
All questions are taken from AQA Level 2 Further Maths papers that are free to find online and are questions that could be found on a <u>non-calculator</u> GCSE Maths exam.

This resource is designed for students revising GCSE maths and not Level 2 Further Maths. The paper numbers are given for refrence only.

Practice Paper Set 1 Paper 2

4 The diagram shows an isosceles triangle ABC, with AB = AC.

Work out the area of the	triangle.		
	Answer	 units ²	(5 marks)

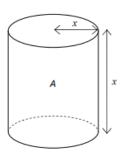
7	The diagram shows a vertical mast, AB, 12 metres high.
	Points B, C and D are on a horizontal plane.
	Point C is due West of B.
	The angle of elevation of A from C is 35°.
	Point D is due South of B.
	The angle of elevation of A from D is 23°.
	Not drawn accurately
7 (a)	Calculate the distance CD.
. (-)	
	Answer metres (6 marks)
7 (b)	Calculate the bearing of <i>D</i> from <i>C</i> .
, (D)	
	Give your answer to the nearest degree.
	Answer° (3 marks)
	Allower(3 marks)

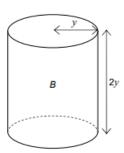
11	You are given that $x = 5^m$ and $y = 5^n$
11 (a)	Write 5^{m+2} in terms of x . Give your answer in its simplest form.
	Answer (2 marks)
11 (b)	Write 5^{m-n} in terms of x and y .
	Answer (1 mark)
11 (c)	Write 5^{3n} in terms of y .
	Answer (1 mark)
11 (d)	Write $5^{\frac{m+n}{2}}$ in terms of x and y .
	Answer (2 marks)

4	(BC =) √8	B1	
	Midpoint of BC attempted	M1	(6, 5)
	$(\frac{7+5}{2}, \frac{4+6}{2})$		
	AM^2 attempted (their $6-2$) ² + (their $5-1$) ²	M1	32 or $AM = \sqrt{32}$
	$\frac{1}{2}$ × their $\sqrt{8}$ × their $\sqrt{32}$	M1	
	8	A1ft	ft From B0 M3

Alt 4	Surrounding 5 × 5 square drawn	M1	
	Any one of $\frac{1}{2} \times 3 \times 5$ or $\frac{1}{2} \times 2 \times 2$ or	M1	
	$\frac{1}{2} \times 5 \times 3$		
	All three of $\frac{1}{2} \times 3 \times 5$, $\frac{1}{2} \times 2 \times 2$,	A1	
	$\frac{1}{2} \times 5 \times 3$		
	25 – their 7.5 – their 2 – their 7.5	M1	
	8	A1	

7(a)	$\tan 35 = \frac{12}{BC}$ or $\tan 23 = \frac{12}{BD}$	M1	$\tan 55 = \frac{BC}{12}$ or $\tan 67 = \frac{BD}{12}$
	$(BC =) \frac{12}{\tan 35}$ or $(BD =) \frac{12}{\tan 23}$	M1	(BC=) 12 tan 55 or (BD=) 12 tan 67
	(BC =) 17.13(7) or 17.14	M1	
	(BD =) 28.27(02)	A1	
	$\sqrt{\text{their } 17.14^2 + \text{their } 28.27^2}$	M1	
	33.05() or 33.1	A1ft	ft their BC and their BD
7(b)	$\tan \theta = \frac{\text{their 28.3}}{\text{their 17.1}}$	M1	
	58.7° to 58.9°	A 1	
	149°	A1ft	ft their 58.7° if M1 earned


11(a)	5 ^m × 5 ²	M1	
	25 <i>x</i>	A1	
11(b)	$\frac{x}{y}$	B1	oe
	У		
11(c)	y^3 or $y \times y \times y$	B1	
11(d)	$\frac{1}{x^2} \frac{1}{y^2}$	B2	oe eg, \sqrt{xy}
			oe eg, \sqrt{xy} B1 $x^{\frac{1}{2}}$ or $y^{\frac{1}{2}}$ or \sqrt{x} or \sqrt{y} or
			$5^{\frac{m}{2}} \times 5^{\frac{n}{2}}$


Practice Paper Set 2 Paper 2

11	The n th term of sequence X is $an + b$ The n th term of sequence Y is $bn + a$
11 (a)	Show that the sequences have the same first term.
	(1 mark)
11 (b)	The 2nd term of sequence X is equal to the 3rd term of sequence Y.
	Show that $a = 2b$
	(2 marks)
11 (c)	Prove that $\frac{n \text{ th term of sequence } X}{n \text{ th term of sequence } Y} = \frac{2n+1}{n+2}$
	(3 marks)

- Cylinder ${\it A}$ has radius ${\it x}$ cm and height ${\it x}$ cm. 13
 - Cylinder ${\it B}$ has radius $y\,{\rm cm}$ and height $2y\,{\rm cm}$.

Not drawn accurately

You are given that

total surface area of cylinder A = total surface area of cylinder B

13 (a)	Show that	$x^2 = \frac{3}{2}y^2$

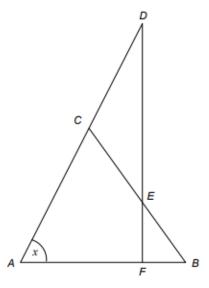
 (4 marks)

13 (b)	Which cylinder has the greater height?
	You must show your working.

Answer Cylinder (2 marks)

17	The population of Japan, J , is 1.30×10^8 The population of Brazil, B , is 1.95×10^8
17 (a)	You are given that $J: B = x: x+5$
	Work out the value of x.
	Answer x = (3 marks)
47 (1)	The constitute of Poliston in C
17 (b)	The population of Pakistan is <i>P</i> .
	You are given that $J: P = x: x + 4$
	Work out the population of Pakistan.
	Give your answer in standard form.
	Answer (2 marks)

11(a)	$a \times 1 + b = a + b$ and $b \times 1 + a = b + a$	B1	
11(b)	2a + b or $3b + a$	M1	
	2a + b = 3b + a (leading to $a = 2b$)	A1	
11(c)	$\frac{2bn+b}{bn+2b}$	M1	Allow for correct numerator or denominator correct
	b(2n+1) or $b(n+2)$	M1	Factorises either their numerator or their denominator
	$\frac{b(2n+1)}{b(n+2)}$ and shows simplification	A1	


13(a)	$\pi x^2 + \pi x^2 + 2\pi x^2 \ \ (= 4\pi x^2)$	M1	oe
	$\pi x^2 + \pi x^2 + 4\pi x^2 \ \ (= 6\pi x^2)$	M1	ое
	Their $4\pi x^2$ = their $6\pi y^2$	M1	Allow if equating curved surface areas
	Shows working leading to $x^2 = \frac{3}{2}y^2$	A1	
13(b)	$x = \sqrt{\frac{3}{2}} y$	M1	ое
	B and $x = 1.2y$ which is less than $2y$	A1	oe

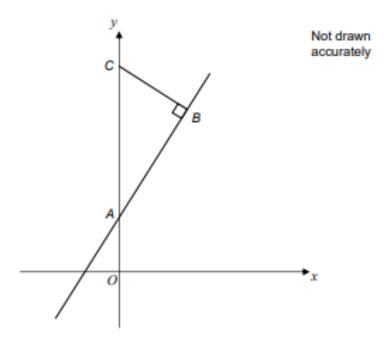
17(a)	$\frac{x}{x+5} = \frac{1.3(0) \times 10^8}{1.95 \times 10^8}$	M1	oe eg, $\frac{x+5}{x} = \frac{3}{2}$
	1.95x = 1.3(0)(x+5)	M1	oe eg, $2(x+5) = 3x$
	10	A1	
17(b)	$\frac{\text{their } 10 + 4}{\text{their } 10} \times 1.3(0) \times 10^8$	M1	$\frac{\text{their } 10 + 4}{\text{their } 10 + 5} \times 195 \times 10^8$
	(= 182 000 000)		(= 182 000 000)
	1.82 × 10 ⁸	A1ft	ft Their 10 if answer in standard form

