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Abstract: In this paper, a first insight on ―non-conventional‖ structural patterns, to be adopted in tube 

configurations for tall buildings, is provided. The idea is to investigate the mechanical properties of non 

conventional structural patterns, both regular (Hexagonal Grid, i.e. HexaGrid) and irregular (grid inspired by the 

Voronoi tessellation), in order to assess their applicability, and to compare their potential efficiency to the more 

popular diagrid system. For this purpose, a classical homogenization-based micromechanical approach has been 

employed, by deriving sensitivity analyses and generalized stress-strain relationships for both regular and 

geometrically distorted irregular pattern units, the latter obtained by perturbing prescribed key geometrical 

features of the Representative Volume Element to control Voronoi morphologies and predict associated 

mechanical properties. On the basis of a simple stiffness criterion, a preliminary design procedure is proposed and 

applied to a tall building case study whose bearing skeleton is conceived on the basis of the investigated 

unconventional structural patterns. 
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Introduction 

The fundamental conceptual simplification for the 

structural design of tall buildings, ―The Idea‖ (Baker 

2013), is to consider the building as a giant cantilever 

beam, with overturning moment and shear force 

known a priori, and lateral deformation given by a 

combination of flexural and shear modes, i.e.: 

4 2q H q H
δ δ δ χ

tot bending shear 8EI 2GA
          (1) 

where: q is the uniform horizontal load 

representative of the wind action, H is the beam 

length (i.e. the building height), A and I are 

respectively the area and the moment of inertia of the 

beam cross section, E and G are respectively the axial 

and shear moduli and χ  is the shear factor. A 

stiffness based criterion for preliminary sizing the 

cross section (area and inertia) of the equivalent beam 

consists in setting a maximum value for the top 

displacement, e.g.: 

max tot

H
δ δ

500
          (2) 

The ideal cross section for a cantilever beam is a 

hollow section; structural configurations for tall 

buildings best reflecting this optimum section shape 

of the equivalent giant beam are the ones employing 

the tube concept: the four building facades act as two 

flanges and two webs of the hollow cross section, the 

former mainly resisting bending moment through 

axial tension and compression, the latter providing 

shear resistance. 

It should be pointed out that the building 

facades are usually made of a grid of structural 

members instead of solid panels, and the 

shear-resisting mechanism of the façade grid strongly 

affects the tube efficiency. In this perspective, diagrid 

structures - the latest mutation of tube structures - 

show an extraordinary efficiency, related to the 

adopted geometrical pattern: thanks to the triangle 

tessellation of the façades, internal axial forces are 

largely prevalent in the structural members, thus 

shear lag effects and racking deformations are 

minimized (Mele et al. 2014). Being also adaptable to 

whatever surface, diagrid is becoming the most used 

structural solution for tall buildings of complex form 

(Montuori et al. 2013, 2014 a, 2014b). 

However, alternative, non conventional, 

geometrical patterns are worth of consideration for 

their structural and aesthetical qualities. Natural 

patterns, i.e. geometrical patterns observable in 

nature which reflect the unquestionable laws of 

economy and efficiency (Perez and Gomez 2009; 

Hensel et al. 2009), can be a fruitful and almost 

endless source of inspirations for efficient man-made 

structures, at all scale levels (from the very tiny - 

material design - to the biggest – tall buildings - 

embracing all intermediate steps). In the context of 

material science and engineering, heterogeneous and 

cellular materials, as well as hierarchical natural 

organisms, have been intensely studied in the last 

decades (Gibson and Ashby 1988; Fraldi and Cowin 

2004; Lakes 1993) and inspired the biomimicry 
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approach for the conception and fabrication of man 

made products. An example is the adoption of the 

hexagon-based beehive configurations for creating 

honeycomb structure which provides a composite 

material with minimal density and relative high 

compression and shear properties, thereby obtaining 

high efficiency (strength - or stiffness - to weight 

ratio).  

The lesson of the nature has been received in 

different ways and at different extents by the 

engineering design disciplines: while composite 

materials, foam structures, sandwich panels are 

typical applications at the material-scale level, a more 

superficial and incomplete awareness of the 

efficiency philosophy taught by nature can be found 

at macro-scale level, in the field of civil engineering. 

In particular, the structural designers operating in the 

field of building engineering is less prone to explore 

ideas coming from the field of natural structures and 

to experiment novel bio-inspired structural systems.  

Figure 1. Example of non conventional structural 

patterns 

Actually, some suggestions in this direction 

come from the architecture realm, with a stunning 

variety of proposals, projects, visions, more or less 

consciously inspired by natural structures, such as 

foams, seashells, radiolariae, glass sponge, bone 

tissue, coral or cactus skeletons, etc. It is worth 

noticing that the above patterns are often based on 

non regular hexagonal meshes, that can be 

represented by Voronoi diagrams (Voronoi 1908; 

Montuori et al. 2015). In figure 1 a collection of tall 

buildings inspired by natural patterns is shown, 

mainly concerning architecture proposals in design 

competitions. 

The design, modelling and analysis of such 

structural patterns are not as straightforward as in the 

case of the traditional orthogonal pattern (the 

beam/column frame), therefore a challenging and 

exciting task for the research in structural engineering 

is the attempt to bridge the gap between design 

visions and actual constructability. 

In this perspective, the authors have undertaken 

a wide research activity starting from the idea that 

natural structures, as well as cross-fertilization 

between science and engineering, can inspire also 

man-made products at the mega level, namely 

structures for high-rise and long-span buildings, thus 

providing a radically new repertoire of forms and 

systems for challenging architectures. As a first step 

of the research undertaken by the authors, 

hexagon-based patterns are currently being examined 

as tube structural grids for tall buildings. Objects of 

the study are both regular and non-regular 

(Voronoi-like) patterns: the formers are patterns made 

by uniform tessellation of hexagonal cells, appointed 

as hexagrids, while the latters, the non regular 

patterns, are either fully based on Voronoi diagrams, 

or mixed regular (hexagrids) and irregular (Voronoi) 

patterns. 

