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Abstract

The radiosity class of techniques is relatively underrepresented in the current studies to-
wards real-time dynamic global illumination, while it provides unique advantages. This thesis
builds upon the existing theory for the redistribution of radiosity and the existing progressive
refinement adaptation for graphics hardware.

The dynamic radiosity theory is expanded by this thesis to differentiate between types of
redistribution based on the emitting or receiving role of the static and dynamic patches. The
new theory grounds the proposed cross redistribution radiosity algorithm. The redistribution of
radiosity originating from static patches is substituted by different types of redistribution. The
advantage of this new technique is that the number of rendered hemicubes no longer depends
on the number of static patches but only on the number of dynamic patches, which proves to be
a significant performance increase. The novel cross projection function is essential for realizing
the reduction of rendered hemicubes.

Several hardware accelerated radiosity adaptations are developed for comparison. The hard-
ware accelerated adaptation of the progressive refinement algorithm is improved significantly,
focusing on quality and general applicability. Furthermore, a novel hardware accelerated adapta-
tion of incremental radiosity is introduced, which introduces the concept of reshooting. Finally,
the cross redistribution radiosity theory is supplemented with a fast hardware accelerated adap-
tation, with the cross projection adaptation as main innovation.

A qualitative analysis demonstrates that all implementations are capable of delivering very
high quality global illumination, although the scene properties are restricted. In certain situ-
ations cross redistribution radiosity generates artifacts due to undersampling. The execution
time is benchmarked for all implementations, which proves that the cross redistribution radiosity
adaptation performs well within real-time bounds. A comparative analysis of competing real-
time high quality global illumination techniques is favorable to our cross redistribution radiosity
method, within the imposed scene restrictions.
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Chapter 1

Introduction

Global illumination is the research topic this thesis focuses on. It is one of the most studied subjects
in the rendering research area for the past twenty-five years with hundreds to thousands of published
papers. The topic concerns the simulation of both direct and indirect light, which is required to
generate realistic illumination. Direct light is received directly from the light source, whereas indirect
light is reflected one or more times by other surfaces before it is received. As generally each surface
reflects light (otherwise it would be perfectly black), each surface generates indirect light for all
other visible surfaces. This complex recursive interdependence of indirect illumination forms the
main challenge behind the generation of a global illumination solution.

Many techniques have been devised which are able to solve the global illumination problem
correctly in theory. As the global illumination function is a complex continuous function, implemen-
tations are always an approximation. The four main techniques from which most other techniques
derive are radiosity, path tracing, photon mapping and instant radiosity. These techniques are
generally considered to be able to generate high quality global illumination in practice, although
descendants may compromise on the quality.

Current challenge

The generation of a high quality global illumination solution can take minutes or hours to complete.
To use global illumination in real-time simulations such as games, the solution must be generated
very quickly. The scene typically changes each frame in games, and thus requires a new global
illumination solution for each frame at thirty frames per second.

Several techniques have been developed which are able to provide global illumination in such
short time spans. To achieve the short execution time, major quality concessions are made. For
example the calculated illumination is very low frequency and inaccurate, or some limitations may
apply such as the restriction to a single bounce of indirect illumination. These low quality global
illumination techniques have already been utilized in real-time games.

The current challenge for global illumination algorithms is to increase the ratio between quality
and execution time, where the execution time is low. The main objective is to generate a perceptually
high quality global illumination at real-time frame rates for general scenes, which would enable the
usage in real-time applications such as games.

Radiosity

Algorithms working towards the goal of high quality real-time global illumination have been created
in all four main branches of global illumination techniques. Most research is targeted at the pho-
ton mapping, instant radiosity and path tracing types of techniques, while the radiosity branch is
relatively underrepresented.

1
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However, radiosity has several unique properties which are very beneficial for the application in
real-time simulations. As the illumination is stored on the geometry surface, the solution is view-
independent which allows for the amortization of the calculation over multiple frames. Furthermore,
this extensive caching allows the solution to be modified when a change in the scene occurs, as
opposed to regenerating the entire solution. Radiosity also allows for better scaling to many bounces
of indirect illumination, as opposed to other (mostly ray based) approaches where the number of
possible light paths increases exponentially with the number of bounces.