Practice Paper Set 3 Paper 2

2	h is 60% of m.
2 (a)	Write an equation connecting h and m .
	Answer (1 mark)
2 (b)	Also, <i>r</i> is 75% of <i>m</i> .
	Work out h as a percentage of r .
	Answer % (2 marks)

7 Triangle ABC is isosceles with AC = BC Triangle CDE is isosceles with CD = CE ACD and DEF are straight lines.

Not drawn accurately


7 (a)	Prove that angle $DCE = 2x$
	(2 marks)
7 (b)	Prove that <i>DF</i> is perpendicular to <i>AB</i> .
	(3 marks)

11	The diagram shows part of a skate ramp, modelled as a triangular prism.	
	ABCD represents horizontal ground.	
	The vertical rise of the ramp, CF, is 7 feet.	
	The distance BC = 24 feet. Not drawn	
	E accurately	
	0	
	A B vertical rise	
	You are given that gradient = Vertical rise horizontal distance	
11 (a)	The gradient of BF is twice the gradient of AF.	
	Write down the distance AC.	
	AC = feet (1 mark)	
11 (b)	Greg skates down the ramp along FB.	
	How much further would he travel if he had skated along FA?	
	Answer feet (4 marks)	

12	$f(x) = x^2 + px + q$ for all values of x .
	p and q are integers.
	f(0) is an odd number.
	f(1) is an odd number.
	Show that p is an odd number.
	(3 marks)
I	
18	$C = \frac{3x + 7}{x + 1} \text{and} D = \frac{4x - 11}{2x + 3}$
	Work out the value of x when $C + D = 5$
	x = (5 marks)

21 On the diagram

- A and C are on the y-axis
- C is (0, 7)
- the equation of the line through A and B is y = 2x + 1
- BC is perpendicular to AB.

Work out the area of triangle ABC.	

Answer (6 marks)

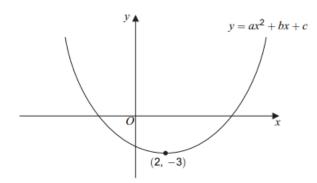
25	$x^3 + ax^2 + bx + 150$ factorises to $(x + c)^2(x + d)$ a, b, c and d are positive integers and $c \ne 1$
	Work out the values of a , b , c and d .
	Answer $a = \dots$
	<i>b</i> =
	c =
	d = (6 marks)

2(a)	h = 0.6m	B1	oe eg, $h = \frac{60}{100} m$
2(b)	$\frac{\text{their } 0.6m}{0.75m} \ \ (=0.8)$	M1	oe
	80	A1 ft	ft From their 0.6

7(a)	∠CBA = x and base angles of isosceles triangle (are equal)	M1	oe
	∠DCE = 2x and exterior angle = sum of interior opposite angles	A1	$\angle ACB = 180 - 2x$ and angle sum of triangle = 180 and $\angle DCE = 2x$ and (adjacent) angles on a straight line add up to 180 SC1 'Correct' solution without reasons
7(b)	$\angle CDE = (180 - 2x) \div 2$ and base angles of isosceles triangle (are equal)	M1	$\angle CED = (180 - 2x) \div 2$ and base angles of isosceles triangle (are equal)
	90 – <i>x</i>	A1	
	$\angle AFD = 180 - x - (90 - x)$ and angle sum of triangle = 180	A1	$\angle FEB = 90 - x$ and vertically opposite angles and $\angle EFB = 180 - x - (90 - x)$ and angle sum of triangle = 180 SC2 'Correct' solution without reasons

11(a)	48	B1	
11(b)	$7^2 + 24^2$ (= 625) or 7^2 + their 48^2 (= 2353)	M1	
	$\sqrt{7^2 + 24^2}$ or	M1	$\sqrt{625}$ (= 25) or
	$\sqrt{7^2 + \text{their } 48^2}$		$\sqrt{2353}$ (= [48.5, 48.51])
	$\sqrt{7^2 + \text{their } 48^2} - \sqrt{7^2 + 24^2}$	M1	[48.5, 48.51] – 25
	[23.5, 23.51]	A1ft	ft Their 48 and M3

12	q is odd (because $f(0) = q$)	B1	
	f(1) = 1 + p + q	M1	
	1+q is even and even + odd = odd	A1	oe eg, odd + odd + odd = odd


18	$\frac{(3x+7)(2x+3)+(x+1)(4x-11)}{(x+1)(2x+3)} (=5)$	M1	
	$6x^{2} + 14x + 9x + 21$ or $4x^{2} + 4x - 11x - 11$ or $(5)(2x^{2} + 2x + 3x + 3)$	M1	oe 4 terms with any 3 correct
	$6x^{2} + 14x + 9x + 21$ or $4x^{2} + 4x - 11x - 11$ or $(5)(2x^{2} + 2x + 3x + 3)$	A1	oe All 4 terms correct
	Their $6x^2 + 14x + 9x + 21$ + their $4x^2 + 4x - 11x - 11$ = 5 their $(2x^2 + 2x + 3x + 3)$	M1	
	$-\frac{5}{9}$	A1	

21	A (0, 1) or AC = 6	B1	
	Gradient <i>BC</i> is $-\frac{1}{2}$	B1	oe eg, equation BC $y = -\frac{1}{2}x + 7$
	$2x + 1 = \text{their} - \frac{1}{2}x + 7$	M1	oe eg, $\frac{2x+1-7}{x} = \text{their} - \frac{1}{2}$
	$2\frac{1}{2}x = 6$ $(x = 2.4)$	M1	oe eg, $5x = 12$
	2		ft From their $-\frac{1}{2}x + 7$ or their $-\frac{1}{2}$
	$\frac{1}{2}$ × their 6 × their 2.4	M1	
	7.2	A1ft	ft From B1 B0 M3 or B0 B1 M3
Alt 21	Gradient <i>BC</i> is $-\frac{1}{2}$	B1	oe eg Equation <i>BC</i> $y = -\frac{1}{2}x + 7$
	$\frac{2x+1-7}{x} = \text{their } -\frac{1}{2}$	M1	oe eg $2x + 1 = \text{their} - \frac{1}{2}x + 7$
	5x = 12 $(x = 2.4)$	M1	oe eg $2\frac{1}{2}x = 6$ ft From their $-\frac{1}{2}$ or their $-\frac{1}{2}x + 7$
	y = 5.8	A1	
	$\frac{1}{2} \times \sqrt{(\text{their } 5.8 - 7)^2 + \text{their } 2.4^2}$ $\times \sqrt{(\text{their } 5.8 - 1)^2 + \text{their } 2.4^2}$	M1	
			6.5. 50.10.111
	7.2	A1ft	ft From B0 M2 A1 M1 or B1 M2 A0 M1

25	Any 2 factors of 150 except 1 and 150	M1	2, 75 or 3, 50 or 5, 30 or 6, 25 or 10, 15
	c = 5 and $d = 6$	A1	
	x ² (+) 5x (+) 5x (+) 25	M1	ft Their c 4 terms with at least 3 correct
	$(x^2 + 10x + 25)(x + 6) = x^3 (+) 10x^2$ (+) 25x (+) 6x ² (+) 60x (+) 150	M1	ft their c and their d Allow one error or one omission
	$x^3 + 10x^2 + 25x + 6x^2 + 60x + 150$	A1ft	Fully correct for their c and their d
	a = 16 and $b = 85$	A1ft	ft Their expansion
Alt 25	$x^3 + dx^2 + 2cx^2 + 2cdx + c^2x + c^2d$	M1	Allow up to two errors or omissions
	Their $c^2d = 150$	M1	
	c = 5 and $d = 6$	A1	
	Their $d + 2c = a$ or their $2cd + c^2 = b$	M1	
	a = 16	A1ft	ft Their $d + 2c$ and their c and their d
	<i>b</i> = 85	A1ft	ft Their $2cd + c^2$ and their c and their d

June 2012 Paper 2

A sketch of $y = ax^2 + bx + c$ is shown. The minimum point is (2, -3).