In the paper (Montuori et al. 2015) the authors 

have focused attention to regular horizontal hexagrid 

patterns (i.e. hexagonal patterns made only by 

horizontal and diagonal structural members). Major 

aims of the paper have been the investigation of the 

structural properties of hexagrids, the assessment of 

their applicability in tall buildings, the definition of a 

simple design procedure for the preliminary sizing of 

the structural members composing the hexagonal 

pattern, and the comparison of their potential 

efficiency to the more popular diagrid systems. 

In this paper, non regular patterns based on 

Voronoi diagrams are considered for structural grid of 

tall building façades, thus obtaining Voronoi tube 

structures. In section 2 the objective and approach 

utilized in the paper are stated; then in section 3, the 

geometrical definition of Voronoi diagram is 

introduced, and the procedure for the generation of 

Voronoi diagrams adopted in this paper is explained; 

in section 4 and 5 the general methodology for the 

mechanical characterization and the homogenization 

process of a structural grid is presented and applied to 

regular hexagrid; then in section 6 and 7 the 

additional steps required for a non-regular, 

Voronoi-like grid are provided and discussed; finally 

in section 7 a design procedure is proposed, applied 

to and validated for a model building. 

Objective of the work and methodology 

With reference to the stiffness based design criterion 

expressed through Eqs. (1-2), an appropriate 

procedure for taking into account the discrete nature 

of the structural grid acting as flanges and webs of 

beam cross section should be defined in order to 

preserve the conceptual scheme of equivalent 

cantilever beam; in other words, in the Eq. (1) 

appropriate values (EI)grid and (GA)grid should be  

substituted to EI and GA: 
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   

4 2

tot bending shear

grid grid

q H q H
δ δ δ χ

8 EI 2 GA
         (3) 

This kind of approach is proposed by (Kwan 

1994), with a methodology for dealing with frame 

tube panels as equivalent orthotropic membranes, so 

that the framed tube could be analyzed as a 

continuous structure. 

A more general methodology is proposed in this 

paper for dealing with grid-like structures: the idea is 

to model whichever grid as a continuous depleted 

medium, characterized by penalized mechanical 

properties, according to the classical 

micromechanical approach based on homogenization 

methods (Hashin and Shtrikman 1996); the 

macroscopic penalized properties of the structure, 

appointed as effective properties, will account for 

both the mechanical properties of the solid matrix and 

the micro-structural features of the grid, namely 

topology, density, orientation. 

Basically, the procedure consists in evaluating 

the effective axial and shear moduli of the grid, 

which account for the geometric and elastic 

properties of structural members as well as for the 

geometrical pattern of the grid. Once the effective 

axial stiffness and racking shear stiffness of the grid 

are evaluated, the standard formulae defined for a 

solid tube can be utilized for calculating the 

horizontal deflections of the homogenized grid tube 

Eq. (3); that is, the stiffness based design criterion for 

a tube tall building, Eq. (2), can be specified 

substituting EI and GA with (EI)grid and (GA)grid, 

respectively, and the member cross section properties 

required for satisfying the limit deflection can be 

obtained. 

This is the approach already adopted in 

(Montuori et al. 2015) for regular hexagonal grids, 

where the mechanical characterization and the 

consequent homogenization of the grid consists in the 

assessment of the structural behaviour of a simple, 

unit cell (the Representative Volume Element, RVE, 

of the grid), easily identifiable thanks to the grid 

regularity and periodicity. 

In this paper the approach is extended to the 

case of irregular grids, namely a grid obtained from 

the Voronoi diagram; in this extension, a first 

difficulty arises in the identification of the unit cell, 

which, quite trivially, does not exist due to the 

non-periodicity and randomness of the grid. 

The approach here proposed for overcoming 

such difficulty consists in defining the correlation 

between the average mechanical properties of the 

irregular (Voronoi) patterns and regular (hexagrid) 

counterparts on a statistical basis; the aim is to define 

the appropriate correction factors which allow for 

calculating the average mechanical proprieties of the 

Voronoi patterns, known the ones of a reference 

regular pattern. 

Voronoi diagrams: geometry and generation  

Geometric definition 

The Voronoi diagram (or tessellation) is the 

mathematical explanation for a visual pattern often 

found in nature, as in the structure of leaves, in the 

skin of animals, and in several life forms. In 

mathematics, ―a Voronoi diagram is the division of a 

space into contiguous neighbouring cells, which 

relate to a set of points (Voronoi sites) in that space; 

each point has an associated cell consisting of all the 

points closer to that site than any other‖ (Burry and 

Burry 2010). 

For the construction of the Voronoi diagram, 

firstly a set of points (appointed as seeds, sites, or 

generators) should be defined; then, for each seed, a 

corresponding region (appointed as Voronoi cell) is 

obtained as the one consisting of all points closer to 

that seed than to any other. The Voronoi construction 

can be carried out both in plane, giving rise to 

two-dimension Voronoi tiling, and in space, giving 

rise to three-dimension Voronoi tessellations. 
Theoretical and practical applications of 

Voronoi diagrams widely spread over several fields 

of science and technology, going from astrophysics, 

epidemiology, geometry, networking, hydrology, 

meteorology, ecology, computer graphics, 

computational fluid dynamics, etc (Aurenhammer 

1991). In particular, Voronoi tessellations are widely 

used in the context of material science, for 

representing polycrystalline microstructures of 

metallic alloys (Wigner and Seitz 1933), and in the 

field of biology, for modelling different natural 

structures, including cells and bone microarchitecture 

(Bock et al. 2010); in the framework of material 

engineering and design, the Voronoi diagram is the 

major approach for modelling and analyzing cellular 

materials and solid foams (Silva and Gibson 1997; 

Vajjhala et al. 2000). 

