

Research Context

- The limited ability of a government to rapidly allocate funds for effective response immediately after disasters is a potential bottleneck.
- Can satellite remote sensing data, as well as ground based information be used to do a rapid assessment of the economic implications at a country scale for a catastrophic flooding event?
- Can an estimate of the return period of such events be made using ancillary hydrometeorological data?
- Can financial instruments for buffering the country from such catastrophic risks be designed using an index tied to the trigger event, and loss estimates linked to it?
- Can such a procedure be tested using Thailand and Bangladesh as context?

Multi-Information fusion: Rain to Flood Loss

Damaging Events
Rain Statistic, Flooded Area, Duration, Depth

Appropriate Rainfall Statistic → Return
Period Analysis

Population, Infrastructure

Comparison of Losses Resulting from Recent Floods

Item	1988	1998	2004	2007
Inundated area of Bangladesh (%)	60	68	38	42
People affected (million)	45	31	36	14
Total deaths (people)	2,300	1,100	750	1110
Livestock killed (nos.)	172,000	26,564	8,318	40,700
Crops fully/partly damaged (million ha)	2.12	1.7	1.3	2.1
Rice production losses (million tons)	1.65	2.06	1.00	1.2
Roads damaged (km)	13,000	15,927	27,970	31,533
Number of homes fully/partly damaged (million)	7.2	0.98	4.00	1.1
Total losses in Tk (billion)	83	118	134	78
in US\$ (billion)	1.4	2.0	2.3	1.1
Source: World Bank (2007)				

Damage to infrastructure goes higher even with flood of lower magnitude

Crops, NDVI

Digital Elevation Model

Flood Area,
Duration,
Inundation
Depth

= Losses

Strategy

- Explore state of the art Remote Sensing tools for suitability to identify flood area, depth, duration; habitation, and crops. Recommend an approach that leverages older and newer sensors.
 - Build a library of events and develop/demonstrate extraction process
- Develop rapid economic loss estimation to get magnitude right.
- Proxy: Identify space-time windows for rainfall that are best correlated with losses.
- Use resulting rainfall index to estimate event return periods, AND link to potential event loss.
- Uncertainty analysis as far as possible.

Historical
Daily Rainfall
data

Identify Appropriate Rainfall Index:

Time/Space Window that gives high correlation of rainfall with flood attributes

Return Period Estimation for Index:

Peak over threshold using historical rain data or event frequency

Remote Sensing Tools:

Build Historical Flood Event Catalog Area, Depth, Duration, Crops (NDVI)

Parametric Instrument Design

Economic Loss Estimation:

Combination of Stage-Damage, Regression vs past estimates

Estimate Joint Probability Of Loss and Rainfall Index:

Use Copula to get tail dependence

Trigger event selection:

What is the median rainfall value or flooded area for a given loss of concern?

2. Trigger event selection:

What is the uncertainty of loss for specified rainfall or flood area trigger?

Trigger event selection

For specified rainfall or flood area trigger & return period estimate instrument price using loss uncertainty distribution

Event in Progress

Rapid Response Application

Day	Cumulative Rain Amount (mm)	Flooded Area	Estimated Loss (M\$)
1	20	0	0
2	30	0	0
3	120	20000	375 (200 to 450)
4	130	16000	380 (210 to 500)
5	220	120000	750 (300 to 1250)
6	225	120000	750 (320 to 1200)

Trigger Event 5 day rainfall with 200mm rain, nominal return period = 100 years

Areally averaged rainfall is monitored Flood area also monitored from remote sensing Losses should be based on actual sub-area of country flooded

Results from Examples and Thoughts ->

- Remote sensing: Identification of
 - flooded area, flooding depth, crop loss proxy, flood duration
 - Integration of loss estimation directly into Google Earth Engine
 - Use Estimated loss directly as a trigger
- Rainfall proxy based return period and loss estimation
 - Non-unique relation to any specific duration
 - Flood duration, area extremes or loss relation
 - Return period estimates
 - Event based analyses may be needed
 - Streamflow data as an index
 - Estimate return period of loss as trigger using proxies
- Rapid Economic Loss estimation
 - Formula based ~ right order of magnitude
 - Statistical Estimation