For the sketch shown, circle the correct answer in each of the following.

4 (a) The value of a is

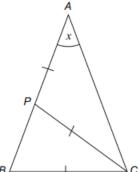
zero positive negative (1 mark)

4 (b) The value of c is

zero positive negative (1 mark)

4 (c) The solutions of $ax^2 + bx + c = 0$ are

both zero both positive both negative one positive and one negative (1 mark)


4 (d) The number of solutions of $ax^2 + bx + c = -6$ is

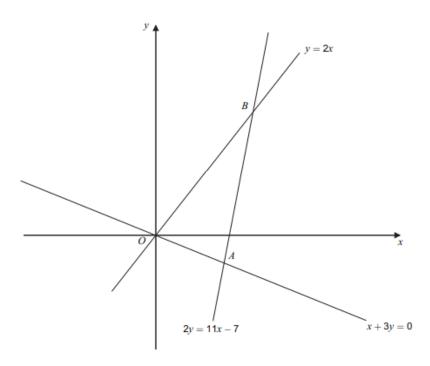
0 1 2 3 (1 mark)

4 (e) The equation of the tangent to $y = ax^2 + bx + c$ at (2, -3) is

x = 2 y = 2 x = -3 y = -3 (1 mark)

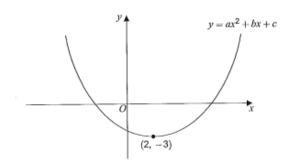
5 ABC is a triangle. P is a point on AB such that AP = PC = BCAngle BAC = x

Not drawn accurately


You are also given that $AB = AC$ Work out the value of x . $x = $		В	C	
You are also given that $AB = AC$ Work out the value of x . $x = \qquad \qquad \text{degrees}$ $1 \leqslant m \leqslant 5 \qquad \text{and} \qquad -9 \leqslant n \leqslant 2$ Work out an inequality for $m+n$. Answer	Prove that a	ngle ABC = 2x		
You are also given that $AB = AC$ Work out the value of x . $x = \qquad \qquad \text{degrees}$ $1 \leqslant m \leqslant 5 \qquad \text{and} \qquad -9 \leqslant n \leqslant 2$ Work out an inequality for $m+n$. Answer				
You are also given that $AB = AC$ Work out the value of x . $x = \qquad $				
Work out the value of x . $x = \dots \qquad \text{degrees}$ $1 \leqslant m \leqslant 5 \qquad \text{and} \qquad -9 \leqslant n \leqslant 2$ Work out an inequality for $m+n$. $\dots \qquad \leqslant m+n \leqslant \dots$ Work out an inequality for $(m+n)^2$.				(3 n
x=	You are also	given that $AB = AC$		
x=	Work out the	value of x.		
x=				
$1\leqslant m\leqslant 5$ and $-9\leqslant n\leqslant 2$ Work out an inequality for $m+n$.				
Work out an inequality for $m+n$. Answer $\leqslant m+n \leqslant$ Work out an inequality for $(m+n)^2$.		<i>x</i> =		degrees (3 n
Work out an inequality for $m+n$. Answer $\leqslant m+n \leqslant$ Work out an inequality for $(m+n)^2$.				
Work out an inequality for $m+n$. Answer $\leqslant m+n \leqslant$ Work out an inequality for $(m+n)^2$.				
Answer $\leqslant m+n \leqslant$	1 ≤ <i>m</i> ≤ 5	and $-9 \leqslant n \leqslant 2$		
Answer $\leqslant m+n \leqslant$	Work out an	inequality for $m+n$.		
Work out an inequality for $(m+n)^2$.				
Work out an inequality for $(m+n)^2$.		Answer	< m + n <	(2 n
			< m + n <	(2 11
	Work out an			
Answer $\leq (m+n)^2 \leq$		Answer	<(m ± n)2 /	(2.5

11	A sphere has radius x centimetres. A hemisphere has radius y centimetres. The shapes have equal volumes.
	Work out the value of $\frac{y}{x}$.
	Give your answer in the form $a^{\frac{1}{3}}$ where a is an integer.
	$\frac{y}{x} = \dots $ (3 marks)
17	ABCD is a square of side length $4x$.
	E is the midpoint of BC. DF:FC = 1:3
	Not drawn accurately
	You are given that
	area of triangle $AEF = kx^2$
	Work out the value of k .

k = (5 marks)


$$y = 2x$$
 $x + 3y = 0$ $2y = 11x - 7$

The lines intersect at the points O, A and B as shown on this sketch.

(6 marks)

A sketch of $y = ax^2 + bx + c$ is shown. The minimum point is (2, -3).

For the sketch shown, circle the correct answer in each of the following.

4 (a) The value of a is

positive

negative

(1 mark)

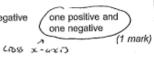
4 (b) The value of c is

zero

zero

positive

negative y intercept


(1 mark)

4 (c) The solutions of $ax^2 + bx + c = 0$ are

both zero

both positive

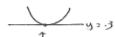
both negative

4 (d) The number of solutions of $ax^2 + bx + c = -6$ is

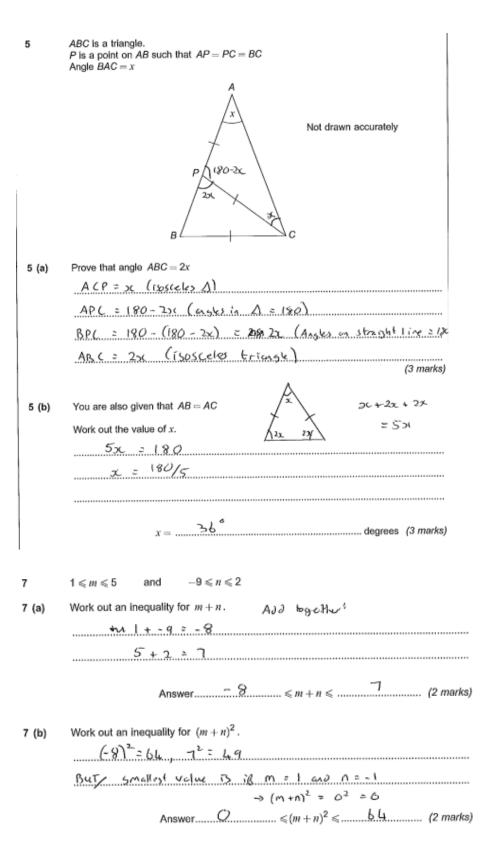
1 Draw line y: -6!