Figure 2. Voronoi patterns for tall buildings: Use 

Arrangement‖ Christian Hahn eVolo 2010 Skyscraper 

competition entry; SOM competition entry, tower in 

Tianjin; Lava Bionic Tower. 

The division of space according to Voronoi 

diagrams and their numerous generalizations are a 

rich source for the design of spatial structures, which 

b c 
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inspired many architects. The concept works in the 

plane, for input points on a surface, as well as in 

space, as can be seen from the skyscraper proposals 

provided in figure 2a (eVolo 2010), figure 2b 

(Beghini et al. 2014) and figure 2c (LAVA 2017), 

which explicitly refer to both 3D and 2D Voronoi 

tessellations; in particular it can be observed that the 

project represented in figure 2a utilizes the Voronoi 

partition as a 3D strategy for space subdivision, that 

can be an interesting conceptual approach for 

unifying form, function and structure in the building 

design. 

 

Voronoi tessellation 

Several methods (Zheng et al. 2005; Fazekas et al. 

2002; Zhu et al. 2001; Silva et al. 1995) are reported 

in the scientific literature for the generation of the 

Voronoi tessellation. The method proposed in (Li et 

al. 2005) is used in the following, since it allows for 

controlling the irregularity degree of the Voronoi 

diagram. 

 Figure 3. Voronoi construction applied to Delaunay 

disposition of seeds. 

The starting point is a regular geometry, 

obtained by applying the Voronoi construction to a 

regular grid of seeds; in particular in this paper, 

regular hexagonal patterns are considered as initial 

geometries. figure 3 shows how regular honeycomb 

can be generated from seeds arranged at the vertexes 

of equilateral triangles (i.e. according to a Delaunay 

tessellation, which is dual to Voronoi diagram). 

The second step is to randomly modify the 

regular array of seeds; for this aim, the coordinates 

 s s

1 2x ,x  of the generic seed s  are perturbed (figure 

4) through two random variables ϑs  [0, 2] and s 

 [-1, 1]. The variable ϑs is a random angle between 

the x1 axis and the line connecting the perturbed and 

the non perturbed position of the seed s; it is assumed 

to be distributed according to a uniform distribution 

with the following probability density function:  

  s

s s

1 2π 0 2π
P

0 -1, 1
s




 

 
 

 
      (4) 

The variable s is a random scale factor, 

distributed according to a uniform distribution with 

the following probability density function:  

  s

s s

1 2 -1 1
P

0 -1, 1
s




 

 
 

 
      (5) 

Therefore the perturbed coordinates (x1
s
, x2

s
) 

are defined by using the following equations 

 
s

s
11 0 s sx x α d Cos          (6) 

 
s

s
22 0 s sx x α d Sin          (7) 

where α  [0,1] defines the irregularity degree 

of the Voronoi grid, namely α = 0 corresponds to the 

regular hexagonal grid, while α = 1 corresponds to 

Voronoi grid with maximum degree of irregularity. 

Figure 4. Geometric perturbation of the coordinates of 

regular array of seeds. 

The last step is to apply the Voronoi tessellation 

to the arrays of points modified through the equations 

(6) and (7), in order to obtain patterns with 

irregularity governed by the α parameter. The 

fundamental role played by α is
 

clearly shown in 

figure 5, which provides three specimens with the 

same overall dimensions and number of unit cells but 

with different degree of irregularity, i.e. different 

values of α adopted in the generation process. For α = 

0  (figure5a) a regular honeycomb structure is 

generated; increasing α (figure5b), the irregularity of 

the pattern increases and for α = 1 (figure 5c) a 

geometry with the maximum irregularity degree is 

obtained. Of course, for each values of α (i.e. for each 

level of irregularity), infinite geometric configurations 

can be generated varying the random parameters s 

and ϑs. 
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Figure 5. Effect of α: a) α = 0; b) α = 0.5;  c) α = 1. 

The process described to generate the Voronoi 

geometries has been automated by implementing a 

specific algorithm in Grasshopper environment 

(Rhinoceros 3D
®
). The algorithm is made by a cluster 

of functions which allows to: i) create a regular 

arrangement of seeds (as shown in figure 3); ii) set the 

required irregularity level; iii) alter the coordinates of 

the s-th
 

seed by means of the Eqs. (6-7), using two 

different random engines for the two random variables, 

s and ϑs; iv) generate the Voronoi geometry, i.e. the 

polygonal cells, from the perturbed seeds. Using this 

algorithm, a large number of samples can be generated 

with a rigorous method and with low time 

consumption. 

Mechanical approach for regular and 

irregular patterns 

In order to apply the design procedure described in 

the previous section, the correlation between the 

geometrical characteristics of the irregular Voronoi 

patterns and the mechanical properties of the 

homogenized material should be identified. The idea 

is to use the typical approach in the field of cellular 

materials, in which the mechanical properties of a 

real cellular solid are calculated defining an ideal unit 

cell (i.e. the geometric unity that through replication 

allows to obtain the overall geometric pattern without 

overlaps or gaps). For examples, hexagonal cell are 

used to describe many 2D honeycomb-like cellular 

solids, while cubic, tetrahedral and dodecahedral 

solid are used for tridimensional cellular materials. 

Using this simplified unit cells, the relationships 

between the microstructure and the overall 

mechanical proprieties (e.g. relative density, axial 

and shear stiffness) can be derived in closed form 

(Silva et al. 1995; Gibson and Ashby 1997; Li et al. 

