
TON Development Status
Overall progress towards the test version: 90%

January 28, 2019

1. TON Virtual Machine (TVM)
TON VM or TVM is the component required for executing smart contracts
in the TON Blockchain.

X Implementation: 95% complete

TVM has been fully implemented and internally tested. Minor modifications
will likely be necessary during the process of binding TVM with the TON
Blockchain block generation and validation software.

In addition to TVM itself, a database required for storing on disk and
accessing large amounts of TVM data (e.g., smart-contract code and data,
old blocks, blockchain state) without loading all of it into memory has been
developed.

X Documentation: 95% complete

The current version of TVM is fully described in Telegram Open Network
Virtual Machine (September 5, 2018). Minor modifications to the imple-
mentation may require corresponding changes in the documentation.

1

2. TON Network
The TON Network is the component required for delivering requests (e.g.,
proposed transactions) and propagating newly-generated TON Blockchain
blocks through the network.

X ADNL (low-level overlay network protocol running over IP networks):
80% complete

All functionality required for the test version is complete, including ellip-
tic curve cryptography and the node lookup protocol. Some sophisticated
options and additional cryptographic options that are not required for the
launch of the test version will be implemented later (prior to the final launch).

X Overlay networks over ADNL: 100% complete

Overlay networks are required to build node groups inside the ADNL net-
works. For instance, the validators for a shardchain create their separate
overlay network to propagate new block candidates and run a TON-specific
Byzantine Fault Tolerant (BFT) consensus protocol.

X Broadcast protocols for overlay networks over ADNL: 100% complete

Simple broadcast protocols are used inside overlay networks to propagate
small messages, such as the BFT consensus protocol messages, to all members
of an overlay network. These protocols are required for the implementation
of validator BFT consensus.

X CATCHAIN protocol: 100% complete

The CATCHAIN protocol is a variant of broadcast protocols tailored for im-
plementing BFT consensus protocols and for solving similar group consensus
tasks in a closed membership overlay network. As such, it is the first step in
implementing the validator BFT consensus protocol.

X Streaming broadcast protocols: 100% complete

Streaming broadcast protocols are used to quickly propagate large amounts
of data, such as newly-generated TON Blockchain blocks (to all full nodes)
and block candidates (to the validators of the corresponding shardchain).
Streaming broadcast protocols employed by TON use Forward Error Correc-
tion (FEC) protocols as their component.

2

3. TON Blockchain Block Generation and Validation
The block generation and validation software relies heavily on TVM and
the TON Network to create new block candidates, validate them among the
validators, and propagate the signed blocks to all full nodes. Since the work
on the TVM and TON Network components listed above is largely complete,
the TON Blockchain is now in active development.

X Documentation: 90% complete

The documentation is intended to present a complete description of the
masterchain and shardchain block format in the TON Blockchain. The
shardchain block description available in Telegram Open Network Blockchain
(September 5, 2018), while unchanged in the principal points, will require
some minor modifications based on changes that have arisen during the final
development phases. Some details of the masterchain blocks, such as the
list of all configurable parameters with their respective types, are not fully
documented at this time, because they are not completely finalized yet; they
will be added to the documentation during the testing phase.

X Block manipulation library: 95% complete

The block manipulation library is intended to store entire blocks and their
parts in files, load these data into memory, and access or modify different
data structures present in a block. All methods originally intended have
been implemented. Some minor modifications may be required during the
final stages of validator software development.

X Validator BFT Consensus protocol: 95% complete

The TON-specific Byzantine Fault Tolerant (BFT) consensus protocol is used
by validators during block generation to reach agreement on the next block
of a shardchain or the masterchain (as applicable). This custom BFT pro-
tocol, built upon TON CATCHAIN, has been completely implemented and
tested, yielding 2–3 second consensus time for a test network of 100 servers
distributed around the world. This is consistent with the five second block
generation interval proposed in the TON Whitepaper.

B Validator software: 60% complete

Validator software uses the block manipulation library to generate block can-
didates, validate block candidates proposed by other validators, and achieve

3

consensus on the next block in a shardchain or the masterchain. It consists of
the network component (especially the BFT Consensus protocol) and of the
local block generation (collation) and validation component. The network
component is almost complete. The local block generation and validation
component is currently halfway complete, but most development efforts are
currently dedicated to the completion of this component.

X Full node software: 80% complete

A full node of the TON Blockchain is a program that obtains and stores
local copies of all or some blocks, and may re-distribute these blocks to other
full nodes if required. It is also an important component of the validator
software, because validators are (specialized) full nodes as well. The network
component and the local storage component of the full node software are
currently in active development and nearing their completion.

B Smart-contract development, test, and debug environment: 50% com-
plete

A test and debug environment for smart contracts is already implemented
and internally tested, along with low-level “TVM assembly” smart-contract
language. The compiler from a high-level smart-contract language is 20%
complete—its core functionality is ready, but more built-in functions and
operations need to be defined.

B Fundamental and sample smart contracts: 20% complete

Some sample smart contracts are prepared in “TVM assembly”. The imple-
mentation of fundamental smart contracts—which reside in the masterchain
and run crucial tasks such as electing new validators and changing config-
urable parameters—requires the availability of the high-level smart-contract
compilers and development tools discussed above. However, the launch of a
test network with very basic versions of fundamental smart contracts is our
top priority. We plan to replace the basic versions of these smart contracts
with more sophisticated versions during the testing phase.

** This communication contains forward-looking statements, including state-
ments of plans, objectives, expectations, development status and intentions.
Any number of factors could cause actual results to differ materially from
those contemplated by any forward-looking statements, including but not lim-
ited to the risks identified in Appendix B to the Whitepaper **

4