2

(1 mark)


4 (e) The equation of the tangent to $y = ax^2 + bx + c$ at (2, -3) is

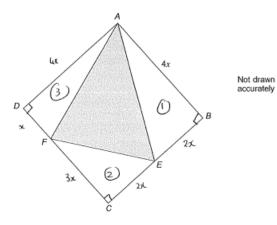
x = 2


y = 2

x = -3

y = -3 (1 mark)

(2,-3)


11	A sphere has radius x centimetres.
	A hemisphere has radius y centimetres
	The shapes have equal volumes.

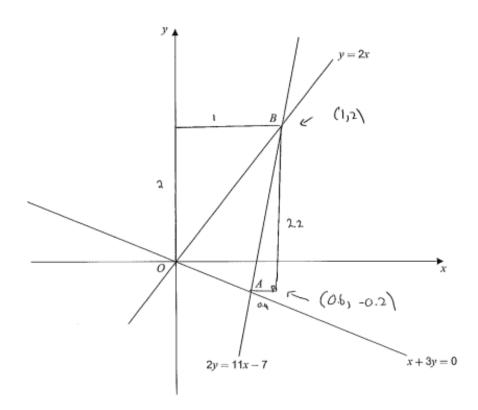
Work out the value of $\frac{y}{x}$.

17 ABCD is a square of side length 4x.

E is the midpoint of BC. DF: FC = 1:3

You are given that

area of triangle $AEF = kx^2$

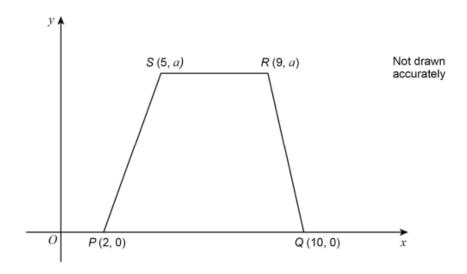

Work out the value of k.

Area of Squae = Wx x bx = 16x2
Arca @ (1) = V2 × 2x × 4x = 4x2
Au & (2) = 1/2 x 2x x 3x = 3x2
Area (3) = 1/2 x x x 4x = 2x2
Are 1 0 + 6 + 3 = 9x2
-: Area & showed bringle = 16x2 - 9x2
= 7.563

k = (5 marks)

$$y = 2x$$
 $x + 3y = 0$ $2y = 11x - 7$

The lines intersect at the points O, A and B as shown on this sketch.


Show that length $OB = \text{length } AB$
FIND A) where 2y 2 Hx - T meets SC + by = 0
→ x = -3y (b)
560 into 2 > 24 = 11(-34)-7
→ 2y = -33y -7
→ 35 ₉ s - ⊃
3 y = -75x = -0.2
() x = -3y = -3(-02) = 0.b
A = (0.b, -0.3)
Find B) where y = 224 neets 2y = 11x - 7
Put (0 = (2) -> 4x = 11x -7
→ 0 = 1×-7
→ 7 = 7x → x=1
() y = 2x → y = 2(1) = 2
: B = (1,2)
[see Diagram!] OB = J12+26 = J5
AB = J062, 222 = J3
OB = AB (6 marks)

Turn over for the next question

2 P(-3, -10) and Q(a, b) are points on a straight line with gradient 12 Work out one possible pair of integer values for a and b.

[2 marks]

7 PQRS is a trapezium.

The area of the trapezium is 63 square units.

Work out the value of a .	[2 marks]

12 (a) Write $\frac{7}{9x} + \frac{2}{3x^2}$ as a single fraction in its simplest form.

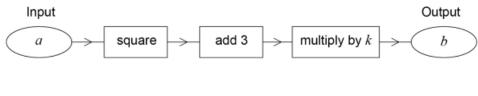
[3 marks]

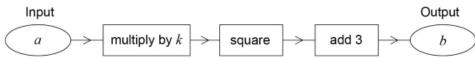
Answer

12 (b) Show that $\frac{x^4}{x+4} \times \frac{x+2}{x} \div \frac{x^2}{3x+12}$

simplifies to the form $ax^2 + bx$ where a and b are integers.

[4 marks]


14 (a)	Factorise fully $12pq^3r - 18pq^2r^2 + 24pq^2r$	[2 marks]
	Answer	
14 (b)	Factorise fully $6(y+3)^5 + 4(y+3)^4$ Give your answer in its simplest form.	
	Do not attempt to expand $(y+3)^5$ or $(y+3)^4$	[3 marks]
	Answer	
14 (c)	Factorise fully 48 – 75x ²	[2 marks]
	Answer	


16	A = 2 - 5x	$B = 3x - 1 \qquad C = x^2$	
	Show that	$(2A+3B)^2 \equiv A+B+C$	[4 marks]

	A circle has equation $x^2 + y^2 = 29$	
	P is the point (-5, 2)	
)	Show that <i>P</i> is on the circle.	[1 mark]
o)	The tangent to the circle at <i>P</i> intersects the <i>x</i> -axis at point <i>Q</i> .	
	Work out the <i>x</i> -coordinate of <i>Q</i> .	
	You must show your working.	[4 marks]
		[4 marks]

For each of these two function machines, when the input is a the output is b.

k > 0 and $k \neq 1$ and a > 0

Work out an expression for a in terms of k.

Give your answer in its simplest form.

[6 marks]

Work out the value of p when

$$9^{0.5p} \times 81 = 27^{2p-1}$$

$9^{0.3p} \times 81 = 27^{2p-1}$	[4 marks]

Answer _____

	Any pair of integer values for a and b for which $b = 12a + 26$	B2	B1 Correct equation in any for $\frac{b-10}{a-3} = 12$ or $b+10=1$ or $\frac{y-10}{x-3} = 12$ or $y+10=1$ or $b=12a+c$ and $c=26$ or $y=12x+c$ and $y=12x+c$	2(a + 3)
	Additional Guidance			
2	Examples of B2 responses $a = -4$ and $b = -22$ or $a = -2$ and $b = 2$ or $a = -1$ and $b = 14$ or $a = 0$ and $b = 26$ or $a = 1$ and $b = 38$ or $a = 2$ and $b = 50$ or $a = 3$ and $b = 62$ or $a = 4$ and $b = 74$		B2	
	a = -3 and $b = -10$ is point P so will not score B2 (B1 possible)			
	_3 + 1 and _10 + 12			B1
	-3 + 2 and -10 + 24			B1

7	$\frac{1}{2} \times (8 + 4) \times a \ (= 63)$ or $\frac{1}{2} \times 12 \times a \ (= 63)$ or $6a \ (= 63)$ or $63 \div 6$	M1	any letter oe eg $12a = 126$ or $\frac{1}{2} \times 3 \times a + 4 \times a + \frac{1}{2} \times 1 \times a \ (= 63)$		
	10.5 or $10\frac{1}{2}$ or $\frac{21}{2}$	A1			
	Additional Guidance				
	M1 is for a full area calculation (= 63)				

	Valid common denominator with at least one numerator correct Valid common denominator with both numerators correct		eg $\frac{7x}{9x^2}$ and $\frac{a}{9x^2}$ or $\frac{7x+a}{9x^2}$ or $\frac{b}{9x \times 3x^2}$ and $\frac{2 \times 9x}{9x \times 3x^2}$ numerators and denominators seen as products a can be numerical or algebra b can be numerical or algebra $\frac{7x}{9x^2}$ and $\frac{6}{9x^2}$	nic
12(a)		M1dep	or $\frac{7 \times 3x^2}{9x \times 3x^2}$ and $\frac{2 \times 9x}{9x \times 3x^2}$ numerators and denominators may be seen as products	
	$\frac{7x+6}{9x^2} \text{ or } \frac{7x+6}{(3x)^2}$ with no further work	A1		
	Additional Guidance			
	$\frac{21x^2 + 18x}{27x^3}$ or $\frac{21x + 18}{27x^2}$ or $\frac{7x^2 + 6x}{9x^3}$			M2A0
	$\frac{7x^{-1} + 6x^{-2}}{9}$			M2A0
	$7x + 6 / 9x^2$			M2A0