2003). As already recalled, a similar approach, 

though applied to a rectangular orthogonal pattern, 

was used in (Kwan 1994) for the design of framed 

tube structures, and more recently in (deMeijer 2012) 

and (Montuori et al. 2015) for the design and analysis 

of hexagrid and diagrid structures. 

In the following a brief description of the 

overall mechanical proprieties useful for the design 

process, is reported. 

The overall mechanical response can be 

obtained starting from the unit cell as well; in 

particular it is necessary to introduce the so-called 

Representative Volume Element (RVE), which is 

defined as the smallest homogeneous material 

volume which macroscopic constitutive relationships 

must be referred to (Nemat-Nasser and Hori 1999); 

therefore the RVE can be considered as the structural 

idealization of the unit cell.  

Figure 6. RVE mechanical tests: a) axial test along x1; 

b) shear test. 

Once defined the RVE, the effective mechanical 

properties of the 2D structural grid, E1
*
, E2

*
, G12

*
 and 

G21
*
 can be obtained by means of numerical tests on 

the RVE; in particular, the Elastic Axial Modulus E1
* 

is defined as the ratio of the uniaxial normal stress 

1ζ  divided by the uniaxial strain 1ε  in the elastic 

range, for the reference specimen (the RVE) subject 

to simple axial load, as illustrated in figure 6a for the 

direction of load x1, as well as in figure 6b,  for the 

direction of load x2. Normal stress is the average 

normal force (F1) acting perpendicularly on a surface 

per unit cross-sectional area (L2b). Strain is the 

shortening, or lengthening (Dx1) of the RVE divided 

by the initial length (L1) in the loaded direction. 

* 1

1

1

ζ
E

ε
            (8) 

where s1= F1/(L2b) and e1= Dx1/ L1. Axial modulus 

E2
* 

can be easily obtained following the same 

procedure. The Shear Modulus G12
* 

represents the 

elastic modulus used to describe, in the plane {x1, x2} 

the relationship between the deformation that occurs 

in the RVE when it is subject to a force parallel to 

one of its edge while its opposite edge undergoes an 

opposing force, as illustrated in figure 6c. It is the 

ratio of the shear stress t divided by the shear strain 

g. Shear stress is the force F2 applied parallel to the 

edge with normal 1 along direction 2, divided by the 

cross-sectional area, L2b. The shear strain, for small 

deformation, can be defined as the transverse 

displacement Dw divided by the initial length L1. 

*

12

η
G

γ
           (9)        

where t = F2/(L2b) and g =Dw/ L1. Shear modulus 

G21
* 

can be easily obtained following the same 

procedure. 

It is necessary to underline that while for 

regular patterns the RVE can be explicitly identified 

and statically solved to obtain the expression of E1
*
, 

E2
*
, G12

*
 and G21

*
 in closed form, this is not possible 

for the patterns derived from the Voronoi tessellation, 
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due to their inherent irregularity. The approach here 

proposed consists in defining the correlation between 

the mechanical properties of the irregular (Voronoi) 

and regular (hexagrid) patterns, the former obtained 

from the latter through Eqs. (6-7) for α  0. The aim 

is to the define appropriate correction factors hEi: 
**

ij,Vi,V

Ei Gij* *

i,H ij,H

GE
,

E G
            (10) 

where the subscripts H and V refer, respectively, to 

the regular hexagrid and the relative Voronoi diagram. 

The ratios hEi, hGij allow for calculating the 

mechanical proprieties of the Voronoi pattern 

characterised by a specific value of the irregularity 

factor, α, starting from the ones of the ―original‖ 

honeycomb pattern, characterized by the same 

number of seed points. 

In the following, the procedure for obtaining the 

mechanical properties of a regular honeycomb is 

briefly recalled from (Montuori et al. 2015); 

subsequently, the procedure for deriving the 

correction factors for the Voronoi counterpart is 

described. 

Mechanical proprieties of the regular 

honeycomb 

The Relative Density r is an important scalar 

geometrical quantity, defined as the ratio of the 

volume occupied by the solid material, r*, to the 

total volume of the cell, rvol. For the unit cell of a 2D 

grid made of one dimensional beam elements (see 

figure 7), the definition of ρ becomes: 

n

* i i

i 1

vol 1 2

A
ρ

ρ
ρ L L b

 


             (11)  

where n is the total number of beams in the unit cell, 

i  
and Ai are respectively the length and the cross 

section area of beams, L1 and L2 are respectively the 

dimensions of the 2D unit cell along a x1 and x2 

directions, b is the thickness of the unit cell, i.e. the 

width of the beam cross section. 

For a regular hexagrid, the relative density 

generically defined by means of Eq. 11, can be 

further specialised according to the following 

equation (figure 7): 

 
h d(h A ) (2d A )

ρ
(h d Cosθ)(2dSinθ) b





          (12)  

where h and d are respectively the lengths of the 

horizontal and diagonal beams, 
hA  and 

dA  are 

respectively the cross sectional areas of the horizontal 

and diagonal beams,  is the angle between the 

diagonal element and the horizontal axis. Considering 

a regular hexagonal grid, the RVE can be easily 

established by looking at the deformation modes and 

internal force distributions arising in the unit cell as a 

part of the global grid, under axial and shear tests. 

figure 8, figure 9,  figure 10  and figure 11 show 

the static schemes of the RVE, to be adopted for 

carrying out the axial and shear tests, respectively; 

more details can be found in (Montuori et al. 2015). 

Figure 7. Hexagrid. Definition of the relative density 

for the unit cell. 

For the axial test the global axial deformation of 

the RVE is given by the contributions of local 

bending, axial and shear deformations of the RVE 

structural members.  