These advantages of radiosity are not without downsides, such as memory usage and costly
visibility determination. However, for usage in games we expect the strengths of radiosity to outweigh
the disadvantages.

Objective of this thesis

The goal of this thesis is to introduce a radiosity class technique which generates high quality global
illumination solutions at real-time frame rates. This target is very ambitious considering the amount
of research already performed in the global illumination area, and the scarcity of previous radiosity
research targeting real-time speed. Therefore, this thesis focuses on aspects matching the strengths
of radiosity, such as many bounce indirect illumination. Furthermore, phenomena such as specular
reflectance and refraction are excluded. The used scenes are relatively simple and the assumption
is made that only a small portion of the scene changes each frame. We believe these restrictions are
not too prohibitive and still conform to a realistic usage scenario.

Thesis overview

Relevant related work is discussed in Chapter 2. The four main families of global illumination
techniques are discussed first, including the state of the art techniques which focus on real-time
performance. Subsequently, the radiosity family of techniques is studied in-depth to provide suffi-
cient theoretical background. Finally, radiosity techniques which target real-time performance are
examined.

In Chapter 3, the theory on the modification of radiosity solutions is expanded. The new theory
is required for the subsequent introduction of our novel cross redistribution radiosity technique and
the explanation of its correctness.

Efficient hardware accelerated adaptations of the techniques are required to achieve real-time
performance on consumer hardware. Several radiosity based adaptations are provided in Chapter
4. The existing adaptation for progressive refinement radiosity is improved. Subsequently a novel
hardware accelerated adaptation for incremental radiosity is proposed, and finally the adaptation
for the new cross redistribution radiosity technique is introduced.

The implemented techniques are subjected to a comparative visual and execution time analysis in
Chapter 5. Additionally, cross redistribution radiosity is compared with competing real-time global
illumination techniques, although this is very challenging due to the major differences.

The conclusion in Chapter 6 will state that are new cross redistribution radiosity is able to
generate high quality global illumination at real-time frame rates. The technique does have several
limitations for which potential solutions are proposed as future work.

Contributions

The five main contributions of this thesis are listed below.

• The theory of redistributing radiosity is expanded to allow for the specialization of redistribu-
tion for specific types of transport.
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• Cross redistribution radiosity is formulated using the newly created theory. The main advan-
tage is that the number of hemicubes rendered no longer depends on the number of static
patches in the scene, but only on the number of dynamic patches.

• The hardware accelerated adaptation of progressive refinement is improved. The main benefit
is a significant quality increase.

• Incremental radiosity is provided with a hardware accelerated adaptation, based on the pro-
gressive refinement adaptation. The concept of reshooting is introduced which changes the
properties of incremental radiosity to reduce the execution time.

• The new theory on cross redistribution radiosity is modified to a hardware accelerated adapta-
tion. The efficient implementation of the cross projection function is the largest contribution
for this adaptation.



Chapter 2

Related Work

Section 2.1 will provide an overview of the major high quality global illumination techniques. The
real-time state of the art technique in each class of global illumination algorithms will be compared
to our novel cross redistribution technique in Section 5.4.

Radiosity will be discussed thoroughly in Section 2.2. The most relevant radiosity techniques
aiming for real-time performance are described in Section 2.3.

2.1 High Quality Global Illumination Techniques

The main four distinct classes of global illumination techniques are discussed in this section. Each
class is theoretically capable of generating a perfect global illumination solution. The unique prop-
erties of each deriving technique determine for which situations it is specialized.

This thesis focuses on the radiosity family of techniques for the reasons discussed in the intro-
duction. The other techniques are relevant for the comparative analysis in Section 5.4.

2.1.1 Path Tracing
Path tracing is a puristic approach to solving the global illumination problem, which exclusively
uses ray tracing.

Ray tracing The origin of ray tracing lies in the ray casting technique by Appel [1], which was
improved in the distributed ray tracing technique by Cook et al. to include complex effects by
using numerical integration [9]. The integration is effectively done by shooting many rays with
parameters spread over the integration domain and averaging the result. The domains suggested in
the original paper include the specular distribution function (for glossy specular effects), the area
of a light source (for penumbras), and time (for motion blur), amongst others. The integration can
be performed simultaneously for all domains, thus the number of rays required depends only on the
largest domain.