	Changes division to multiplication and inverts to $\frac{3x+12}{x^2}$	M1	may be implied	
	(3x + 12 =) 3(x + 4)	M1	may be implied	
12(b)	Correct expression written as a single fraction or a product must have factor $(x + 4)$ in a numerator and denominator $x + 4$ or correct expression written as a single fraction or a product must have denominator x^3 or x^2 or x or 1	A1	may be implied by final A1 eg $\frac{3x(x+2)(x+4)}{x+4}$ or $\frac{(3x^2+4)}{x+4}$ or $\frac{x}{x+4} \times \frac{x+2}{1} \times 3(x+4)$ or $\frac{x}{x+4} \times 3(x+2)(x+4)$ or $\frac{3x^4(x+2)}{x^3}$ or $x^4 \times \frac{x+2}{x} \times 3(x+2)$ or $\frac{(x+2)}{x^3} \times 3x^4$ or $\frac{3x^3(x+2)}{x^2}$ or $\frac{3x^2(x+2)}{x}$ or $\frac{3x(x+2)}{x}$ or $\frac{3x(x+2)}{x}$ or $\frac{3x(x+2)}{x}$	
	$3x^2 + 6x$	A1	SC2 $\frac{x(x+2)(3x+12)}{x+4}$	
	Additional Guidance			
	The list of examples in the first A1 is not exhaustive			
	$3x^2 + 6x$ with no incorrect working			4 marks

	$6pq^2r\left(2q-3r+4\right)$	B2	B1 correct factorised expression with a common factor involving at least two variables eg $pq(12q^2r - 18qr^2 + 24qr)$ or $2q^2r(6pq - 9pr + 12p)$ or common factor $6pq^2r$ with two out of the three terms in the bracket correct	
14(a)	$ = g 6pq^2r (2q - 3r + 4p) $ Additional Guidance			

	Correct factorised expression with a common factor	M1	eg $(y+3)[6(y+3)^4 + 4(y+3)^3]$ or $2[3(y+3)^5 + 2(y+3)^4]$ or $2(y+3)^2[3(y+3)^3 + 2(y+3)^2]$
	$2(y+3)^{4}[3(y+3)+2]$ or $2(y+3)^{4}(3y+9+2)$ or $(y+3)^{4}[6(y+3)+4]$ or $(y+3)^{4}(6y+18+4)$ or $(y+3)^{4}(6y+22)$	A1	
	$2(y+3)^4(3y+11)$	A1	
14(b)	Additional Guidance		

B1 Partial factorisation 3(4 + 5x)(4 - 5x)eg $3(16-25x^2)$ or $-3(25x^2-16)$ or 3(-4-5x)(5x-4)B2 or (12 + 15x)(4 - 5x) or (12 - 15x)(4 + 5x)or -3(4 + 5x)(5x - 4)or -3(-4-5x)(4-5x)**Additional Guidance** Brackets in either order for B2 or B1 $-(75x^2-48)$ B0 (-5x + 4) is equivalent to (4 - 5x) etc 14(c) Incorrect notation eg (4 + 5x)3(4 - 5x)В1

	Alternative method 1		
	2(2-5x) + 3(3x-1) or $4-10x$ or $9x-3$	M1	
	4 - 10x + 9x - 3 = 1 - x	M1dep	
	$(1-x)^2 = 1 - 2x + x^2$	A1	must see working for M2
	$2 - 5x + 3x - 1 + x^2 = 1 - 2x + x^2$	B1	
	Alternative method 2		
16	$4(2-5x)^2 + 6(2-5x)(3x-1) + 6(2-5x)(3x-1) + 9(3x-1)^2$	M1	oe allow + $12(2-5x)(3x-1)$ for + $6(2-5x)(3x-1) + 6(2-5x)(3x-1)$
	$4(4-10x-10x+25x^{2})$ $+6(6x-2-15x^{2}+5x)$ $+6(6x-2-15x^{2}+5x)$ $+9(9x^{2}-3x-3x+1)$ $=16-40x-40x+100x^{2}+36x-12$ $-90x^{2}+30x+36x-12-90x^{2}$ $+30x+81x^{2}-27x-27x+9$	M1dep	oe must see expansions must see working for 1st M1 allow + $12(6x - 2 - 15x^2 + 5x)$ for + $6(6x - 2 - 15x^2 + 5x)$ + $6(6x - 2 - 15x^2 + 5x)$
	$1 - 2x + x^2$	A1	must see working for M2
	$2 - 5x + 3x - 1 + x^2 = 1 - 2x + x^2$	B1	

	Alternative method 3		
	2(2-5x) + 3(3x-1) or $4-10x$ or $9x-3$	M1	oe
	$(4 - 10x + 9x - 3)^{2}$ $= 16 - 40x + 36x - 12 - 40x + 100x^{2}$ $- 90x^{2} + 30x + 36x - 90x^{2} + 81x^{2}$ $- 27x - 12 + 30x - 27x + 9$	M1dep	oe must see expansions
16	$1-2x+x^2$	A1	must see working for M2
16	$2 - 5x + 3x - 1 + x^2 = 1 - 2x + x^2$	B1	

	$(-5)^2 + 2^2 = 29$	B1	oe involving use of -5 and 2 eg $(-5-0)^2 + (2-0)^2 = 29$ or $(05)^2 + (0-2)^2 = 29$ or $\sqrt{(-5)^2 + 2^2} = \sqrt{29}$ or $29 - (-5)^2 = 2^2$
17(a)			or $29 - 2^2 = (-5)^2$ or $\sqrt{29 - (-5)^2} = 2$ or $\sqrt{29 - 2^2} = -5$

	Alternative method 1 Using gradient		
	(gradient $OP = $) $\frac{2-0}{-5-0} \text{ or } -\frac{2}{5} \text{ or } -0.4$	M1	oe may be implied $eg \ y = -\frac{2}{5} \ x$ or $gradient \ of \ tangent = \frac{5}{2} \ (with \ gradient$ OP not seen)
	(gradient tangent =) $\frac{-1}{\text{their } -\frac{2}{5}} \text{ or } \frac{5}{2} \text{ or } 2.5$	M1	oe correct or ft their $-\frac{2}{5}$
17(b)	$y-2 = \text{their } \frac{5}{2} (x5)$ or $0-2 = \text{their } \frac{5}{2} (x5)$ or $2 = \text{their } \frac{5}{2} \times -5 + c$	M1dep	oe dep on 2nd M1 equation of their tangent with or without substitution of $y = 0$ implied by $y = \frac{5}{2}x + \frac{29}{2}$ oe or $0 = \frac{5}{2}x + \frac{29}{2}$ oe
	-29/5 or -5.8	A1	oe allow $\left(-\frac{29}{5}, 0\right)$ SC2 answer –10 (grad tangent = $\frac{2}{5}$) SC2 answer $-\frac{21}{5}$ or –4.2 oe (grad tangent = $-\frac{5}{2}$)

Alternative method 2 Using similar triangles (see diagram in Additional Guidance)		
$\frac{a}{2} = \frac{2}{5}$	M1	oe equation any letter
$a = \frac{2}{5} \times 2 \text{ or } a = \frac{4}{5}$	M1dep	
-5 – their $\frac{4}{5}$	M1dep	dep on M2
$-\frac{29}{5}$ or -5.8	A1	oe allow $\left(-\frac{29}{5}, 0\right)$ SC2 answer –10 (grad tangent = $\frac{2}{5}$) SC2 answer $-\frac{21}{5}$ or –4.2 oe (grad tangent = $-\frac{5}{2}$)