Figure 8. Hexagrid axial test along x1; a) deformed 

configuration; b) definition of the RVE. 

Therefore the stiffness of the hexagrid in x1 

direction, E
*

1H, (figure 8) normalised to the Young’s 

modulus of the member solid material Es, is given by: 

  2

*

1,H

s

1

2

d

3

d

d

d

E

E

d
Sin θ+

A

ddSin θ

12Ih +d Cosθ b
+ Cos θ

2d
(1 )

A
 





 
 
 
   

  
  
  

   
   

  

(13) 

where Id is the inertia of the cross sectional areas of 

the diagonal beams respect to the flexural axis. The 

stiffness of the hexagrid in x2 direction, E
*
2H, (figure 

9), normalised to the Young’s modulus of the member 

solid material Es, is given by: 
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*

2,H

s

1

2

h d

3
2

d

d d

E

E

h d
+ Cos θ+

A 2Ah +d Cosθ

2dSin θb d d
+ (1 ) Sin θ

24I A
 





 
 
 
  

   
   

  

(14) 

Considering the shear tests (figure 10 and 11), 

the global shear distortion of the unit cell, Dw and  

Du, is caused by shortening/lengthening of elements 

subjected to axial forces, by shear deformation of 

elements under shear forces and by flexural 

deflection of elements subjected to bending moments. 

 

 

Figure 9. Hexagrid axial test along x2; a) 

deformed configuration; b) definition of the RVE. 

 

 

Figure 10. Hexagrid shear test; a) deformed 

configuration; b) definition of the RVE. 

 

Figure 11. Hexagrid shear test; a) deformed 

configuration; b) definition of the RVE. 

Therefore the shear stiffnesses of the hexagrid, 

G
*

12H and G
*
21H, normalised to the shear modulus of 

the member solid material, Gs, are given by: 

 *
12,H d

5
s

2
s 1

5 h 1 13
h 3

11

2
h h h

G 12I (1 ν) h dCosθ

G bd h Senθ

6E

I
A h 1

h

A h 24I (1 ν) χ



 



 
 

 
 

  
    
  
 

  
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*
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5
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(16) 

Where Ih is the inertia of the cross sectional area of 

the horizontal beam respect to the flexural axis and 
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The Eqs. (13-15) and Eq. (16)  only contains 

geometrical quantities, i.e. the geometrical 

characteristics of the grid (, h, d), and the 

geometrical properties of the structural member cross 

sections (Ah, Ad, Ih, Id, χh, χd ). Therefore E
*
1H/ Es, 

E
*
2H/Es, G

*
12H/Gs, and G

*
21H/Gs

r
represent the effective 

elastic properties of the reference sample (RVE), 

accounting for the global geometry of the grid and 

the local geometry of the member cross-sections.  

 

 

 

 

 

 

 

Figure 12. Effect of the Rigid Floor Diaphragm on 

Hexagrid Tubular Structures. 

This theoretical approach is the one commonly 

adopted for 2D cellular solid, based on the definition 

of a representative volume element (RVE), i.e. the 

unit statistically representative of an infinite periodic 

structure. In order to assess the representativeness of 

the RVE defined in figure 8, 9, 10, 11 and the 

reliability of the Eqs. (13-15) and Eq. (16) a 

sensitivity analysis has been carried out: axial and 

shear tests have been executed on grid panels made 

of periodic arrangements of k RVEs along x1 and x2 

directions, with k  {1,3,5,7,10,13,15}. The overall 

stiffness values calculated from the analyses prove to 

be in very good agreement with the values obtained 

through the RVE calculations. 

 

Effect of the floor rigid diaphragm 

In (Montuori et al. 2015) the application of the Eqs. 

(13-15) and Eq. (16) for the design of a tall building 

model with tube hexagonal structure has shown some 

important issues; in particular, the comparison of the 

design values of the top horizontal displacement to 

the results of FEM analysis, initially showed 

significant discrepancies. The main source of this 

large scatter is related to the effect of the rigid floor 

diaphragm (RD), which provides an additional 

restraint in the axial deformation mode of the RVE, 

and, globally, of the structural grid; this, in turn, give 

rise to a significant increase of the flexural stiffness 

of the grid tube structure. 

 The effect of the rigid diaphragm is made clear 

by looking at figure 12, which shows the deformation 

of a tube structure under vertical loads with different 

number of RDs along elevation, i.e.: a)RD only at the 

top of the building; b) RD at every 9
th

 level; c) RD at 

every floor. The comparison among the deformation 

modes suggests an analogy with the behaviour of 

laminated elastomeric bearings: the stiffening effect 

of RD on the vertical deformation of building 

structural grid is analogous to the confinement 

exercised by the steel interlayer shims on the lateral 

bulging of the rubber layers, which is accounted for 

through the primary shape factor S1, which, in turn, 

strongly affects the vertical stiffness of the isolator. 

On the contrary, the presence of the RD constraints 

does not affect the shear deformation and the lateral 

stiffness of the structural pattern, as also occurs in the 

response of laminated rubber bearings. 

Figure 13. Hexagrid shear test along x1: variation of 

the RVE due to the RD effect. 

On the basis of the above considerations, two 

procedures have been outlined for dealing with this 

problem and improving the accuracy in the 

evaluation of the vertical stiffness modification 

factor: the former is based on the definition of a new, 

appropriate mechanical model which explicitly takes 

into account the RD effect (appointed as Modified 

RVE Approach (MRA)); the latter utilizes the 

analogy with Isolator deformation mode and the 

concept of primary shape factor (appointed as 

Isolator Analogy Approach (IAA)). In the following, 

for the sake of brevity, only the first approach is 

illustrated. 