Path tracing The integration domain of diffuse interreflection (i.e. indirect diffuse light) between
surfaces is not included in the distributed ray tracing technique, even though it is an obvious exten-
sion. It is likely that it was excluded on purpose because the domain is very large and would require
a very large number of rays to properly (and recursively) sample the domain. The solution to the
problem of the large domain was brought by Kajiya in the form of stochastic sampling in his path
tracing technique [23]. The indirect illumination is approximated by taking a single sample with
the expected value of the correct result. By iterating the algorithm and averaging the results, the
correct result will eventually be obtained.

4
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As path tracing is able to simulate direct light, diffuse indirect light and specular/refractive
indirect light, it provides a complete global illumination solution.

Variance reduction Several extensions of path tracing attempted to reduce the stochastic vari-
ance and thus increase the convergence speed. Bi-directional path tracing [26] combines paths from
the light source and paths from the eye to increase the number of contributing paths in scenarios
with difficult light paths. Metropolis light transport introduced the metropolis sampling strategy in
path tracing [43]. The technique iteratively mutates a path to create a proportional distribution of
light over the image. This reuse of paths is very efficient for complex lighting conditions.

Hardware acceleration The use of graphics hardware is essential to achieve real-time frame
rates. While graphics hardware is specialized to use rasterization as visibility detection mechanism,
it can also perform ray tracing. In 2002, Purcell et al. introduced the first basic ray tracer fully
accelerated using commodity graphics hardware, despite the restrictions posed by the primitive
graphics hardware [34]. The evolution of the GPU to a more general purpose streaming processor
allowed for faster ray tracing algorithms which include the construction of the acceleration structure
on the GPU [47].

There are specific challenges to a hardware accelerated path tracing implementation, including
divergent rays and probabilistic path termination. Novák et al. proposed an efficient method to
regenerate rays for threads with terminated paths [32]. This approach was optimized and extended
to metropolis light transport by van Antwerpen [42].

Real-time implementations The variance in path tracing manifests itself as per-pixel noise in
the final image. The number of samples must be doubled to halve the variance. The reduction of
variance by taking sufficient samples and using variance reduction techniques is the main challenge
to achieve real-time frame rates. A prominent public implementation striving for real-time results
is the Brigade renderer [3]. Brigade is currently only able to deliver real-time noise-free images in
very favorable lighting conditions. For most scenes the amount of noise is prohibitive.

2.1.2 Photon Mapping
Photon mapping divides the global illumination rendering in two phases, which are joined using a
storage mechanism. The storage of light is employed at the final bounce of the illumination before
it hits the eye.

Backward ray tracing The concept was introduced by Arvo in his backward ray tracing technique
[2]. In the first pass, rays are traced from the light source (i.e. backwards) into the scene. The
contribution of each ray is stored on the surface in an illumination map. In the second pass,
conventional ray tracing is used and the indirect lighting is sampled from the illumination map. The
first pass is view independent which allows for reuse of illumination maps between different view
points.

Photon mapping The backward ray tracing technique only included indirect specular reflections
on diffuse surfaces, but the caching principle was extended to diffuse interreflections in later tech-
niques [46, 19]. The evolution of the caching methods and the concept of rays shot from the light
source eventually culminated in the advent of the photon mapping technique by Jensen [22, 21].
The optional concept of final gathering was introduced, which shifts work from the first phase to the
second. Less photons are required to be shot, but gathering in the style of distributed ray tracing
must be used during the second phase.
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Hardware acceleration The caching employed in photon mapping requires the insertion and
gathering of photons in a spatial acceleration structure which is non-trivial on graphics hardware.
Purcell et al. created the first hardware accelerated photon mapping algorithm [35].

A significant speed increase was achieved by McGuire and Luebke in their image space photon
mapping technique [29], which utilizes the rasterization hardware in GPUs as much as possible. The
photon density estimation, which retrieves the final illumination from the photon map, is executed
by rendering photon volumes and is further improved by Mara et al. in [27]. Even though real-time
results are achieved, the quality is compromised because the number of photons must be limited.

