

Clean code

Goals
● Reach team consensus about clean code
● New code should be “clean”
● Old code should get “cleaner”

Pillars
● Readability
● Maintainability
● Testability

Readability - basics
● Short classes (max ~1k lines)
● Short methods (max ~60 lines; one page)
● Sensible variable and method names
● No duplication
● PSR-2, Airbnb eslint
● “Express intent”, “obviously correct”...

Readability – classes
● One responsibility
● ActiveRecord – only responsible for database

access
● Controllers – only gluing things together
● Views – only template code

Readability – methods
● No more than 5 arguments

(If more – factor out new class)
● Clear relationship between input and output

(Should be described in one sentence)
● No strange side-effects

Example: Echo only happens at top-level
Example 2: Pass object instead of object id

Express intent – arrays
● Using array as tuple:
● Better: OOP
● $token->getValue();
● Tip: Only use arrays

as arrays (not hash tables, not tuples)
● No performance difference

Scrutinizer
● “F” means: hard to read
● “A” means: probably easy to read
● New code rated “F”? More classes!

Testability
● Integration tests take time to run
● Unit tests necessary for quick feedback
● Smaller classes and methods are easier to test
● Dependencies must be explicit to be mockable
● “new” is a dependency? Replace with factories

Business logic
● “Business logic should be in M in MVC”
● But: M is a layer
● Database access is one part of that layer

(In Yii, ActiveRecord)
● Solution: Service classes (instead of helper

functions)

Services 1
● Suggestion: Put business logic in service

classes
● Services are part of model layer
● Other parts are: AR, CFormModel, Data Value

Objects

Services 2
● Put in application/models/services/<domain>
● Reasonably framework agnostic
● Dependency injection (__constructor, later DI

container)
● Factories instead of “new”
● Highly testable

Services 3
● Long helper function → service class
● Long static method → service class
● More glue code (but can be automated later)
● Testable code is more abstract than imperative

(spaghetti vs ravioli; layer of indirection)

Services 4
● $survey->activate()

 activated = 1, save
● Service: SurveyActivator, 1k LoC?

application/models/services/survey/SurveyActivator.php
● Object reification

”Object for a concept”, or “Object for a problem”
Further: “Patterns for expressing design intent in code”

Services 5
● Example in branch bug/15747-refactor-theme-

converter-to-service-class

Maintainability
● “Possible to add new features without touching

old code”
● Inheritance, events, reflection

(new $class, $class→$method)
● Hard!
● Further reading: The expression problem

Docs and specs
● Would top-down design increase code quality?
● “Think before you do”
● UML?
● Use-case, scenario?
● Manual

Stress
● High pressure → ugly code?
● When and why are we stressed?
● When and why do we compromise on code

quality?

End
● “Perfect is the enemy of good”
● “Good-enoughness”
● “Number of wtf” - subjective?
● Messy code that works > clean code that

doesn’t work?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

