Edema Disease – prevalence, diagnostics and control

IDT Biologika Schüler /Mrz 2019

Short review on *Escherichia coli*

IDT Biologika

Characteristics of Escherichia coli I

Family: *Enterobacteriacae*

Rod-shaped, gram-negative, facultative anaerobe

Are found everywhere and can survive well in the environment

Can be zoonotic

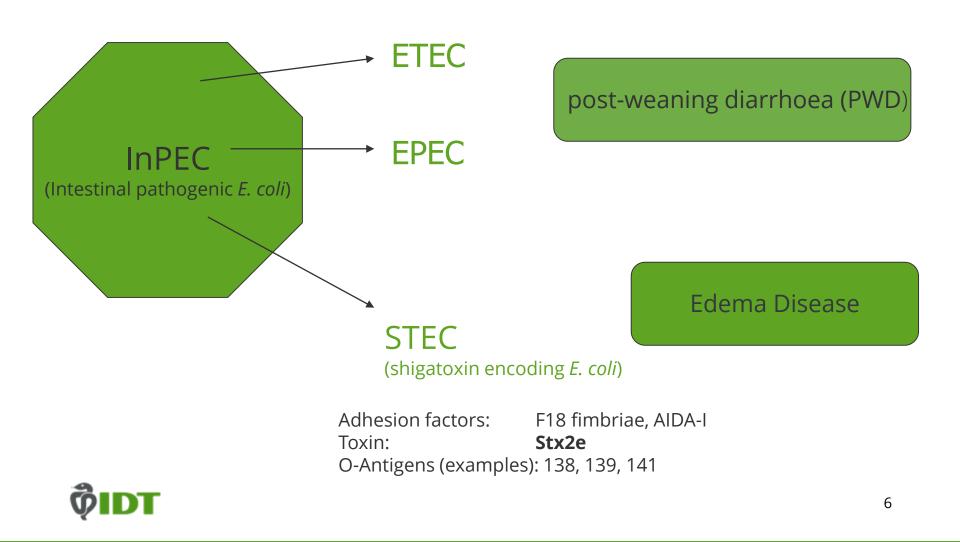
Classification is based on

Adhesion factors such as fimbriae Other surface proteins Toxins produced such as LT

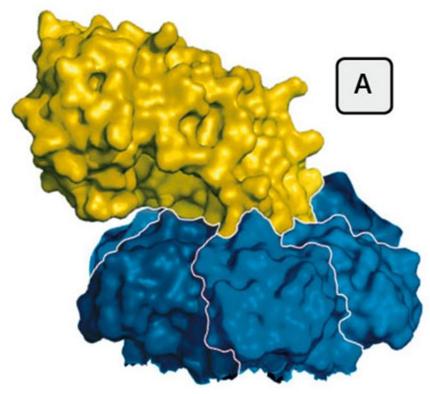
Characteristics of *Escherichia coli* II

Historically: O:K:H-Seroformula

Based on: Slide agglutination with antisera


What can be detected:

O-Antigens: somatic proteins H-Antigens: flagellar proteins K-Antigens: (micro-)capsular proteins F-Antigens: fimbrial proteins Capsule (K) LPS (O) Cell membrane Fimbriae (F) Production of toxins http://www.ecl-lab.com/en/ecoli/index.asp


Toxins: Endo-, Entero- and Cytotoxins

Escherichia coli –Infections in weaned pigs

Shigatoxin 2e

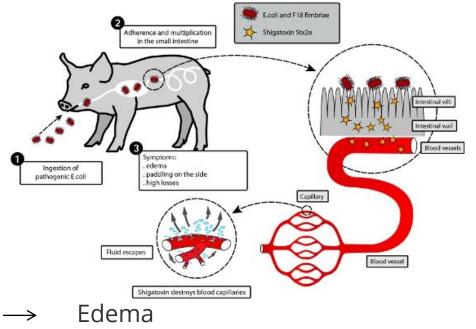
A subunit is responsible for the cytotoxic effect
→ damage of capillaries

В

B subunit is responsible for binding to the receptor and uptake in target cell

Pathogenesis of Edema Disease

Occurrence: worldwide


Pathogen: certain strains of *E. coli* of the pig (STEC)

Effected animals (mainly): piglets at 1 – 3 weeks

after weaning, but also later!

Virulence factors:

(F18 fimbriae) Shigatoxin 2e (Stx2e)

Prevalence of STEC in Germany 2013-2017

Year	No. of farms	No. of positives	% positives
2013	138	54	39.1
2014	121	47	38.8
2015	140	43	30.7
2016	158	66	41.8
2017	71	26	36.6
Sum	628	236	37.6

Prevalence STEC worldwide

Country	Source	Prevalence in %
France	Leneveu et al. 2017	65.0
Denmark	Frydendahl et al. 2002	16.4
Germany	Barth et al. 2007	11.1
Germany	Sting and Stermann 2008	19.0
Portugal	VETDIAGNOS 2014	54.0
USA	Zhang et al. 2007	20.0
USA	Torrison et al. 2011	24.0
Korea	Choi et al. 2002	40.7
Japan	Fukuyama et al. 2003	10.7
China	Cheng et al. 2006	35.0
Vietnam	Cu Huu Phu et al. 2006	75.5

Diagnostics: how to find STEC?