	$(a^2+3)\times k \text{ or } ka^2+3k$	M1	oe eg $b = ka^2 + 3k$ may be seen on diagram
	$(ak)^2 + 3 \text{ or } a^2k^2 + 3$	M1	oe eg $b = a^2k^2 + 3$ may be seen on diagram
	$ka^2 + 3k = a^2k^2 + 3$	M1dep	oe equates and expands brackets correctly dep on M2 may include $-b$ on each side
23	$a^{2}(k-k^{2}) = 3 - 3k$ or $ka^{2}(1-k) = 3 - 3k$ or $ka^{2} - a^{2}k^{2} = 3(1-k)$ or $a^{2}(k-k^{2}) = 3(1-k)$ or $ka^{2}(1-k) = 3(1-k)$ or $ka^{2}(1-k) = 3k - 3$ or $ka^{2}(k-1) = 3k - 3$ or $ka^{2}(k-1) = 3k - 3$ or $ka^{2}(k-1) = 3(k-1)$ or $ka^{2}(k^{2} - k) = 3(k-1)$ or $ka^{2}(k^{2} - k) = 3(k-1)$	M1dep	oe eg $(a^2 =)$ $\frac{3-3k}{k-k^2}$ or $(a =)$ (\pm) $\sqrt{\frac{3-3k}{k-k^2}}$ or $(a^2 =)$ $\frac{3k-3}{k^2-k}$ or $(a =)$ (\pm) $\sqrt{\frac{3k-3}{k^2-k}}$ collects terms in a^2 and factorises correctly on at least one side must use a^2 as a factor if awarding mark for factorising $ka^2-a^2k^2$ dep on M3
	$(a^2 =) \frac{3(1-k)}{k(1-k)}$ or $(a^2 =) \frac{3}{k}$ or $(a =) (\pm) \sqrt{\frac{3(1-k)}{k(1-k)}}$	M1dep	oe eg $(a^2 =)$ $\frac{3(k-1)}{k(k-1)}$ correct fraction with numerator and denominator factorised correctly dep on M4
	$(a=)$ $\sqrt{\frac{3}{k}}$ or $(a=)$ $\left(\frac{3}{k}\right)^{\frac{1}{2}}$	A1	oe eg $(a=)$ $\frac{\sqrt{3}}{\sqrt{k}}$ or $(a=)$ $\left(\frac{k}{3}\right)^{-\frac{1}{2}}$ $(a=)\pm\sqrt{\frac{3}{k}} \text{M5A0} \qquad (a=)-\sqrt{\frac{3}{k}} \text{M5A0}$

	Alternative method 1 Powers of 3				
	$(3^2)^{0.5p}$ or $(3^3)^{2p-1}$ or $3^{2\times 0.5p+4}$	M1	oe powers of 3 eg 3^p or 3^{6p-3} or 3^{p+4} brackets not needed if intention clear eg $3^{2^{0.5p}}$		
	$(3^2)^{0.5p}$ and 3^4 and $(3^3)^{2p-1}$ or $3^{2\times0.5p+4}$ and $(3^3)^{2p-1}$	M1dep	oe powers of 3 $ {\rm eg} \ \ 3^p \ {\rm and} \ \ 3^4 \ {\rm and} \ \ 3^{6p-3} $ or $ \ \ 3^{p+4} \ {\rm and} \ \ 3^{6p-3} $		
	$2 \times 0.5p + 4 = 3(2p - 1)$ or p + 4 = 6p - 3	M1dep	oe equation dep on M2		
24	1.4 or $\frac{7}{5}$	A1	oe		
	Alternative method 2 Powers of 9				
	9 ^{0.5p+2} or (9 ^{1.5}) ^{2p-1}	M1	oe power of 9 eg 9 ^{3p-1.5} brackets not needed if intention clear eg 9 ^{1.5^{2p-1}}		
	9^2 and $(9^{1.5})^{2p-1}$ or $9^{0.5p+2}$ and $(9^{1.5})^{2p-1}$	M1dep	oe powers of 9 eg 9^2 and $9^{3p-1.5}$ or $9^{0.5p+2}$ and $9^{3p-1.5}$		
	0.5p + 2 = 1.5(2p - 1) or 0.5p + 2 = 3p - 1.5	M1dep	oe equation dep on M2		
	1.4 or $\frac{7}{5}$	A1	oe		

	Alternative method 3 Powers of 27		
	$\left(27^{\frac{2}{3}}\right)^{0.5p}$	M1	oe power of 27
24	$\left(27^{\frac{2}{3}}\right)^{0.5p}$ and $27^{\frac{4}{3}}$	M1dep	oe powers of 27 eg $27^{\frac{2}{3} \times 0.5 p}$ and $27^{\frac{4}{3}}$ or $27^{\frac{1}{3} p}$ and $27^{\frac{4}{3}}$ M2 $27^{\frac{2}{3} \times 0.5 p + \frac{4}{3}}$ or $27^{\frac{1}{3} p + \frac{4}{3}}$
	$\frac{2}{3} \times 0.5p + \frac{4}{3} = 2p - 1$ or $\frac{1}{3}p + \frac{4}{3} = 2p - 1$	M1dep	oe equation dep on M2
	1.4 or $\frac{7}{5}$	A1	oe

	Alternative method 4 Powers of	81	
	(81 ^{0.5}) ^{0.5p} or (81 ^{0.75}) ^{2p} –1 or 81 ^{0.5×0.5p} +1	M1	oe powers of 81 eg $81^{0.25p}$ or $81^{1.5p-0.75}$ or $81^{0.25p+1}$ brackets not needed if intention clear eg $81^{0.5^{0.5p}}$
	$(81^{0.5})^{0.5p}$ and $(81^{0.75})^{2p-1}$ or $81^{0.5\times0.5p+1}$ and $(81^{0.75})^{2p-1}$	M1dep	oe powers of 81 eg 81 ^{0.25p} and 81 ^{1.5p} -0.75 or 81 ^{0.25p+1} and 81 ^{1.5p} -0.75
24	$0.5 \times 0.5p + 1 = 0.75(2p - 1)$ or 0.25p + 1 = 1.5p - 0.75	M1dep	oe equation dep on M2
	1.4 or $\frac{7}{5}$	A1	oe

June 2019 Paper 2

3 -2 < a < 0 and -1 < b < 1

Tick the correct box for each statement.

[4 marks]

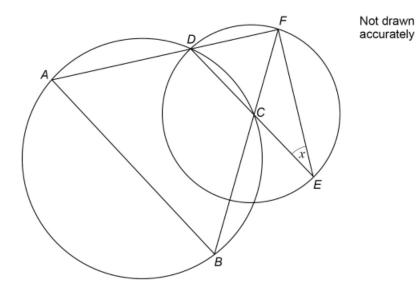
	Always true	Sometimes true	Never true
$a^2 < 0$			
$-1 < b^3 < 1$			
$\frac{b}{a}$ < 0			
a-b>0			

8 (a)	A linear sequence has first term $7 + 12\sqrt{5}$ The term-to-term rule is $\boxed{\text{add} 9 - 2\sqrt{5}}$	
	One term of the sequence is an integer. Work out the value of this integer.	[2 marks]
	Answer	
8 (b)	The <i>n</i> th term of a different sequence is $\frac{3n^2 - 1}{n^2 + 1}$ Work out the sum of the first three terms.	[2 marks]
0	Factories falls (2 + 0) ¹¹ (2 + 0) ¹⁰	
9	Factorise fully $(p+6)^{11} - (p+6)^{10}$	[2 marks]
	Answer	

12	The diagram shows a solid hemisphere. The diameter is $12a~{\rm cm}$ The volume is $486\pi~{\rm cm}^3$	
	\leftarrow 12 a cm \longrightarrow	
	Work out the value of a .	[3 marks]

Answer _____

	Rearrange $m = \frac{2p+1}{p} + \frac{p+5}{3p}$ to make p the subject.	
		[4 marks]
	Answer	
	A NOTICE TO A STATE OF THE STAT	_
16	The curve $y = 2\sqrt{x-a} + 5$ passes through the point (1, 8)	
16	The curve $y = 2\sqrt{x-a} + 5$ passes through the point (1, 8) Work out the value of a .	
16		[3 marks]


can be wil	Show that $(x+1)(x+3)(x+4) - x(x^2+7x+11)$ can be written in the form $(x+a)(x+b)$ where a and b are positive integers.					
	itten in the form	(x+a)(x+b)	where a and b are	josilive integers. [5 r		
				•		
Solve	$4(x-5)^2 = k^2$	where k is a c	onstant.			
		where k is a considerable simplest form in		[3 r		
				[3 r		
				[3 n		
				[3 n		
				[3 r		
				[3 n		
				[3 n		
				[3 r		
				[3 r		
				[3 n		
				[3 r		
				[3 r		
				[3 r		
				[3 r		
	answers in their	simplest form in				

20 A, B, C and D are points on a circle.

D, E and F are points on a different circle, centre C.