Redistribution The selective photon tracing technique by Dmitriev et al. adaptively modifies the
photon map after geometric changes occur [15]. The method to detect changes is an approximation
and can only detect modifications within a few light bounces from the light source. Increasing
the detection to more bounces requires exponentially more work [14]. The speed improvement by
modifying the photon map is limited as the final density estimation phase is currently the most
expensive part.

2.1.3 Radiosity
This thesis builds on techniques in the radiosity category of global illumination, therefore an elabo-
rate description of the radiosity field will be given separately in Section 2.2. This section will provide
a concise description of the fundamentals of radiosity.

The main characteristic of the radiosity style of global illumination techniques is the extensive
use of caching. Between each bounce of light, the results are stored on the surface. The surface is
discretized in patches which facilitate the storage. A form factor is calculated for each pair of patches
which represents the fraction of radiosity transported between the patches. Using the form factors,
light is iteratively transported between the patches thus converging to the final global illumination
solution.

2.1.4 Instant Radiosity
Although the name suggests this technique to be part of the radiosity family of techniques, instant
radiosity is unrelated. The concepts of instant radiosity bear more resemblance to photon mapping,
but instead of caching the illumination at the final bounce, it is cached one bounce earlier.

Instant radiosity The theoretical framework of instant radiosity was introduced by Keller [25].
Rays are shot from the light sources into the scene, similar to photon mapping. At each bounce
in the scene, a virtual point light (VPL) is created representing the radiance from that bounce.
The created VPL’s are used to illuminate the scene using a rasterization based dynamic lighting
technique. Shadow mapping is employed to ensure indirect light to be shadowed correctly, which
requires a shadow map to be generated for each VPL.

Difference with photon mapping The main difference with photon mapping is that instant
radiosity treats each VPL as outgoing light, whereas the photons in the photon map represent
incoming light. The photons must be sampled using a density estimation method, while the VPLs
are used to light other points in the scene. Instant radiosity requires less VPLs to be rendered in
comparison to photons, but for each VPL a shadow map must be rendered.

Real-time techniques There are several extensions for instant radiosity which optimize the tech-
nique for real-time usage by introducing approximations. The reflective shadow maps technique [12]
replaces the initial ray tracing phase by a rasterization phase, although this limits the algorithm
to single bounce indirect lighting. The generation of shadow maps for all VPLs is optimized by
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approximating the shadow maps using the imperfect shadow maps technique [36]. These optimiza-
tions of instant radiosity have the disadvantage that the quality of the global illumination solution
is compromised.

Quality The instant radiosity technique by Novák et al. solves a major quality problem of instant
radiosity [31]. Most instant radiosity techniques produce significant errors for short range indirect
illumination due to the clamping of the VPLs to avoid artifacts. This short range illumination is
restored by Novák et al. using a screen space technique.

2.2 Radiosity

This section gives an overview of radiosity and the extensions which are most relevant for this thesis.
It is attempted to create a coherent explanation and for this purpose numerous small deviations from
the original papers have been introduced. Furthermore the formulations of the radiosity equations
have been revised to ensure consistency across all techniques.

This section will start with the original radiosity formulation in Section 2.2.1, and its primary
expansion in Section 2.2.2. The incorporation of non-diffuse reflectance is discussed in Section 2.2.3.
The major speed improvement introduced by progressive refinement is explained in Section 2.3.1,
followed by the extension to dynamic environments in Section 2.2.5 on which this thesis expands.
Finally, a hierarchical approach is discussed in Section 2.2.6 which introduces important concepts
for competing hardware accelerated radiosity techniques.

2.2.1 Initial Formulation
Radiosity is both the name for the first complete model for diffuse global illumination, and the
quantity which represents the total radiation leaving a surface. The radiosity technique is based
on methods in thermal engineering for the calculation of radiative heat exchange in enclosures.
The environment is discretized into patches which exchange radiosity. Goral et al. defined the
mathematical basis of the radiosity technique in [17] which consists of two parts: the transmission
of radiosity between two patches (using form factors), and the global exchange of radiosity between
all patches.