IDT Biologika

Clinical signs

Sources: Field Station for Epidemiology Bakum (University of Veterinary Medicine Hannover); IDT Biologika GmbH

How to select pigs for sampling:

- Weaners in the 2nd week after weaning (but may depend on the farm > when will it occur most likely)
- 2. Not treated with antimicrobials
- 3. Make the impression, that they have eaten well after a period of "starvation"
- 4. Have one or several of the clinical signs mentioned above
- 5. If no obvious clinical signs are present, then those that do not seem "fit", but also do not have fever

Okay, the pigs are selected – now what?

We prefer/recommend samples to be taken from necropsies.

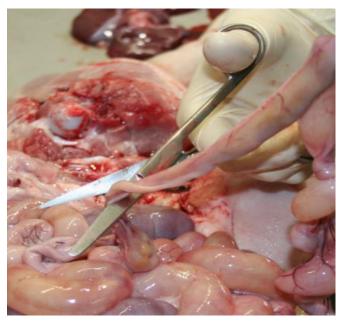
Why?

- The gut seems to be the best sample to detect STEC
- You have the "complete picture" in gross pathology
- Samples for differential diagnostics (*S. suis*, *H. parasuis*) can be taken at the same time

Of course, fecal samples are also possible!

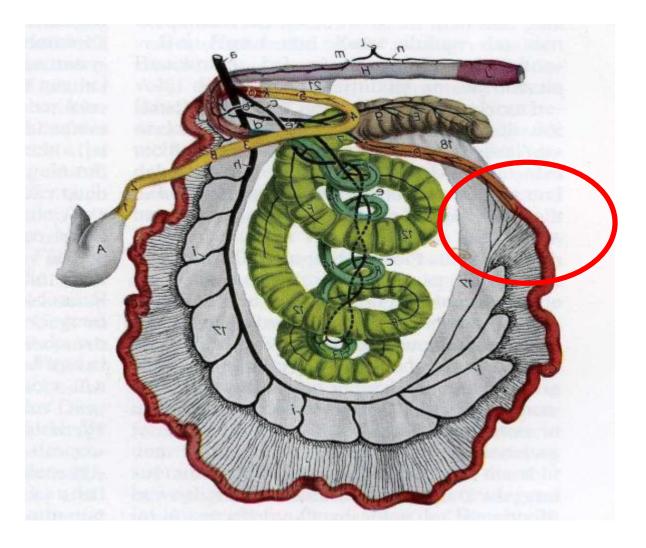
Gross pathology

Source: Field Station for Epidemiology Bakum (University of Veterinary Medicine Hannover)



Source: Jose Joaquìn Sanchez, JYSAPS

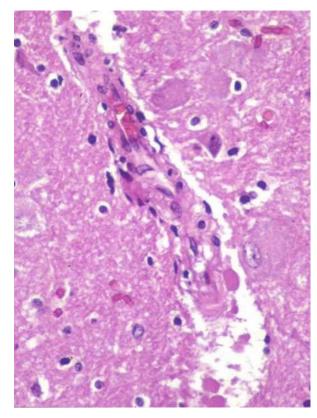
Sampling for STEC



Where to sample:

Source: Nickel, Schummer, Seiferle Lehrbuch der Anatomie der Haussäugetiere, Band II s. 124.

φ**idt**


Histopathology

Polioencephalomalacia of the brain stem

Source: CReSA

Perivascular oedema

The STEC Check-Kit

- 5 Amies Swabs/Vials
- Packaging material
- Cool pack

Remember – (Sample) size matters!

	Perce	Percentage of infected animals in the group				
	5	%	10	%	20	%
		(Confider	nce-Leve		
Group size	90 %	95 %	90 %	95 %	90 %	95 %
100	36	44	20	25	10	13
200	40	50	21	26	10	13
300	42	53	21	27	10	13
750	44	57	22	28	10	13
3000	45	58	22	29	10	13

Modified after Canon and Roe, 1982

Our laboratory partner:

Justus-Liebig Universität

Institut für Hygiene

und

Infektionskrankheiten der

Tiere

Frankfurter Strasse 85-89

35392 Giessen

Germany

Methods for the analysis of Edema Disease

Bacterial culture: the basis

Reason: identification of *Enterobacteriacae*

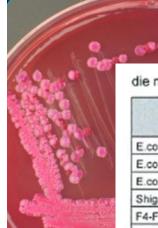
Pro: simple, cheap

Con: possible inhibition of growth due to antimicrobials, overgrowth with other bacteria if samples are not taken and/or stored correctly

Serotyping: the "old" method

Reason: identify what type of *E. coli* there are

Pro: simple, cheap


Con: cannot identify all types of *E. coli*; culture may influence what factors are expressed; toxins not detected

