Pronunciation Assessment Proposal Jim Salsman
 April 2019

Item (1): Nakagawa et al's 2011 intelligibility vs. SRI's 1995 "Goodness of Pronunciation" assessments:

82\% agreement with the accuracy of crowdworkers' transcriptions, up from 75\% reported by the inventor

- arxiv.org/abs/1709.01713

State of the art:

Educational Testing Service's SpeechRater 5.0 "System-Human agreement" is $\mathbf{5 8 . 4 \%}$ (Chen et al., 2018.)

Terms

Speech recognition
Pronunciation assessment

Fluency assessment
(Usually requires accent and dialect adaptation)
Intelligibility prediction (Nakagawa et al., 2011)
Remediation

Feedback -- natural speech or visual?
Interactions -- web app or download delay?
Sequencing -- good learner analytics?

Motivation

Intelligibility assessment

Why accent adaptation?

14 accent loci in UK and Ireland,
3-4 in the USA and Canada,
Australia, South Africa, New Zealand, and
English as a Foreign Language everywhere
At least 150 feasibly discernible accents.

Fig. 1. Accents of the British Isles.

Market size and opportunity

- Online language learning was a $\$ 6$ billion market in 2011. The global market for digital English language learning products reached $\$ 1.8$ billion in 2013, and exceeded $\$ 3$ billion in 2018.

Market

English language instruction

Penetration of Active Mobile Broadband Subscriptions

ITU ITU ITU ITU ITU ITU ITU ITU ITU IBIS IBIS IBIS IBIS IBIS 20072008200920102011201220132014201520162017201820192020
-Developed -Developing

Market size and opportunity

- The year-over-year growth rate was 20% in 2018. WiseGuyReports projects the global digital English language learning market will surpass $\$ 18$ billion by 2022.

Goal

The goal is to ask people to try to pronounce words, and some day phrases, in a way that speech recognition features predict will be correctly transcribed by those who hear the audio utterance. This technique can correctly adapt to spoken accents like vowel shifts, but not dialect.

Learners provide needed transcriptions of student (peer) speech.

Intelligibility remediation Data flow diagram

Intelligibility remediation Scoring: 4 features/phoneme

T_{1}	SIL	[substitution alternatives]

K	[substitution alternatives]	T

| D_{1} | SIL | $\begin{array}{c}\text { [insertion } \\ \text { alternatives] }\end{array}$ |
| :--- | :--- | :--- |$\quad[\mathrm{K}]$

Intelligibility remediation Scoring: 10 features/phoneme

Solution

- Natural spoken remediation feedback produces authentic skill improvements without the distraction of visual feedback.

Please pronounce "happy"

Demo on YouTube

(2) Diphone with most room for improvement: "worst" phoneme(s)

$\Delta \mathrm{P}$ (intelligibility)

The additional four vocal tract articulation features are all set to zero, and the ninth, proportion of neighbors less likely, is set to 1.0 for this step.

Intelligibility remediation Manifest and plans

Speech collection
Transcript collection
Transcript integration
Balancing
Sufficiency
Scoring
Feature extraction
SVM classifier
Phoneme with-most-room-for-improvement isolation
ID (email) -- adaptivity and payment processing integration: TBD
Exemplary flag for data collection: DONE
-- collecting transcripts from learners: IN PROGRESS
Multiple choice support tool done but not used yet

Web server API

Testing pronunciation intelligibility assessment

Please try the live microphone demo!
Audio utterance URL:
or upload: Choose File no file selected (reload form to clear upload file)

Format: \bigcirc MP3, WAV at 16,000 per second of 16 bit signed little endian monophonic samples, or \bigcirc raw samples in that format, or \bigcirc M4A.

Web pages

API utilization in Javascript

```
mp3blob = new Blob(buffer, {type: 'audio/mp3'});
(window.XMLHttpRequest) ? req = new XMLHttpRequest() :
    (window.ActiveXObject) ? req = new ActiveXObject("Microsoft.XMLHTTP") :
    req = false; // cross platform for IE7 or something
req.open("post", "/");
formdata = new FormData();
formdata.append('url', '');
formdata.append('filetype', 'mp3');
formdata.append('word', document.getElementById("word").innerHTML);
formdata.append('email', document.getElementById('email').value);
formdata.append('exemp', document.getElementById('exemp').checked);
formdata.append('audio', mp3blob);
formdata.append('json', 'checked')
req.addEventListener('load', function(event) {
    document.getElementById('upload').disabled = true;
    var resp = JSON.parse(req.responseText);
    var fUrl = '/rec/index.html?email=
        + escape(document.getElementById('email').value);
    if (resp.prob_good < 50 && resp.feedback != "") {
        fUrl += '&word=' + escape(word) + '&feedback=' + escape(resp.feedback);
    }
    alert('Data sent, parsed response:\n' + req.responseText
            + 'Visiting: ' + fUrl);
    document.location = fUrl;
});
req.addEventListener('error', function(event) {
    alert('Unable to upload.');
});
req.send(formdata);
```


(3) ~650 non-diphthong diphones for speech skill learner analytics, instead of phonemes or words

A diphone is the last part of one phoneme followed by the first part of another. Either phoneme could be silence, and they can be the same phoneme. Diphthongs include diphones in them.

This list of the top 4,800 words by frequency in English speech was used with CMUDICT to create the following list of 1,052 diphones without dipthongs by approximate prevalence.

[^0]
Adaptivity

Learner analytics sequencing and branching scenario transitions

Reference: du Boulay, B. and del Soldato, T. (2016) "Implementation of Motivational Tactics in Tutoring Systems: 20 years on," International Journal of Artificial Intelligence in Education, 26(1):170-182,
http://users.sussex.ac.uk/~bend/papers/motivation-revised2.pdf

(4) JavaScript PocketSphinx.js recognition on the client web browser

```
psRecognizer.cpp
1 #include "psRecognizer.h"
```


(5) Data collection: Words, speech and transcripts

700 words (for comparison the Cambridge/EC English Profile has 6,500 words in levels A1-C2) and phrases;

30-60 recordings per word;
4-12 transcripts per recording; and
4 numeric features per phoneme, upgraded to 10.

Data collection Balancing

	Current	Goal	Balancing
Prompts (word or phrase)	700	7000	Vocabulary grade level (eg. A1, A2, B...)
Recordings	30 per prompt	60 per prompt	Requires both good, completely wrong, and marginal
Transcripts	4 per recording	8 per recording	Beware of corruption from lazy and other defectors
Exemplary recordings	15 per prompt (40 words)	$s^{*} 4$ per prompt? $(2$ gender $\times 2$ age)	s needs to be large enough for balancing recordings

Schema:

Users, Authenticators, Words, Utterances, Prompts, Topics, Choices, Lessons, Schools.

(6) Proposal TBD, e.g. third party restricted market sale free from ongoing cost center resource drains.

- rosetta stone
Search term
- duolingo
Search term
- babbel

Search term

- memrise
Search term

Worldwide
2004 - present
All categories
-
Web Search

Interest over time (?)

```
# <> <
```


Questions? Email: jim@talknicer.com

[^0]: UH_R 2.376\%, AH_N 2.083\%, T_SIL 1.863\%, Z_SIL 1.758\%, SIL_S 1.514\%, IY_SIL 1.486\%,
 EH_IY 1.465%, D__SIL 1.387%, N_SIL 1.313\%, S_SIL 1.270\%, SIL_K 1.264\%, R_SIL 1.168\%,
 AA_IY 1.156%, SIL_P 1.078%, IH__NG 1.063%, S_T 1.048\%, AH_LL 1.017%, NG_SIL 0.973%,