Form factor Equation 2.2.1 is the form factor equation which represents the fraction of radiosity
transferred from patch j to i. In this equation, A denotes the patch area, φ denotes the angle
between the surface normal and the line between dAi and dAj , and r denotes the distance between
dAi and dAj . The cosine factors project the direction on the respective surface to correct for oblique
angles, following Lambert’s cosine law. The π divisor is the energy conservation constant as part of
the perfectly diffuse Lambertian lighting. r2 accounts for the quadratic distance falloff.

Fij = 1
Ai

ˆ
Ai

ˆ
Aj

cosφi cosφj
πr2 dAjdAi (2.2.1)

This form factor equation conforms to the following reciprocity relationship: AiFij = AjFji.
Solving the form factor equation was done analytically by Goral et al. using a double contour
integral. The equation does not allow for occlusions between the patches and is therefore limited to
the interior of convex shapes.

Global exchange Radiosity is globally exchanged using Equation 2.2.2, where B is the surface
radiosity per unit time and per unit surface area, E is the emissive radiosity of the surface, ρ is the
albedo (diffuse reflection coefficient) of the surface, and Fij is the aforementioned form factor. The
incoming radiosity from all other patches is computed, multiplied with the albedo and added to any
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emission of the patch itself (for directly illuminating patches). The equation results in a system of
linear equations which was solved by Goral et al. using Gaussian elimination.

Bi = Ei + ρi

N∑
j=1

BjFij for i = 1,N (2.2.2)

The radiosity is computed for each wavelength band separately. Commonly there are three
wavelength bands used which correspond to red, green and blue illumination.

2.2.2 Hemicube
The hemicube generalizes the form factor computation [8], thus allowing for arbitrary scenes with
internal occlusion.

Differential form factor The hemicube requires Equation 2.2.1 to be modified to the differential
form factor equation as shown in Equation 2.2.3. The added HID function incorporates the occlusion
between surfaces by returning zero or one depending on the presence of an occluding object between
the points on the surfaces. This function is commonly omitted from the equation, as will be done
in the remainder of this thesis.

Fij =
ˆ
Aj

cosφi cosφj
πr2 HID dAj (2.2.3)

This equation only solves the integration over Aj . Cohen and Greenberg state that the integrand
of the integral over Ai is nearly constant if the distance between the patches is large compared to
their size and if there is no partial occlusion, and therefore the outer integral of equation 2.2.1 has
little influence. If the conditions for this simplification (a large distance and no partial occlusion)
are not met, the patches can be subdivided until they are met.

Geometric analog The differential form factor equation is solved using projection and rasteri-
zation which is an efficient method to process general scenes. To understand the validity of this
approach, a geometric analogy is constructed as depicted in Figure 2.2.1. When projecting patch
j on a unit hemisphere S, the area of the projection Ap(j,S) equals Aj cosφj/r2. Projecting the
hemisphere orthographically on the base plane accounts for the cosφi factor. Combined with a
division by π to correct for the total surface of the projected hemisphere (a disk), the result is equal
to Equation 2.2.3.

Hemicube Projecting to a curved surface such as a hemisphere is complex. However, if the
patch is projected on an intermediate surface I, that projection can be projected again on the
hemisphere to create the original projection p (j, S). This transitive relation is formally stated
as p [p (j, I) , S] = p (j, S) and is used by Cohen and Greenberg to introduce the hemicube as an
intermediate surface. The projection of the hemicube to the hemisphere is done analytically and is
precomputed.

The projection to the hemicube is done using rasterization and a depth buffer algorithm, which
requires the hemicube faces to be subdivided into a grid of pixels. Each pixel on the hemicube has a
corresponding delta form factor which accounts for the projection on the hemisphere, the subsequent
projection to the base of the hemisphere and the division by π. To calculate the form factor, the
delta form factors for all covered pixels are accumulated.

Global exchange The system of linear equations from Equation 2.2.2 is solved by Cohen and
Greenberg using the Gauss-Siedel iterative method, which can intuitively be seen as each patch
iteratively gathering the radiance from all other patches.
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Figure 2.2.1: Form factor calculation using projection. Image from [8].