Virulence factor analysis via Polymerase Chain Reaction (PCR): the "new" method

Reason: identify what type of *E. coli* there are Pro: can identify more *E. coli* than the serotyping, looks for toxins as well Con: difficult, costly

Microbiology and Molecular biology

Cultiv

Fax.: 04641-920320

Email: <u>hygiene@vetmed_uni-giessen.de</u> www.vetmed_uni-giessen.de/hygiene Gießen, 27.01.2014 Tgb.Nr.: P 288 + 289/14

Untersuchung von Darmproben von 2 Ferkeln (15.10.2013STEC-CHECK Nr.: STECG682) Bestand: T. Asmussen, Gelting

die molekularbiologische Charakterisierung erbrachte mittels PCR folgende Ergebnisse:

	P 288 – Darm 1 E. coli Isolate 1 – 6	P 289 – Darm 2 E. coli var. haem. Isolate 1 – 4	P 289 – Darm 2 E. coli var. haem. Isolate 5 + 6
E.coli-Enterotoxin LT-1	negativ	negativ	negativ
E.coli-Enterotoxin ST-IP	negativ	negativ	negativ
E.coli-Enterotoxin ST-II	negativ	negativ	negativ
Shigatoxin 2e	negativ	positiv	negativ
F4-Fimbrien (K88-Fimbrien)	negativ	negativ	negativ
F5-Fimbrien (K99-Fimbrien)	negativ	negativ	negativ
F6-Fimbrien (987P-Fimbrien)	negativ	negativ	negativ
F18-Fimbrien	negativ	positiv	negativ
F41-Fimbrien	negativ	negativ	negativ
E.coll-Anheftungsfaktor Intimin	negativ	negativ	negativ

nd Herren,

P 288 - Dam 1 E. coli Isolate 1 - 6	P 289 – Darm 2 E. coli var. haem. Isolate 1 – 4	P 289 – Darm 2 E. coli var. haem Isolate 5 + 6
negativ	negativ	negativ
negativ	negativ	negativ
negativ	negativ	negativ
negativ	positiv	negativ
negativ	negativ	negativ
negativ	negativ	negativ
negativ	negativ	negativ
negativ	positiv	negativ
negativ	negativ	negativ
negativ.	negativ	negativ

Ewers

Results

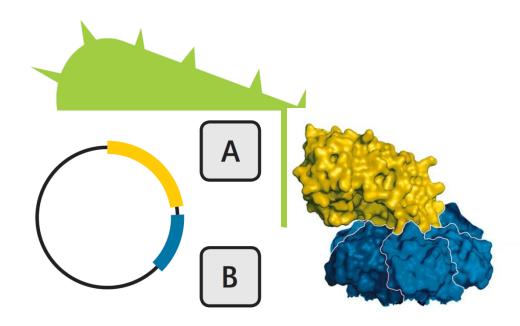
Source: Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig University, Gießen, Germany

Prevention of Edema Disease

IDT Biologika

Ecoporc SHIGA

- Vaccine with genetically modified
 Stx2e, active immunization of piglets
- One shot, 1 ml *i.m.*, from the age of 4 days
- Onset of immunity 3 weeks after vaccination
- At least 15 weeks duration of immunity



"To **reduce** the **mortality** and **clinical signs** due to Edema Disease"

Vaccine Development

- Development of a suitable *E. coli* K12 strain
- Construction of a Stx2e encoding plasmid

 Genetic attenuation of the A subunit

Production of a genetically modified Stx2e antigen with highly reduced toxicity

Gathering success: User Experience Trials (UETs)

IDT Biologika

User Experience Trial (UET)

Goal: gathering data to evaluate the success of vaccination

Two main possibilities:

- Protocol Alpha: before & after
- Protocol Beta: side-by-side

Data assessed:

- Morbidity rate
- Mortality rate
- Average Daily Weight gain
- Usage of antimicrobials

All these can be used to assess the **return on investment (ROI)**

User Experience Trial (UET)

Protocol Alpha:

• Evaluation of 5-6 batches **before and after** vaccination

Advantage:

• Easy to conduct, all piglets in a batch can be vaccinated

Disadvantage:

• Comparison depends on historical data, not considered scientific state-of-the-art

User Experience Trial (UET)

Protocol Beta:

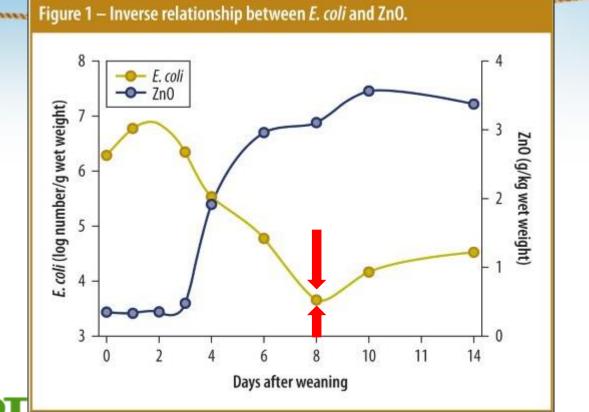
• Evaluation of 5-6 batches **side-by-side**