DCE, ADF and BCF are straight lines.

angle DEF = x

[3 marks]	t angle $BAD = 2x$	Prove that	20 (a)

20 (b)	In the case when <i>AB</i> is parallel to <i>DE</i> , work out the size of angle <i>x</i> .	[2 marks]
	Answer degrees	

	$a^2 < 0$ $-1 < b^3 < 1$ $\frac{b}{a} < 0$	✓✓	✓		B4	B1 for each correct row	
	a - b > 0 Additional Guidance						
3	Two boxes ticked in a row with other 3						B3

|--|

	$\frac{29}{5}$ or $5\frac{4}{5}$ or 5.8		oe eg $5\frac{8}{10}$ B1 any two of 1, $\frac{11}{5}$, $\frac{26}{10}$	oe values
	Ad	Iditional G	uidance	
9/5)	Terms must be evaluated for B1 unless	correct ans	swer seen	
8(b)	eg1 $\frac{3-1}{1+1} + \frac{12-1}{4+1} + \frac{27-1}{9+1}$	В0		

	Alternative method 1				
	(Second differences =) 4 or $2n^2$	M1	second differences seen at least once and not contradicted may be seen by the sequence		
	-3 - 2 3 - 8 (13 - 18 27 - 32) or -5 -5 (-5 -5)	M1dep	subtracts $2n^2$ from the given terms		
	$2n^2 - 5$	A1	oe eg $2n^2 + 0n - 5$ does not need terms collected		
8(c)	Alternative method 2				
	(Second differences =) 4 or $2n^2$	M1	second differences seen at least once and not contradicted may be seen by the sequence		
	3a + b = 33 and substitutes $a = 2$ or b = 0	M1dep	oe		
	$2n^2 - 5$	A1	oe eg $2n^2 + 0n - 5$ does not need terms collected		

Alternative method 3		
Any three of $a+b+c=-3$		
4a + 2b + c = 3 9a + 3b + c = 13 16a + 4b + c = 27	M1	
3a + b = 33 and $5a + b = 13 - 3$ or a = 2 and $b = 0$	M1dep	oe obtains two correct equations in same two variables from their equations
$2n^2 - 5$	A1	oe eg $2n^2 + 0n - 5$ does not need terms collected

8(c) cont

Alternative method 4		
(Second differences =) 4 or $2n^2$	M1	second differences seen at least once and not contradicted may be seen by the sequence
$2 \times 1^2 + b \times 1 - 5 = -3$ or $2 + b - 5 = -3$ or $b = 0$	M1dep	$2n^2 + bn - 5 = -3$ with $n = 1$ substituted oe eg $2 \times 2^2 + b \times 2 - 5 = 3$
$2n^2 - 5$	A1	oe eg $2n^2 + 0n - 5$ does not need terms collected

	$(p+6)^{10}(p+5)$ or $(p+5)(p+6)^{10}$	B2	B1 $(p+6)^{10}(p+6-1)$ or states $x = p+6$ and $x^{10}(p+6)^{10$	s) ⁹]	
	Additional Guidance				
	Any shape of bracket may be used				
	$(p+6)^{10}((p+6)-1)$			B1	
9	Missing brackets must be recovered				
	eg $p + 5 (p + 6)^{10}$ not recovered and	В0			

	Alternative method 1		
	$\frac{1}{2} \times \frac{4}{3} \times \pi \times (6a)^3$ or $\frac{2}{3} \times \pi \times 216a^3$ or $144\pi a^3$	M1	oe eg $\frac{1}{2} \times \frac{4}{3} \times \pi \times \left(\frac{12a}{2}\right)^3$ or $\frac{2}{3} \times \pi \times (6a)^3$
12	$a^3 = \frac{486\pi}{144\pi}$ or $a^3 = \frac{27}{8}$ or $a^3 = 486 \div \left(\frac{2}{3} \times 6^3\right)$ or $a^3 = 3.375$ or $\sqrt[3]{3.375}$	A1	oe equation of form a^3 = or calculation allow $(6a)^3$ = 729 or $6a$ = 9
	$\frac{3}{2}$ or $1\frac{1}{2}$ or 1.5	A1	SC1 answer 0.75 oe or answer 1.19 or answer 4.95

	Alternative method 2		
	$r^{3} = \frac{486\pi}{\frac{2}{3}\pi}$ or $r^{3} = 729$ or $\sqrt[3]{729}$ or 9	M1	oe equation of form r^3 = or calculation
12 cont	$6a = \sqrt[3]{\frac{486\pi}{\frac{2}{3}\pi}}$ or $6a = 9$ or $9 \div 6$	A1	oe equation or calculation allow $(6a)^3 = 729$
	$\frac{3}{2}$ or $1\frac{1}{2}$ or 1.5	A1	SC1 answer 0.75 oe or answer 1.19 or answer 4.95

	Alternative method 1		
	$3mp = 3(2p+1) + p + 5$ or $(m =) \frac{3(2p+1)}{3p} + \frac{p+5}{3p}$ or $(m =) \frac{6p+3+p+5}{3p}$	M1	oe fractions eliminated or common denominator $eg \ (m =) \ \frac{3p(2p+1)}{3p^2} + \frac{p(p+5)}{3p^2}$ or $(m =) \ \frac{6p^2 + 3p + p^2 + 5p}{3p^2}$
15	3mp = 6p + 3 + p + 5 or $3mp = 7p + 8$	M1dep	oe brackets expanded and fractions eliminated $eg \ 3mp^2 = 7p^2 + 8p$ implies M2
	3mp - 7p = 8 or $\frac{8}{3m - 7}$ or $\frac{-8}{7 - 3m}$	M1dep	oe terms collected $eg \ p(3m-7)=8 \ or \ 7p-3mp=-8$ implies M3
	$p = \frac{8}{3m - 7}$ or $p = \frac{-8}{7 - 3m}$	A1	oe eg $\frac{8}{3m-7} = p$

	Alternative method 2		
	$(m =) \frac{3(2p+1)}{3p} + \frac{p+5}{3p}$ or $(m =) \frac{6p+3+p+5}{3p}$	M1	oe common denominator eg $(m =) \frac{3p(2p+1)}{3p^2} + \frac{p(p+5)}{3p^2}$ or $(m =) \frac{6p^2 + 3p + p^2 + 5p}{3p^2}$
	$m = \frac{7p + 8}{3p}$ and $m = \frac{7}{3} + \frac{8}{3p}$ and $m - \frac{7}{3} = \frac{8}{3p}$	M1dep	simplifies numerator and isolates term in p eg $m=\frac{7p^2+8p}{3p^2}$ and $m=\frac{7}{3}+\frac{8}{3p}$ and $m-\frac{7}{3}=\frac{8}{3p}$ implies M2
15 cont	$\frac{3m-7}{3} = \frac{8}{3p}$	M1dep	converts $m - \frac{7}{3}$ to a single fraction implies M3
	$p = \frac{8}{3m - 7}$ or $p = \frac{-8}{7 - 3m}$	A1	oe eg $\frac{8}{3m-7} = p$