 

Modified RVE 

The so-called Modified RVE approach, simply 

modifies the RVE of the hexagonal pattern (from 

which the Voronoi pattern is subsequently generated) 

in order to account for the RD additional restraint; of 

course, the modified RVE strongly depends on the 

module height, namely on the number of floors (and 

of RD constraints) occurring along the unit cell.  

For a hexagonal patterns with height of the unit 

cell equal to the interstory height (Hunit cell = Hint), the 

RD constraint partially blocks the horizontal 

dilatations of the module, namely the horizontal 

displacements of the joints marked with solid circles 

in figure 13; therefore the ends of the diagonal 

members in the RVE cannot experience horizontal 

displacements and should be accordingly restrained. 

a b c 
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The normalized vertical stiffness for the above 

structural model is computed through the following 

relationship: 

 

*
1,H

s

d

2
2

d d d

2 2 2

d
d d d h

2
2

d d d

2 2 2

h
d d d

E 1
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

 
   

 
  

 
  
 

 
   

 


  

-1

h

2

A

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
      

(17) 

As already observed, the shear stiffness is not 

affected by the RD action, therefore the normalised 

shear stiffnesses are still provided by the equation 

(15) and (16). 

In the following, for the sake of simplicity, the 

case Ah = Ad = A and Ih = Id = I is considered, i.e. the 

same cross section is adopted for all the structural 

members of the grid. For the geometry of the grid it is 

assumed h = d and  = /3, for this case the equations 

(15) and (16) are identical, and therefore G
*
12H = 

G
*

21H. 

From Hexagrid to Voronoi 

According to the scientific literature (Zhu et al. 2001) 

the mechanical response of the Voronoi patterns 

strongly depends on the level of irregularity and on 

the relative density. Therefore, for the definition of 

the correction factors which allow to characterize a 

Voronoi pattern starting from a regular hexagrid, it is 

necessary to investigate and understand the above 

effects. 

Recalling the Eqs. (6-7), it is also evident that 

for a fixed number of cells of the original hexagrid, 

and for each values of α  (i.e. for each level of 

irregularity) and of r (i.e. for a specific relative 

density), infinite Voronoi configurations can be 

generated varying the random parameters s and ϑs. 

The RVE modeling approach used in the 

previous paragraph for investigating the mechanical 

properties of the regular honeycomb is not able to 

account for the irregularities in the Voronoi 

microstructure. In fact, the Voronoi tessellation shows 

a non-periodic pattern and the choice of an appropriate, 

statistically representative volume element is 

impossible due to a violation of the definition of RVE 

(Hole and Beckman 2012). 

Since the disorder in the Voronoi structure can 

produce a wide range of values of the overall 

mechanical properties at the macroscopic level, the 

effect of irregularity and relative density on the 

mechanical proprieties of the Voronoi patterns should 

be assessed on a statistical basis. This is precisely the 

approach suggested by Hole and Beckman (2012) and 

adopted in the following: instead of prescribing a 

volume element for executing a single analysis 

statistically representative of the global response, a 

large set of repeated homogenization analyses are 

performed on small scale Testing Volume Elements 

(TVE). 

For each specific couple of values of r and α, a 

set of TVE is generated varying the random variables 

s and ϑs. The number of TVE herein considered is 

large enough to include all pattern irregularities, and, 

although each single TVE is not able to represent the 

structure at the macro scale level, the entire set of TVE 

can be assumed as statistically representative of the 

whole pattern. A critical point, therefore, is the 

definition of the numerosity of the TVE set; for this 

aim a preliminary sensitivity analysis has been 

carried out, as described in the following section. 

Furthermore through a sensitivity analysis it has been 

assessed that, adopting a dimension of 20X18 unit 

cells for the TVE, the size effect in the results of 

mechanical tests is negligible for the aim of this 

work. 

The axial and shear tests have been performed 

through finite element (FE) analyses using the 

computer code SAP2000; the specimens have been 

modelled as assemblies of Timoshenko beam 

elements, which include bending, axial and shear 

deformations. In the FE models, the boundary 

conditions and the external forces reported in figure 

14 have been applied in order to perform axial and 

shear tests. 

Figure 14. Boundary conditions and external forces 

adopted in the FE models of the Voronoi specimens. 

Through the axial and shear tests, the values of 

the effective mechanical proprieties of the k-th 

Voronoi TVE (E
*
1,V, k, E

*
2,V, k and G

*
12,V, k = G

*
21,V, k) 

have been obtained by homogenizing the FE 

numerical results, following the relationships: 
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 *
1,V,k s sE ρ,α, ,f  

 
 *

2,V,k s sE ρ,α, ,f  

 *
12,V,k s sG ρ,α, ,f  

             
(18)

 

The ratio of the experimental values E
*

1,V, k, 

E
*
2,V, k and G

*
12,V, k = G

*
21,V, k to the original hexagrid 

counterparts, resulting from of Eq. (17), and Eqs. 

(14-15), have been computed and appointed as the 

modification factors hE1,k , hE1,k and hG12,k = hG21,k 

of axial and shear stiffness for the i-th TVE, i.e.: 
*

1,V, k

E1, k *

1,H

E
η

E


  

*

2 , V ,  k

E 2 ,  k *

2 , H

E
η

E


*

1 2 , V ,  k

G 1 2 ,  k *

1 2 , H

G
η

G


               
(19)    

 

Recalling the previous relationships, the modification 

factors are as well functions of r, α, s and ϑs. In 

force of the probabilistic distribution of the 

geometrical parameters s and ϑs, Eqs. (4-5), it is 

possible to assume an equal probability for the 

occurrence of all the analyzed TVE; then, the 

probability related to each TVE analysis is: 

 E1,k

1
p η

N


 
 E2,k

1
p η

N


 G12,k

1
p η

N


          
(20) 

 
where n is the total number of numerical experiments 

(i.e. of TVE). 