Advantage:

• Protocol is more scientific

Disadvantage:

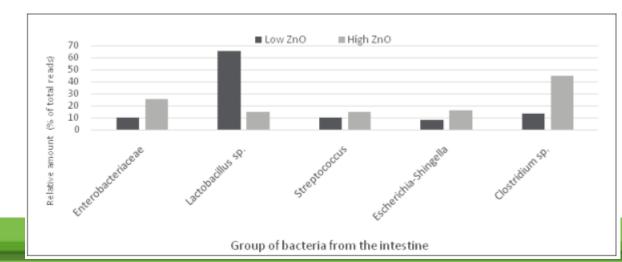
- Animals must be eartagged, so it is clear which group is which
- Trial may not be allowed due to animal welfare legislation



Ecoporc SHIGA –what is in for me? -results from UETs-

IDT Biologika

Changing environment in the EU

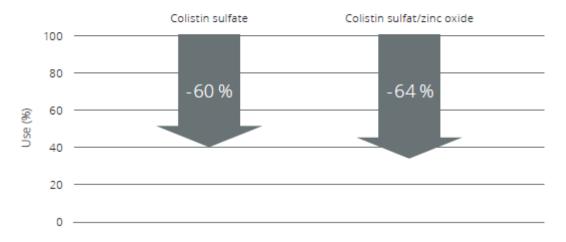

Dr Wilfried Vahjen & Prof Dr Jürgen Zentek

Changing environment in the EU

EMA, 16 March 2017: "CVMP concluded that the overall benefit-risk balance for veterinary medicinal products containing zinc oxide to be administered orally to pigs is negative, as the benefits of zinc oxide for the prevention of diarrhoea in pigs do not outweigh the risks for the environment."

-> ban of the use of ZnO by 2022

"The most pronounced impact of high dietary zinc was found in 32d old piglets, while changes in older piglets were more moderate. The increased diversity of the *Enterobacteriales* may act beneficial during the first week after weaning to combat *E. coli* induced diarrhea, but a continuous reduction of lactobacilli in the small intestine may lead to unfavorable effects later in life. Due to concerns regarding environmental pollution and possible development of antibiotic resistant enterobacteria, it is proposed that the application of pharmacological doses of zinc oxide should be restricted to the first week after weaning." *Starke IC, Pieper R, Vahjen W, Zentek J,* <u>FEMS Microbiol Ecol.</u> 2014



Potential of reduction of antibiotics/ ZnO - I

Germany – a nationwide field study (UET 6 months before and after vacc.)

In 179 farms the impact of the vaccination with Ecoporc SHIGA with respect to the use of oral antimicrobials (colistin sulfate and zinc oxide) was calculated. 1

Total use of antimicrobials

¹ K. Lillie-Jaschniski, M. Köchling, T. Lindner: Erste Erfahrungen mit dem Einsatz von ECOPORC SHIGA, der neuen Vakzine gegen Ödemkrankheit – Auswertungen aus Feldversuchen in Deutschland; Tierärztl. Umschau, 68, 377-382 (2013)

E Longitudinal Study in The Netherlands

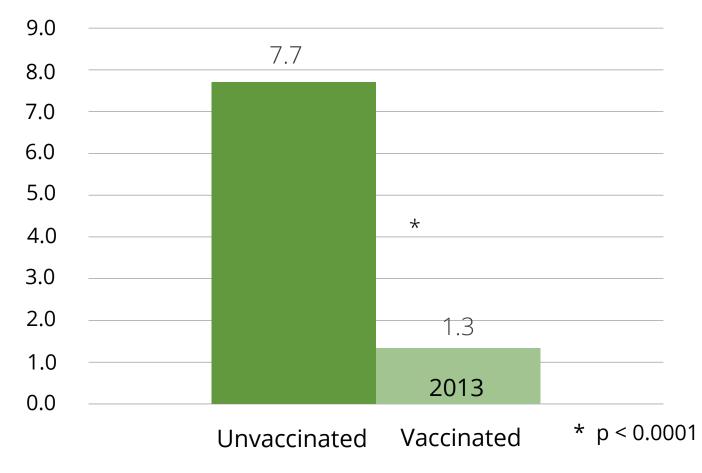
- Farrowing and nursery farm with 600 sows
- 28-30 sows with 12 piglets every week
- Weaning after 25 26 days
- Nursery unit: 2600 piglets \rightarrow 10-12 / pen
- Edema disease as sporadic outbreaks shortly after weaning
- Overall mortality of 7.7% in 2012
- Metaphylaxis Colistin for 10 days
- Feed crude protein reduced to 16%

Fricke et al. 2015 *Porcine Health Management*

Fricke et al. : Material and Methods

Comparison:

2012 52 week groups metaphylactic treatment with **Colistin**

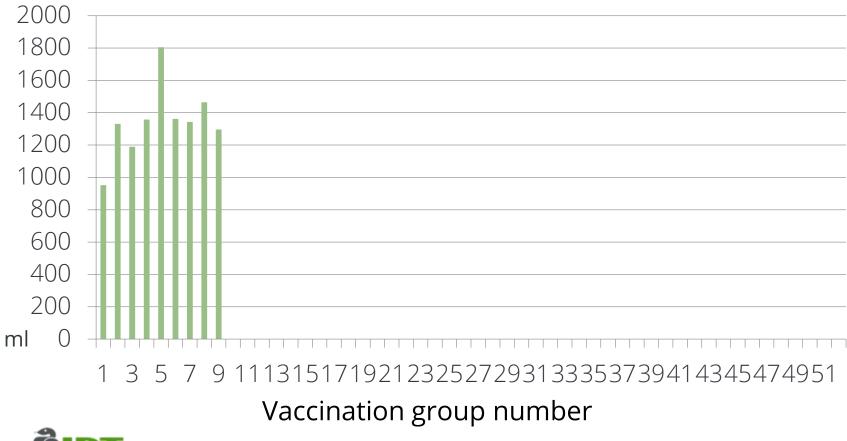

Observed parameters:

- Mortality in nursery period
- Antibiotic use in nursery
- Body weight at sale

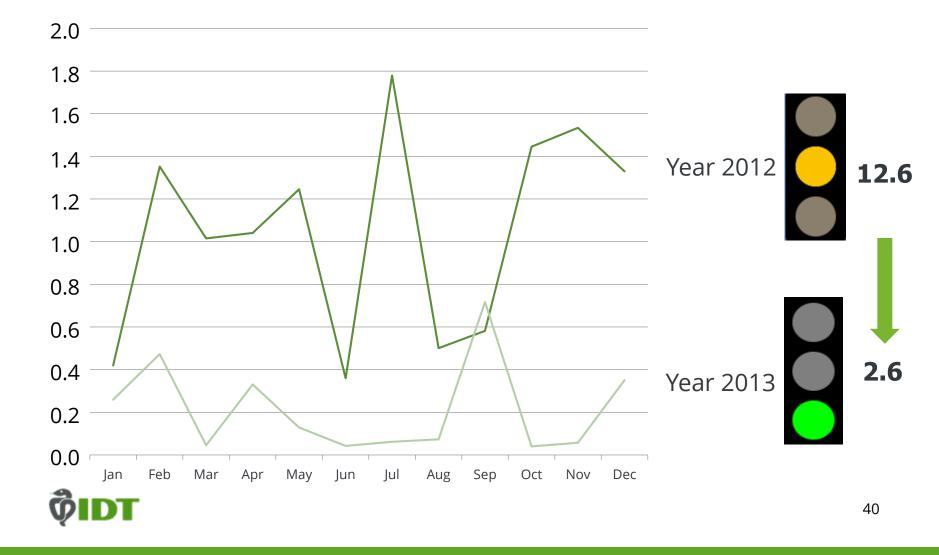
2013 52 week groups vaccination with **Ecoporc SHIGA**