Substructuring The algorithm was extended with substructuring in [6] to allow for more detail
without increasing the number of patches. The patches are subdivided into multiple elements and
one hemicube is rendered for each element. The radiance of the patch is the area weighted average of
the radiance of its elements. The patches (not the elements) are rendered on the hemicube. Equation
2.2.4 shows the modified global exchange equation which incorporates elements into Equation 2.2.2.
q is the index for elements, j is the index for patches. Bj is the area weighted average from all
corresponding Bq.

Bq = Eq + ρq

N∑
j=1

BjFqj (2.2.4)

The patches can be much larger when substructuring is used, thus speeding up the hemicube
rendering process. The introduction of the elements can be seen as a discretization to numerically
integrate the outer integral of Equation 2.2.1, therefore reducing the number of patches required.

The elements are subdivided adaptively and iteratively based on the radiosity gradient, which
suggests partial occlusion, and the proximity to other elements relative to the size. The adaptive
subdivision refines the representation of sharp lighting transitions such as shadows and it assists in
meeting the conditions for the differential form factor equation.

When rendering the radiosity scene for display, the elements are rendered instead of the patches
for optimal image quality.

2.2.3 Directional Reflectance
The radiosity techniques described previously operate under the assumption that all light is reflected
in a perfectly diffuse manner, i.e. the radiosity of a patch is equal in all directions. Other reflectance
functions can be incorporated in radiosity as well, but since radiosity is an iterative technique the
directional information must be retained between iterations.

Directional storage The support for directional reflectance was introduced to radiosity by Immel
et al. [20]. Radiosity is stored separately for each outgoing direction. The domain of outgoing
directions is discretized into a fixed number of directions represented as a grid of pixels on a hemicube.
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Each patch is assigned such a hemicube which stores its directional radiosity, therefore enabling
persistence of directional information between iterations.

Sillion et al. use a continuous storage solution for directional information [40] which encodes the
directional information using spherical harmonics. The number of spherical harmonics coefficients
stored by each patch determines the available directional detail.

Reflectance function The mathematical formulation of radiosity must be adapted to include a
Bidirectional Reflectance Distribution Function (BRDF) to model the directional reflectance. The
form factor representation acquires a dependency on the direction of incoming light. Instead of being
a scalar value for each pair of patches, the form factor must depend on the specific direction and can
no longer use the integral over the patch area Aj of the other patch. To present this new equation
intuitively, we combine the form factor equation with the radiosity exchange equation, similar to
Immel et al. [20]. The resulting Equation 2.2.5 is a combination of Equation 2.2.2 and 2.2.3, where
the albedo term ρ now incorporates the BRDF. The parameters ~w and ~v denote respectively the
outgoing and incoming direction. The 1/π factor has been omitted since this correction was applicable
to the Lambertian reflectance function used for perfect diffuse reflectance. In the new formulation,
energy conservation must be enforced in the BRDF.

Bi(~w) = Ei(~w) +
N∑
j=1

ˆ
Aj

ρi(~w,~v)cosφi cosφj
r2 Bj(−~v) dAj (2.2.5)

Equation 2.2.5 is conceptually identical to the rendering equation formulated by Kajiya for the
path tracing global illumination technique [23].

Perfect specular reflection The directional accuracy is limited due to the discretizations and
storage requirements, obstructing the simulation of perfect specular reflections associated with
mirror-like materials. This limitation can be circumvented by resorting to ray tracing for perfect
specular surfaces [40].

Distributed ray tracing An alternative solution is to integrate distributed ray tracing in the ra-
diosity technique to simulate the directional reflectance. The resulting hybrid between radiosity and
distributed ray tracing was introduced by Wallace et al. [44] and subsequently improved in [39, 37].
The radiosity technique handles radiance storage in diffuse patches and interactions between diffuse
patches while distributed ray tracing governs all directional reflectance. The resulting technique
introduces partial view dependence since all directional surfaces visible from the view point must be
recursively reevaluated after camera movement.

2.2.4 Progressive Refinement Radiosity
The Gauss-Siedel method of global radiosity exchange described in Section 2.2.2 can be intuitively
understood as an iterative gathering process. The convergence speed of this approach is low as
all patches must render a hemicube to complete each radiosity propagation step. Cohen et al.
reformulated the global exchange equation to change the perspective to patches which shoot radiosity
as opposed to gathering patches [7]. When a single hemicube is processed, its radiosity is distributed
to all other patches. This enables the radiosity to be propagated much faster, as long as the most
influential patches are selected for shooting first. The initial convergence speed is orders of magnitude
higher compared to the previous gathering approach.