Finally the expected value for the modification 

factor can be calculated through the forms: 

   
n

E1,A E1,k E1,k

k 1

η ρ,α η p η





   
n

E2,A E1,k E1,k

k 1

η ρ,α η p η





   
n

G12,A G12,k G12,k

k 1

η ρ,α η p η



    
(21)

 

Once defined the number n of random Voronoi 

specimens (TVE) to be analyzed for collecting data 

which can be considered statistically significant, an 

extensive campaign of numerical tests has been 

performed, varying the values of irregularity and 

relative density. In particular, starting from regular 

hexagonal patterns with the same overall geometry 

and number of unit cells but variable relative density 

(ri = 0.01, 0.05, 0.15, 0.20, 0.25, 0.30), n specimens 

have been generated for each value of irregularity (i.e. 

α i = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) and 

for each value of ri.  

An important issue that has been preliminarily 

addressed is the definition of the minimum number of 

samples to be tested, in order to have a statistical 

relevance of the results. 

Figure 15. . Correction factors vs. relative density for 

different values of the irregularity parameter: a) hE1,A; 

b) hE2,A; c) hG12,A. 

Considering a ―complete‖ irregular Voronoi 

pattern (α = 1) and a low relative density (r = 0.01) 

the averages and the standard deviations of the 

mechanical properties have been calculated with 

different number of specimens (N = 10, 20, 30, 40, 

50, 60, 70, 80). It can be observed that the standard 

deviation has a small variation going from 10 to 20 

tests, while no change has been observed increasing 

the number of specimens beyond 20. 

On the basis of the sensitivity analysis results, it 

has been possible to state that considering 20 

specimens for each value of irregularity and relative 

density, statistically reliable results can be obtained. 

Recalling that 11 values of α and 6 values of r are 

considered for grasping the effects of irregularity and 

relative density, and that for each specimen 3 

numerical tests are necessary (i.e. axial tests along x1 

and x2 directions, and shear test), then a total of 3960 

analysis must be performed. 

Due to the great amount of analyses to be 

performed, an algorithm that automates the analysis 

has been defined in the Grasshopper environment. In 

a 

b 

c 
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particular the algorithm: i) exports the geometry built 

in grasshopper to a FE computer code (e.g. 

SAP2000); ii) assigns the defined cross sections to 

members according to the relative density r, iii) 

applies  the external restraints and loads, iv) 

executes the FE analysis, v) exports the results for 

subsequent elaboration. Combining this algorithm 

with the one previously described for the generation 

of the Voronoi geometries, all the numerical test 

process is automated with a remarkable reduction of 

the time consumption. 

 

Correction Factors for Voronoi Structures 

The parametric FE analysis  carried out varying both 

relative density and irregularity provides the results 

reported in figure 15; the averages values (hE1,A, 

hE2,A and hG12,A) of the twenty correction factors 

values (hE1,i, hE2,i and hG12,i) obtained for each 

couple of values α and r (varying i and ϑi) are used 

as statistical response parameters. In particular the 

average values (hE1,A, hE2,A and hG12,A) are as a 

function of r for different values of α, figure 15. 

Results show that, varying α between 0.1 and 

0.6, hE1,A is always smaller than 1, meaning that the 

axial stiffness along x1 of the Voronoi pattern is lower 

than the one of the regular hexagonal structure; in 

addition, hE1,A decreases as r increases, i.e. the 

Voronoi patterns are less stiff than the hexagrid 

counterparts as the relative density increases. For 

higher levels of irregularity (α > 0.7) and low 

densities, the figure 15a reveals that hE1,A increases 

and becomes greater than 1 (maximum value equal to 

108% for α = 1 and r = 0.01); however, for r greater 

than 0.15, a reduction of hE1,A can be observed 

(minimum value equal to 88% for α = 1 and r = 0.3). 

A similar trend can be observed for both hE2,A and 

hG12,A: for low densities (r < 0.2) the correction 

factors are always greater than 100%, i.e. the Voronoi 

specimens are always stiffer than the hexagonal 

counterparts, while increasing the density (r  0.2) 

both factors hE2,A and hG12,A
 
decrease. 

It has been reported in a three dimensional 

coordinate system the values of hE1,A, hE2,A and 

hG12,A, respectively, as a function of α and r, and the 

surfaces that best fit the point distributions. The three 

surfaces are represented by polynomial expressions, 

which define hE1,A, hE2,A and hG12,A as functions of α 
and r, i.e.: 

  2
i,A 00 10 01 20

2 3 2
11 02 30 21

2 3 3 2 2
12 03 31 22

3 4
13 04

η ρ,α k k α k ρ k α

k α ρ k ρ k α k α ρ

k α ρ k ρ k α ρ k α ρ

k α ρ k ρ

f        

          

           

    

(22) 

The polynomial coefficients (kij) for each 

surface hE1,A, hE2,A and hG12,A are reported in tab. 1  

Table 1. Polynomial coefficients (kij) for the values of  

hE1,A, hE2,A and hG12,A 

 

Design procedure 

The design procedure delineated in paragraph 2 can 

be now applied, and the Eq. (3) can be rewritten as: 

tot bending shear

4 2

* *
1,H E1,A 12,H G12,A

δ δ δ

q H q H H
χ

5008 E η I 2 G η A

  

 
 

      (23) 

where: E
*

1,H and G
*
12,H can be expressed using the Eqs. 

(15-16) respectively; hE1,A and hG12,A are only 

function of the relative density through Eq. (22), fixed 

the irregularity degree of the Voronoi patterns (i.e. the 

value of α). 

