , mirrorLineY )

115 de f drawTelescope ( ) :
g l o b a l g lobMirrordx

117 g l o b a l globMirrorLength
le ftBound = globMirrorx − 1

119 rightBound = leftBound + globMirrorLength
p lotL i s tX = [ ]

121 plotL i s tY = [ ]
dens i ty = 0 .1

123 he ight = 8
f o r n in range ( round ( he ight / dens i ty ) ) :

125 i f ocularHeightTop <= n ∗ dens i ty or n ∗ dens i ty <= ocularHeightBottom :
p lotL i s tX . append ( le ftBound )

127 plotL i s tY . append (n∗ dens i ty )
p l t . p l o t ( plotListX , plotListY , ”bo” )

129 plotL i s tX . c l e a r ( )
p lo tL i s tY . c l e a r ( )

131 f o r m in range ( round ( he ight / dens i ty ) ) :
p lo tL i s tX . append ( rightBound )

133 plotL i s tY . append (m∗ dens i ty )
p l t . p l o t ( plotListX , plotListY , ”bo” )

135 drawTelescope ( )

137 #Function that r e tu rn s the ang le o f the mirror in a smal l area
de f g iveMirrorAngle ( xVal ) :

139 dMirrory = mirrorFunct ion ( xVal + globMirrordx ) − mirrorFunct ion ( xVal )
nAngle = math . atan ( dMirrory / globMirrordx )

141 re turn nAngle
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143 de f giveSecondMirrorAngle ( xVal ) :
g l o b a l g lobMirrordx

145 i f secondMirrorFunct ion ( xVal ) != None and secondMirrorFunct ion ( xVal + globMirrordx
) != None :
dY = secondMirrorFunct ion ( xVal + globMirrordx ) − secondMirrorFunct ion ( xVal )

147 nAngle = math . atan (dY/ globMirrordx )
re turn nAngle

149

151

de f s e condMir ro rRe f l e c t i on ( ry , mirrorAngle , l i ghtAng le , rx ) :
153 g l o b a l globCounter

g l o b a l globCounter2
155 g l o b a l globCounter3

g l o b a l x i n t e r s e c t
157 g l o b a l globCounter4

i f movementPeriodY ( lightBeamsY , lightBeamsSpeed , l ightBeamsAngle ) >=
secondMirrorFunct ion ( rx ) and globCounter3 == 1 and secondMirrorFunct ion ( rx ) !=
None :

159 l a = −math . rad ians (180) − mirrorAngle
ra = l i gh tAng l e + l a

161 ba = (math . rad ians (90)−abs ( ra ) )
rAngle = mirrorAngle − math . rad ians (90)−ba

163 globCounter = 1
a = ( movementPeriodY ( lightBeamsY , lightBeamsSpeed , l ightBeamsAngle )−ry ) /(
movementPeriodX ( lightBeamsX , lightBeamsSpeed , l ightBeamsAngle )−rx )

165 b = ry − a ∗ rx
c = ( ( secondMirrorFunct ion ( rx )−secondMirrorFunct ion ( movementPeriodX ( lightBeamsX ,
lightBeamsSpeed , l ightBeamsAngle ) ) ) ) /( movementPeriodX ( lightBeamsX ,

lightBeamsSpeed , l ightBeamsAngle )−rx )
167 d = secondMirrorFunct ion ( rx ) − c ∗ rx

x i n t e r s e c t = movementPeriodX ( lightBeamsX , lightBeamsSpeed , l ightBeamsAngle )
169 globCounter2 = 1

globCounter3 = 0
171 globCounter4 = 1

return rAngle
173 i f movementPeriodY ( lightBeamsY , lightBeamsSpeed , l ightBeamsAngle ) <=

secondMirrorFunct ion ( rx ) :
globCounter = 0

175 globCounter2 = 0
return l i gh tAng l e

177

179

181 #Gives the l i g h t a new angle which correspponds with the law o f r e f l e c t i o n
de f m i r r o r R e f l e c t i o n ( ry , mirrorAngle , l i ghtAng le , rx ) :