Additionally, the generated form factors are not stored between shooting iterations which removes
the O

(
n2) memory requirement present in previous radiosity approaches.
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Repeated shooting After a patch has shot its radiosity, it can receive new radiosity from other
patches in subsequent iterations. The patch must shoot radiosity again to propagate the new radios-
ity. However, it cannot shoot the old radiosity again since the receiving patches have no recollection
of the amount of radiosity they have already received from this particular shooting patch and thus
cannot discern the new radiosity from the old radiosity. Therefore the shooting patches can only
shoot the radiosity they have not shot before. This requires the stored radiosity to be subdivided in
shot radiosity and unshot radiosity. In the algorithm, each patch stores its unshot radiosity Bui and
its total radiosity Bi. The shot radiosity Bsi can be deducted using the relationship Bi = Bui +Bsi .

Reformulated equations The reciprocity relationship AiFij = AjFji as introduced in Section
2.2.1 is essential to formulate the new shooting approach using the established radiosity equations.
The hemicube rendered at the shooting patch i creates form factors Fji which describe a radiosity
transfer from patch j to patch i. By applying the reciprocity relationship, the transfer direction is
inverted and we obtain the form factor Fij = Fji

Aj

Ai
for radiosity transport towards the receiving

patch.
Equation 2.2.6 describes the radiosity exchange for a single shooting iteration. ∆Bi is the

radiosity difference for the receiving patch i, which must be added to both Bui and Bi. The starting
condition of this incremental radiosity formulation is Bj = Buj = Ej , where patch j denotes the
shooter. After the shooting iteration over all i is completed, the corresponding Buj is set to zero.

∆Bi = ρiB
u
j Fji

Aj
Ai

for i = 1,N (2.2.6)

Substructuring The concept of substructuring described in Section 2.2.2 is also applied in pro-
gressive refinement radiosity. The patches are still emitting radiosity and the elements are still
receiving radiosity, but the perspective has changed. The hemicubes are rendered from the perspec-
tive of the patches, and the elements are projected on those hemicubes. In this configuration less
hemicubes are rendered but with higher detail, which is more efficient for contemporary rendering
systems to parallelize.

The adaptive subdivision was originally executed exclusively for elements. In progressive re-
finement radiosity patches can also be subdivided. This occurs when the inverted form factor Fji
exceeds unity or when the size and intensity of the patch causes illumination inaccuracies.

The source of inaccuracies lies in the inversion of the perspective. Previously the form factor
equation integrated over the emitting patches, but in the shooting perspective it integrates over the
receiving elements thus treating the shooting patch as a differential area. Intuitively, the hemicube
renders from the perspective of a single point while the shooting patch is actually an area. This
simplification causes illumination inaccuracies when the emitted radiosity is intense and the shooting
patch is insufficiently subdivided.

Whereas the adaptive subdivision of elements could previously be performed in between itera-
tions, it must be interleaved in progressive refinement radiosity due to its incremental nature.

Disk approximation Using the hemicube method, the integral of Equation 2.2.3 is approximated
by accumulating the form factors for all pixels occupied in the hemicube. The projection of an
element must cover a significant number of pixels to avoid aliasing artifacts, which requires the
hemicube to be rendered at a high resolution.

An alternative method is to shoot a small number of rays to approximate partial occlusion. Using
this method the projected size of the visible surface can no longer be deducted from the number of
occupied pixels on the hemicube. Instead, the size is determined analytically by approximating the
surface area using a set of disks, as proposed by Wallace et al. [45]. This disk approximation is
formulated in Equation 2.2.7. Note that the equation sums over the shooter area. While progres-
sive refinement radiosity uses the shooter perspective, the disk approximation employs the receiver
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perspective again. This receiver perspective solves the illumination inaccuracies discussed under the
substructuring paragraph.