Given the overall dimensions of the building (I, 

A and H) and the external forces (q), in the Eq. (23) the 

only unknown values are the geometrical properties of 

the structural members of the Voronoi grid, which 

appear in Eq. (17), and Eqs. (14-15).  

The dimensions of the structural elements of the 

Voronoi grid obtained solving Eq. (23), allow to 

satisfy the stiffness requirements, i.e. to have a top 

drift of the building less than H/500. It is worth 

noticing that the Eq. (23) cannot be solved in closed 

form, due to the high complexity of the equations in 

play, therefore a numerical solution is necessary.  

In order to assess the accuracy of the design 

procedure and of the formulations proposed in this 

paper, a real application to a building model has been 

developed. 

The building model utilised for the design 

applications is characterized by plan dimensions and 

height equal to the Sinosteel International Plaza (Fu 

et al. 2012), i.e.: height 351 m, 90 stories, interstory 

height 3.9 m, square plan dimension 53x53 m. A 

horizontal wind action, modelled as a uniform load of 

200 kN/m, has been considered in the application of 

the stiffness design criterion. 

The structure has a central core with a simple 

frame that carries only the gravity loads and does not 

provide any contribution under horizontal loads. On 

the building perimeter a Voronoi pattern of structural 

members has been generated, giving rise to a Voronoi 

tube structure which carries tributary gravity loads 

and total wind loads (figure 16). The Voronoi pattern 

is generated starting from a regular hexagonal pattern, 

with ten hexagonal cells along each plan direction, 

a b 
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and applying the maximum level of irregularity (i.e. 

α 1 ) to the hexagonal configuration. 

Figure 16. Voronoi building, plan and elevation. 

The cross section area of the Voronoi grid 

members can be calculated by means of Eq. (23); 

fixing the thickness of the cross section of the 

Voronoi grid, the overall geometrical properties of the 

building are known. Numerically solving the Eq. (23), 

square section 1100x1100 have been obtained.  

The performance of the Voronoi structure 

designed according to the proposed procedure has 

been checked by means of finite element analysis, 

using the computer code SAP2000. The structures is 

modelled as an assemblage of Timoshenko beams, 

which include bending, axial and shear deformations; 

at the building base, the joints are fixed and rigid 

diaphragms constraints are assigned to the nodes of 

each floor. The wind load is modelled as concentrated 

forces applied at the centre of gravity of each floor. 

The horizontal displacements and the interstory 

drift along the building height are reported in figure 

17a and b, respectively; it is worth noticing that both 

the top displacement of the building and the 

interstory drift are less than the design limits (i.e. 

H/500 and h/200 respectively), thus confirming the 

efficacy of the design procedure proposed in the 

paper. 

Possible improvements, concerning member 

size optimization as well as density and/or regularity 

variations along the buildings height (figure 18) can 

be easily obtained through the proposed approach. 

 

Conclusions and further developments 

This paper has considered non regular patterns based 

on Voronoi diagrams as structural grid for tall 

building façades; after having discussed the 

procedure for the generation of Voronoi diagrams, the 

authors have defined a methodology for the 

mechanical characterization and the homogenization 

process of a Voronoi structural grid, which has also 

been specified with reference to the case of tall 

buildings facades; finally a design procedure is 

proposed, applied to and validated for a model 

building. 

 

Figure 17. Voronoi building displacement (a), and 

interstory drifts under horizontal loads (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Possible improvements of Voronoi 

structures. 

The paper makes use of an approach based on 

the definition and mechanical assessment of the RVE, 

starting from which the homogenization of the 

building façades is carried out; then a global stiffness 

design method is applied to the homogeneous 

cantilever beam equivalent to the tall building and the 

procedure for deriving the peculiar aspects related to 

the building scale and behaviour, such as the presence 

of rigid floor diaphragm, are explicitly accounted for, 

reflecting in a non-negligible stiffening effect on the 

grid global behaviour. 

The design procedure which has been tested 

against the FE analysis of a building model seems 

particularly useful for the preliminary design; in fact, 

it allows for defining the cross sections of a very 

large number of structural members, assembled 

according to an apparently random grid, by means of 

simple relationships. Of course structural analysis of 

the discrete structural grid is still necessary in the 
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phase of refined design and optimization. However 

the authors stress the usefulness of a straightforward 

tool for the initial sizing phase of a non conventional 

structural pattern. 

The study presented in this paper is part of a 

wide research, aimed to explore the non-conventional, 

bio-inspired patterns, alternative to the diagrid, to be 

used as façade structural grids for tall buildings. In 

this paper the theoretical background for providing a 

common methodology in dealing with 

non-conventional patterns for tube-like structures has 

been presented; further, the method has also been 

translated into a simplified tools for preliminary 

design and structural member sizing. 

Within the framework of the proposal approach, 

it is possible to deal with geometrical patterns 

characterized by density and/or irregularity degree 

variable along the building height. Finally, member 

size optimization, best tuning the strength and 

stiffness along the elevation, can be obtained with 

small effort and retaining the conceptual consistency 

of the procedure. 

In the author’s opinion, a worthy aspect of 

novelty of the research is the definition of a 

framework which embraces an almost endless variety 

of structural configurations, going from the 

traditional square/rectangular frame, to the diagrid, 

hexagrid, Voronoi, foam/bubbles trusses, and beyond. 

Moreover, absolutely novel is the transfer of a 

methodological approach typical of the material 

science and engineering disciplines to the context of 

structural engineering, particularly the structural 

engineering of tall buildings. Therefore the research 

constitutes an example of cross-fertilization between 

science and architecture/engineering, which goes well 

beyond the nature-inspired forms of contemporary 

architecture, since it provide a repertoire of objects 

(patterned structural solutions) and the tools for 

dealing with them. 
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