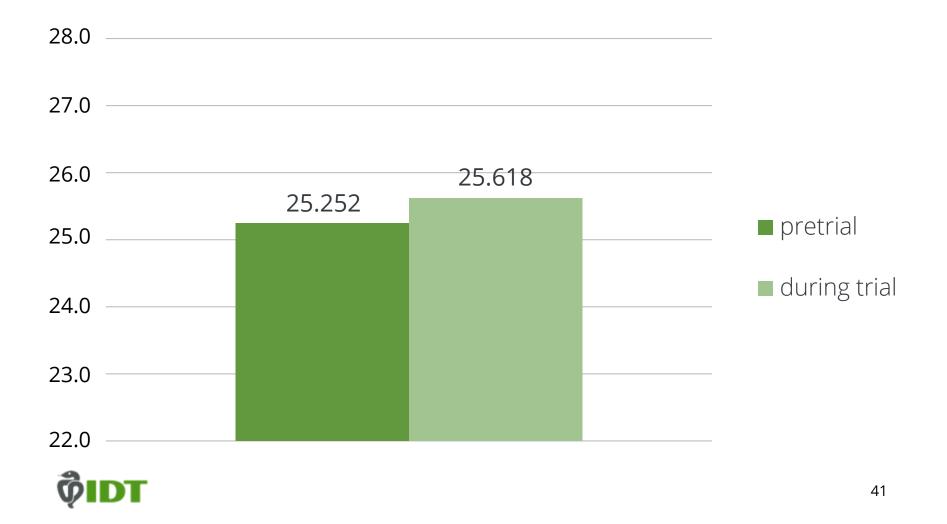
Ericke et al.: overall mortality rate %



Ericke et al.: causes of mortality

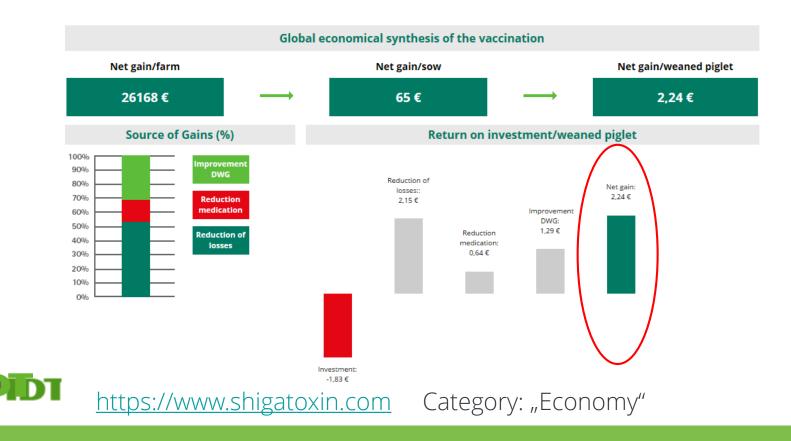

Fricke et al.: antimicrobial use

Metaphylactic use of Coliplus in 2.000.000 IU/ml[®] in nursery

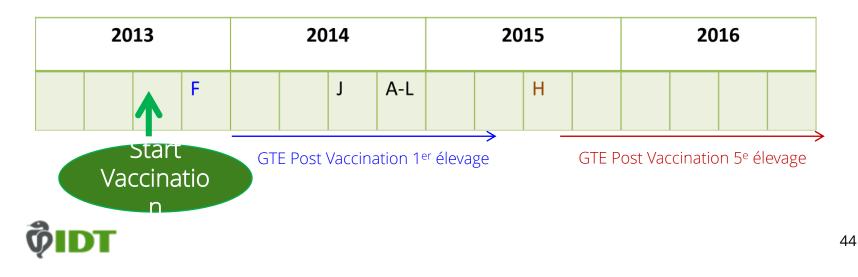


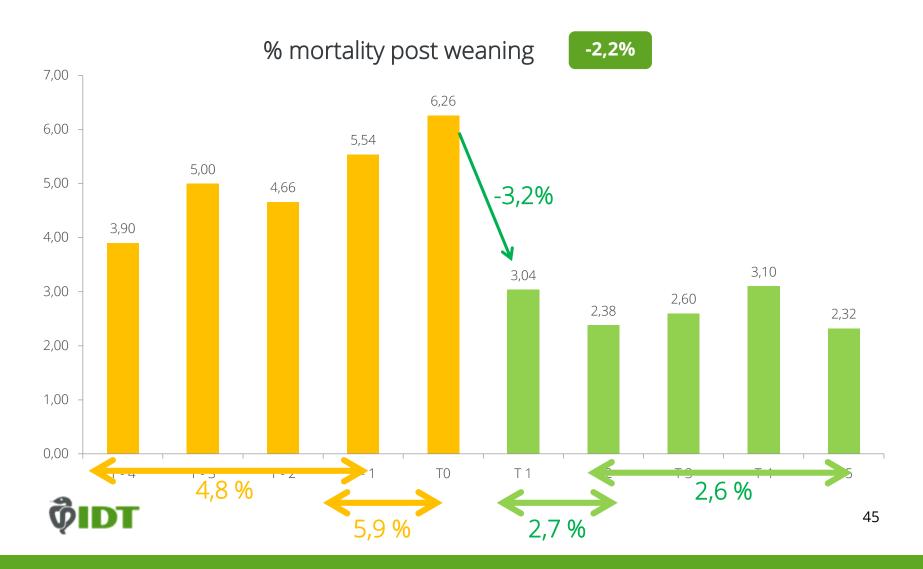
Fricke et al.: antimicrobial use

Fricke et al.: body weight at sale (KG)


Results from French field trials (UET, 6 months before and after vacc.) 32 farms 184 935 piglets

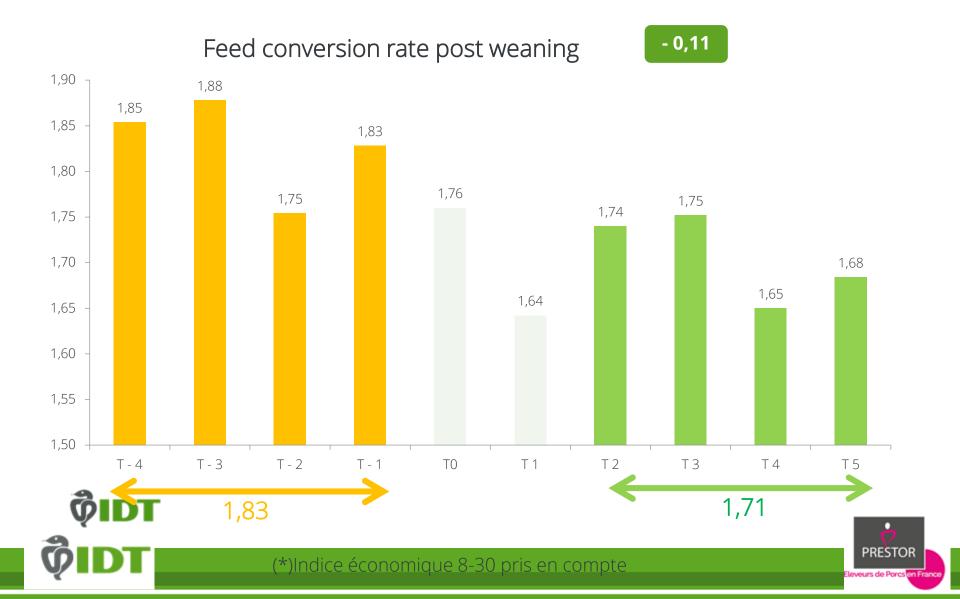
	Non vaccinés	Vaccinés	Ecart	
Piglets (un)	99259	85676	en Valeur	en %
% Mortality PW	6,96	1,69	-5,26	-76%
Wheight end PW (kg)	28,83	31,05	2,21	8%
Atb Reduction (€)			0,46	
Other costs			0,18	
DWG PW	442	475	33,06	7%
		\bigcirc		

