Clean code

Goals

e Reach team consensus about clean code
e New code should be “clean”
* Old code should get “cleaner”

Pillars
* Readability
* Maintainabllity
* Testablility

Readability - basics

Short classes (max ~1k lines)

Short methods (max ~60 lines; one page)
Sensible variable and method names

No duplication

PSR-2, Airbnb eslint

“Express intent”, “obviously correct”...

Readability — classes

* One responsibility

* ActiveRecord — only responsible for database
access

* Controllers — only gluing things together

* Views — only template code

Readability — methods

* No more than 5 arguments
(If more — factor out new class)

* Clear relationship between input and output
(Should be described in one sentence)

* No strange side-effects
Example: Echo only happens at top-level
Example 2: Pass object instead of object id

Express intent — arrays

o Using array as tup|e: switch (strtolower($token[0]1)) {

case 'or':
] e "||":
¢ Bettel‘. OOP - sresult = array((%$argl[@] or ¢
break:
» $token->getValue(); case Jand”
. T|p Only use arrays -Ern—s:ﬂ- = array((%argl[8] and

as arrays (not hash tables, not tuples)
* No performance difference

Scrutinizer

* “F" means: hard to read
* “A” means: probably easy to read
* New code rated “F"? More classes!

Testability

Integration tests take time to run

Unit tests necessary for quick feedback
Smaller classes and methods are easier to test
Dependencies must be explicit to be mockable
“new” Is a dependency? Replace with factories

Business logic

* “Business logic should be In M in MVC”
 But: M Is a layer

* Database access Is one part of that layer
(In Yii, ActiveRecord)

* Solution: Service classes (instead of helper
functions)

Services 1
e Suggestion: Put business logic in service
classes
* Services are part of model layer

* Other parts are: AR, CFormModel, Data Value
Objects

Services 2

Put In application/models/services/<domain>
Reasonably framework agnostic

Dependency injection (___constructor, later DI
container)

Factories instead of “new”
Highly testable

Services 3

_ong helper function - service class

_ong static method - service class
More glue code (but can be automated later)

Testable code Is more abstract than imperative
(spaghetti vs ravioli; layer of indirection)

Services 4

* $survey->activate()
activated = 1, save

e Service: SurveyActivator, 1k LoC?
application/models/services/survey/SurveyActivator.php

* Object reification
"Object for a concept”, or “Object for a problem”
Further: “Patterns for expressing design intent in code”

Services 5

* Example in branch bug/15747-refactor-theme-
converter-to-service-class

Maintainability
* “Possible to add new features without touching
old code”

* |nheritance, events, reflection
(new $class, $class —» $method)

* Hard!
* Further reading: The expression problem

Docs and specs

Would top-down design increase code quality?
“Think before you do”

UML?

Use-case, scenario?

Manual

Stress

* High pressure - ugly code?
* When and why are we stressed?

* When and why do we compromise on code
quality?

End

“Perfect Is the enemy of good”
“Good-enoughness”
“Number of wtf” - subjective?

Messy code that works > clean code that
doesn’t work?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