	$\frac{8-5}{2} = \sqrt{1-a} \text{ or } \frac{3}{2} = \sqrt{1-a}$ or $3^2 = 2^2(1-a) \text{ or } 9 = 4(1-a)$	M1	
16	$1 - a = \left(\frac{3}{2}\right)^2$ or $1 - a = \frac{9}{4}$ or $9 = 4 - 4a$ or $\frac{4 - 9}{4}$	M1dep	oe equation or calculation $eg \ 1 - a = \left(\frac{8-5}{2}\right)^2$ or $1 - a = 2.25$ or $\frac{9-4}{-4}$ implies M2
	$-\frac{5}{4}$ or -1.25 or -1 $\frac{1}{4}$	A1	

	$x^2 + 3x + x + 3$ with three terms correct or $x^2 + 4x + k$ where k is a non-zero constant	M1	oe expansion attempt of one pair of brackets $ \begin{array}{l} \text{eg1 } x^2 + 4x + 3x + 12 \text{ with three terms} \\ \text{correct} \\ \text{or} \\ x^2 + 7x + k \text{ where } k \text{ is a non-zero constant} \\ \text{eg2 } x^2 + 4x + x + 4 \text{ with three terms} \\ \text{correct} \\ \text{or} \\ x^2 + 5x + k \text{ where } k \text{ is a non-zero constant} \\ \end{array} $
17	$x^{3} + 3x^{2} + x^{2} + 3x$ or $x^{3} + 4x^{2} + 3x$ or $4x^{2} + 12x + 4x + 12$ or $4x^{2} + 16x + 12$	M1dep	attempt at a full expansion with correct multiplication of their 3 or 4 terms by one of the terms in the remaining bracket oe eg $x^3 + 4x^2 + 3x^2 + 12x \text{ or } x^3 + 7x^2 + 12x$ or $x^2 + 4x + 3x + 12 \text{ or } x^2 + 7x + 12$ $(x^2 + 7x + 12 \text{ must be from an attempt at a full expansion})$ or $x^3 + 4x^2 + x^2 + 4x \text{ or } x^3 + 5x^2 + 4x$ or $3x^2 + 12x + 3x + 12 \text{ or } 3x^2 + 15x + 12$
	$x^3 + 8x^2 + 19x + 12$	A1	fully correct expansion allow if terms not collected eg $x^3 + 3x^2 + x^2 + 3x + 4x^2 + 12x + 4x + 12$ or $x^3 + 4x^2 + 3x + 4x^2 + 16x + 12$
	$x^2 + 8x + 12$	A1ft	ft M2A0 full simplification of their $(x^3 + 8x^2 + 19x + 12) - x^3 - 7x^2 - 11x$ their $(x^3 + 8x^2 + 19x + 12)$ must be a cubic
	$x^2 + 8x + 12$ and (x + 6)(x + 2) or $(x + 2)(x + 6)$	A1	oe product of brackets

	Alternative method 1				
	$x-5 = \frac{k}{2}$ or $x-5 = -\frac{k}{2}$ or $2(x-5) = k$ or $2x - 10 = k$ or $2(x-5) = -k$ or $2x - 10 = -k$	M1	oe linear equation $eg \ x - 5 = \sqrt{\frac{k^2}{4}} or \ x = \frac{k}{2} + 5$ or $\sqrt{4}(x - 5) = \sqrt{k^2}$		
	$x-5=\frac{k}{2}$ and $x-5=-\frac{k}{2}$ or 2(x-5)=k and $2(x-5)=-kor2x-10=k$ and $2x-10=-k$	A1	oe eg $x - 5 = \pm \frac{k}{2}$ square root(s) must be processed implied by final A1		
18	$\frac{k}{2}$ +5 and $-\frac{k}{2}$ +5	A1	oe simplest form $eg \ \frac{10+k}{2} \ \text{and} \ \frac{10-k}{2}$ or $\frac{k+10}{2}$ and $\frac{k-10}{-2}$ or $5\pm0.5k$		
	Alternative method 2				
	$4x^2 - 40x + 100 - k^2 (= 0)$	M1	expands and collects terms		
	$\frac{40 \pm \sqrt{(-40)^2 - 4 \times 4 \times (100 - k^2)}}{2 \times 4}$	A1	oe eg $\frac{40 \pm \sqrt{16k^2}}{8}$ or $\frac{40 \pm 4k}{8}$ implied by final A1		
	$\frac{k}{2}$ + 5 and $-\frac{k}{2}$ + 5	A1	oe simplest form eg $\frac{10+k}{2}$ and $\frac{10-k}{2}$ or $\frac{k+10}{2}$ and $\frac{k-10}{-2}$ or $5\pm0.5k$		

	Alternative method 1				
	Full method leading to		eg		
	angle <i>BCD</i> = 180 – 2x		angle CFE = x		
		M1	and		
			angle <i>FCE</i> = 180 – 2x		
			and		
			angle <i>BCD</i> = 180 – 2 <i>x</i>		
	Full reasoning for their method		eg		
			(base angles of) isosceles (triangle are equal)		
		A1	and		
			(sum of) angles in a triangle (is 180)		
			and		
			(vertically) opposite angles		
20(a)	angle BAD = 2x		must see M1		
	and	A1			
	(opposite angles of) cyclic quadrilateral (add to 180)				
	Alternative method 2 Working out angle DCF using angle at centre				
	angle DCF = 2x	M1			
	angle at centre (is double angle at circumference)	A1			
	Full method leading to		must see M1		
	angle BAD = 2x		eg		
	and		angle <i>BCD</i> = 180 – 2x		
	full reasoning for their method		and		
		A1	angle BAD = 2x		
			and		
			angles on a (straight) line (add to 180)		
			and		
			(opposite angles of) cyclic quadrilateral (add to 180)		

	Alternative method 3 Working ou	t angle D	CF not using angle at centre
	Full method leading to angle <i>DCF</i> = 2 <i>x</i>	M1	eg angle $CFE = x$ and angle $DCF = 2x$
20(a) cont	Full reasoning for their method	A1	eg (base angles of) isosceles (triangle are equal) and exterior angle (of triangle is sum of interior opposite angles)
	Full method leading to angle <i>BAD</i> = 2 <i>x</i> and full reasoning for their method	A1	must see M1 eg angle BCD = 180 – 2x and angle BAD = 2x and angles on a (straight) line (add to 180) and (opposite angles of) cyclic quadrilateral (add to 180)

	Alternative method 4		
	Full method leading to angle $DFC = 90 - x$ and angle $ABC = 90 - x$	M1	eg angle $CFE = x$ and angle $DFE = 90$ and angle $DFC = 90 - x$ and angle $CDF = 90 - x$ and angle $ADC = 90 + x$ and
20(a) cont	Full reasoning for their method	A1	eg (base angles of) isosceles (triangle are equal) and (angle in a) semicircle (is 90) and (sum of) angles in a triangle (is 180) and angles on a (straight) line (add to 180) and (opposite angles of) cyclic quadrilateral (add to 180)
	angle $BAD = 2x$ and (sum of) angles in a triangle (is 180)	A1	must see M1

20(b)	30	B2	B1 correct equation or calculation eg $90 + 2x + x = 180$ or $90 - x = 2x$ or $3x = 90$ or $6x = 180$ or $90 \div 3$
	Additional Guidance		
	Ignore any expressions for angles and any other calculated angles		calculated angles
	Ignore any reasons		