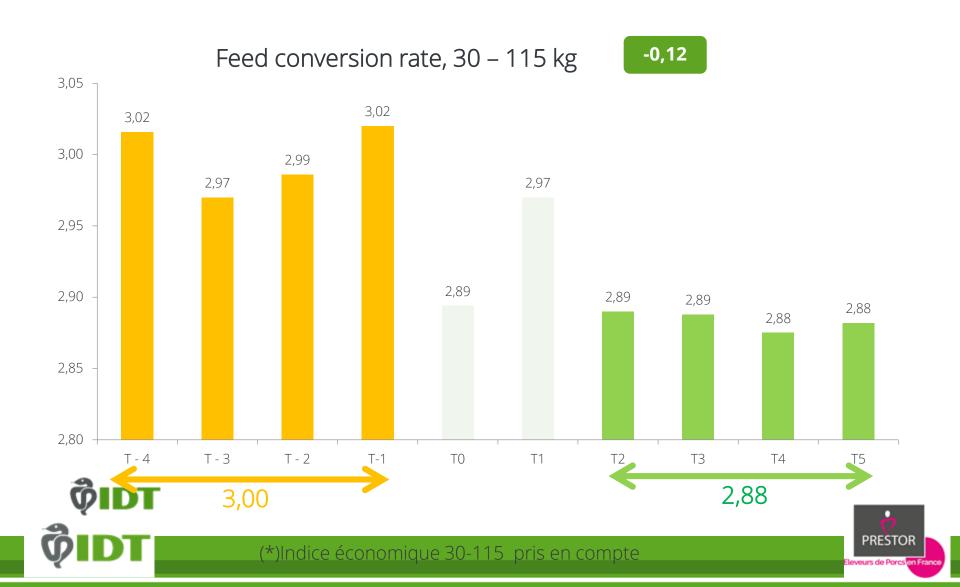

Positive Return On Investment - ROI Example for 400 sow herd



Longitudinal study in France (before and after vacc.) Farm Selection:

- 5 farms selected
- Criteria: History OD, quarterly report&software, any relevant change


Calendar:


T4 : Eleveur A exclu car arrêt momentané de vaccination. 8% pertes PS

Daily weight gain post weaning + 5 gr 490,0 486,6 485,2 484,0 480,0 480,0 477,8 473,6 469,8 470,0 461,8 460,0 456,8 454,8 450,0 440,0 430,0 T - 3 T - 2 Τ1 T - 4 T - 1 ТO ТЗ Τ4 Т2 5 472,6 Ō 467,4 PRESTOR veurs de Porcs<mark>en Fran</u></mark>

PRESTOR Bleveurs de Porcs en France

Ecoporc SHIGA® vaccination and performance improvement

D. Autret (1), <u>Ph. Leneveu</u> (3), A. Jardin (3), H. Pelleau (2), T. Goues (2), O. Perrot (2), P. Créac'h (3), V. Gotter (4) (1) Selas de l'Iroise, (2) Prestor, (3) IDT Biologika France, (4) IDT Biologika GmbH

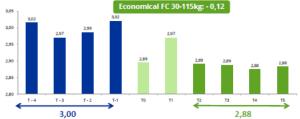
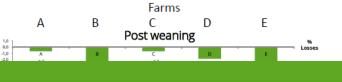
Introduction and Objectives