183 g l o b a l globCounter
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g l o b a l x i n t e r s e c t
185 g l o b a l globCounter2

g l o b a l globCounter3
187 #I f the y o f the l i g h t p a r t i c l e i s lower than the y o f the mirror i t needs to

r e f l e c t
i f movementPeriodY ( lightBeamsY , lightBeamsSpeed , l ightBeamsAngle ) <=

mirrorFunct ion ( rx ) and globCounter == 0 :
189 rAngle = 2 ∗ mirrorAngle − l i gh tAng l e

globCounter = 1
191 a = ( movementPeriodY ( lightBeamsY , lightBeamsSpeed , l ightBeamsAngle )−ry ) /(

movementPeriodX ( lightBeamsX , lightBeamsSpeed , l ightBeamsAngle )−rx )
b = ry − a ∗ rx

193 c = ( mirrorFunct ion ( rx )−mirrorFunct ion ( movementPeriodX ( lightBeamsX ,
lightBeamsSpeed , l ightBeamsAngle ) ) ) /( movementPeriodX ( lightBeamsX ,
lightBeamsSpeed , l ightBeamsAngle )−rx )
d = mirrorFunct ion ( rx ) − c ∗ rx

195 x i n t e r s e c t = (d−b) /(a−c )
globCounter2 = 0

197 globCounter3 = 1
return rAngle

199 i f movementPeriodY ( lightBeamsY , lightBeamsSpeed , l ightBeamsAngle ) >=
mirrorFunct ion ( rx ) :
globCounter = 0

201 globCounter2 = 0
return l i gh tAng l e

203

205 l i ght beams = i n i t i a l i g h t p a r t i c l e s ( lightAmount )
drawMirrorLine ( )

207

de f r e f r a c t i v e I n d e x ( ang le ) :
209 tAngle = math . rad ians (90)−(math . rad ians (180) − ang le )

cAngle = math . rad ians (90)−(tAngle+math . a s in ( a i r R e f r a c t i o n ∗ math . s i n ( tAngle ) /
o c u l a r R e f r a c t i o n ) )

211 nAngle = angle + cAngle
re turn math . rad ians (180)

213

f o r c in range (0 , lightAmount ) :
215 lightBeamsTemp = l ight beams [ c ]

lightBeamsX = lightBeamsTemp [ ” x l o c a t i o n ” ]
217 lightBeamsY = lightBeamsTemp [ ” y l o c a t i o n ” ]

l ightBeamsSpeed = lightBeamsTemp [ ” speed ” ]
219 l ightBeamsAngle = lightBeamsTemp [ ” ang le ” ]

f o r q in range ( stepAmount ) :
221 l ightBeamsAngle = m i r r o r R e f l e c t i o n ( lightBeamsY , g iveMirrorAngle ( lightBeamsX ) ,

l ightBeamsAngle , lightBeamsX )
i f secondMirrorFunct ion ( lightBeamsX ) != None :

223 l ightBeamsAngle = secondMir ro rRe f l e c t i on ( lightBeamsY , giveSecondMirrorAngle (
lightBeamsX ) , l ightBeamsAngle , lightBeamsX )
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i f globCounter2 == 0 and ( lightBeamsX > globMirrorx−1 or ocularHeightTop >
lightBeamsY > ocularHeightBottom ) :

225 lightBeamsX = movementPeriodX ( lightBeamsX , lightBeamsSpeed , l ightBeamsAngle )
lightBeamsY = movementPeriodY ( lightBeamsY , lightBeamsSpeed , l ightBeamsAngle )

227 i f lightBeamsX <= globMirrorx−1 and ocularHeightTop > lightBeamsY >
ocularHeightBottom and ocularCounter == 0 :

l ightBeamsAngle = r e f r a c t i v e I n d e x ( l ightBeamsAngle )
229 ocularCounter = 1

e l s e :
231 lightBeamsX = x i n t e r s e c t

lightBeamsY = mirrorFunct ion ( x i n t e r s e c t )
233 i f globCounter4 == 1 and secondMirrorFunct ion ( x i n t e r s e c t ) i s not None :

lightBeamsX = x i n t e r s e c t
235 lightBeamsY = secondMirrorFunct ion ( x i n t e r s e c t )

l i g h t L i s t X . append ( lightBeamsX )
237 l i g h t L i s t Y . append ( lightBeamsY )

globCounter = 0
239 ocularCounter = 0

p l t . p l o t ( l i gh tL i s tX , l i g h t L i s t Y )
241 de l l i g h t L i s t X [ : ]

de l l i g h t L i s t Y [ : ]
243

p l t . xl im (−3 ,3)
245 p l t . yl im (0 , 8 )

p l t . show ( )

Github link to code: https://github.com/Bloodworks13/AstrophysicsMirror/blob/master/Telescope
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