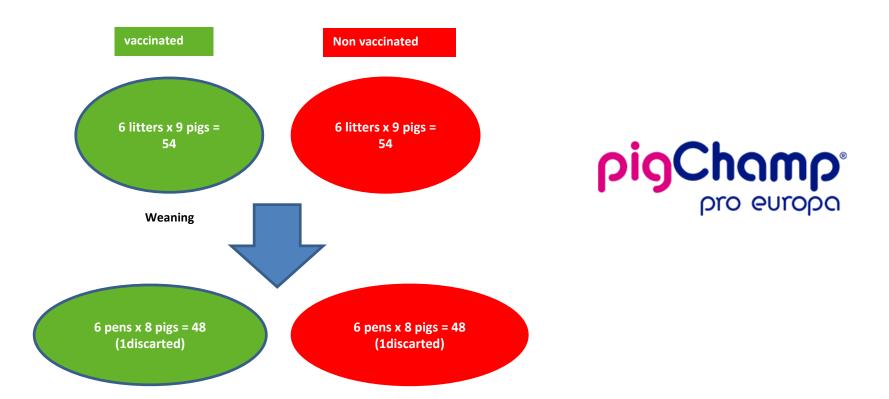
Edema disease (ED) is a disease due to an enteric bacteria, *E. coli* producing Shiga toxin 2e (Stx2e). Since October 2013, Ecoporc SHIGA®, a vaccine against Stx2e is available in France. The vaccine reduces mortality and clinical signs due to ED, but users observed that vaccinated pigs showed a better global health and better performance. This study was conducted to scientifically verify these observations.

Materials and Methods

Inclusion criteria of the farms (n = 5; 35 000 weaned piglets per year) were:

 Clinical ED post weaning (PW) and implementation of Ecoporc SHIGA[®] for over 1.5 year


Figure 1 : evolution of economical FC 30-115 in the group

Criteria (weaning to slaughter house)	Gain	Technical Impacts	Benefit/pig (Carcass market price=1,50€)	% of total benefit
% losses	3%	+0,8 pig/sow	2,0€	33%
ADG	+20 gr	+3 kg /pig	1,5€	25%
FC	-0,12 pt	- 10 Kg feed/pig	2,5€	42%
Total			6€	100%

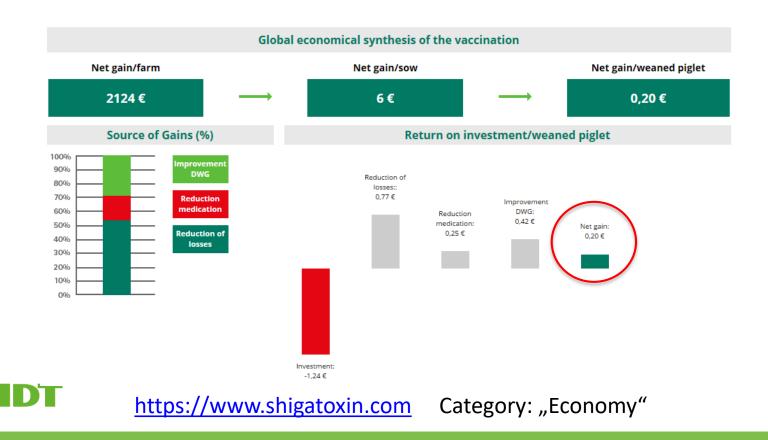
Table 1: evolution of performances of the group, 1 year before / 1 year after vaccination and technical and economical impact (see separated PW and fattening data in proceedings)

52

- 15 batches tested without antibiotics in feed
- Removing 1 batch with unusual consumption + removing outliers (Cox test).



Longitudinal trial, vaccinated and non vaccinated batches in parallel


	BODY WEIGHT (kg)		AVERAGE DAILY GAIN (g/d) AVERAGE		AVERAGE D	DAILY FEED INTAKE (g/d)		FEED CONVERSION RATIO (g/g)				
	DAY 0	DAY 14	DAY 56	PRESTARTER	STARTER	TOTAL	PRESTARTER	STARTER	TOTAL	PRESTARTER	STARTER	TOTAL
CONTROL	7,72	10,22	17,18	183,1	369,9	291,4	232,7	543 <i>,</i> 0	410,5	1,365	1,482	1,416
VACCINE	7,88	10,13	17,31	175,3	386,4	298,0	223,9	578,1	428,1	1,331	1,502	1,439
SEM	0,088	0,066	0,131	5,060	5,209	4,266	4,708	8,823	6,112	0,035	0,018	0,013
P TREAT	0,1895	0,3413	0,5078	0,2766	0,0270	0,2828	0,1894	0,0056	0,0440	0,5001	0,4282	0,2114
P BWO	-	<.0001	<.0001	0,6213	<.0001	<.0001	0,5609	<.0001	<.0001	0,6438	0,4292	0,4008
n=6 per batc	h											
total n=90 pe	er treatment g	roup										

	DEATHS (%) chi-cuadrado						
	PRESTARTER	STARTER	TOTAL				
CONTROL	0,29	3,24	3,53				
VACCINE	0,45	0,30	0,75				
P TREAT	0,6422	<.0001	0,0004				

Summary and Conclusions

IDT Biologika

Summary: Information on ED & STEC

1) Edema Disease is a problem everywhere in the world

2) Shigatoxin 2e (Stx2e) producing *E. coli* (STEC) are the cause of Edema Disease

3) Edema Disease can present itself clinically in numerous ways – which is why **differential diagnostics** are crucial

Conclusion

Diagnostics are the basis of success with

Ecoporc SHIGA

Thank you for your attention!