Fji = Ai
1
m

m∑
k=1

cosφi,k cosφj,k
πr2
k + Aj/m

(2.2.7)

By substituting Equation 2.2.7 in Equation 2.2.6, the revised progressive refinement equation is
obtained as shown in Equation 2.2.8. It should be noted that the area terms are simplified. This
equation is the basis for the shooting techniques in this thesis.

∆Bi = ρiB
u
j Aj

1
m

m∑
k=1

cosφi,k cosφj,k
πr2
k + Aj/m

for i = 1,N (2.2.8)

2.2.5 Dynamic Radiosity
After a modification of the scene, previous radiosity methods require the entire algorithm to be
restarted. It would be more efficient to modify the radiosity solution to include the effects of the
changes. This concept is essential in this thesis, and will be built upon in Chapter 3.

Surface property change Support for modifications was proposed by Puech et al. [33], and
was based on the progressive refinement radiosity algorithm. The allowed changes are restricted to
surface properties, i.e. emission and reflectance. Modifications to the geometry are not supported as
they modify the form factors. The effect of the surface changes is a correction of the shot radiosity
from the changed patch, which is applied to both the total and unshot radiosity. The unshot radiosity
will be propagated in subsequent progressive refinement iterations. Note that the radiosity difference
can be negative, therefore causing negative light to be propagated.

A change in emission is corrected using Equation 2.2.9, where the radiosity difference ∆Bi must
be added to both Buj and Bj . The new emission value is represented by E′

i.

∆Bi = E′
i − Ei (2.2.9)

For a change of reflectance parameter, the reflected radiosity Bsi −Ei must be retrieved and the
influence of reflectance term ρi must be reversed. The radiosity difference is obtained by multiplying
with the change of the reflectance parameter. ρ′

i is the new reflectance parameter.

∆Bi = (ρ′
i − ρi)

Bsi − Ei
ρi

(2.2.10)

Geometry modification The solution of Puech et al. was extended simultaneously by George et
al. and Chen to include modifications to the geometry [16, 5]. This thesis expands upon their work.
A general theoretical framework is proposed to analyze dynamic radiosity algorithms in Section 3.1.
The work of George et al. and Chen is explained using this framework in Section 3.2.

2.2.6 Hierarchical Radiosity
The differential form factor equation defined in Equation 2.2.3 operates under the assumption that
the distance between the patches is large compared to their size. Patches are subdivided until
this assumption is met or the subdivision limit is reached. Only the lowest subdivision level is
used for radiosity transportation, also for transportation over large distances. As basis of the their
hierarchical radiosity algorithm, Hanrahan et al. note that higher levels in the subdivision hierarchy
can be used for radiosity transportation with distant patches without increasing the introduced
error [18]. A set of links is created between entries in the patch hierarchies which describes the
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transportation paths of radiosity. Intuitively, this approach can be seen as the selective grouping of
patches for radiosity transportation over large distances. Hanrahan et al. formulate the technique
analogous to the N-body problem and thus derive that the amount of links created is O (n), as
opposed to the O

(
n2) complexity of traditional radiosity transportation. Clustered hierarchical

radiosity extends this concept by allowing the grouping of patches from different surfaces [41].
This thesis does not build on hierarchical radiosity as modifying the set of links is expected

to be slow and complex using graphics hardware. It is furthermore expected that modifying the
non-hierarchical radiosity solution is faster than recomputing a hierarchical solution.

2.3 Real-Time Radiosity

All radiosity techniques striving to achieve real-time performance focus on utilizing graphics hard-
ware to accelerate their execution. The techniques most relevant for this thesis will be discussed in
this Section.

Section 2.3.1 will explain an evolution of the progressive refinement algorithm for graphics hard-
ware which is expanded upon in the remainder of this thesis. The Enlighten radiosity implementation
is currently used in videogames, and will be discussed in Section 2.3.2. Finally Section 2.3.3 examines
the antiradiance technique, which is the main radiosity-style competitor for the cross redistribution
radiosity algorithm introduced in this thesis. The cross redistribution radiosity introduced in this
thesis will be compared against antiradiance in Section 5.4.1.

2.3.1 Progressive Refinement Radiosity on Graphics Hardware
The progressive refinement radiosity algorithm is adapted for efficient execution on GPUs by Coombe
et al. [10]. Radiosity is stored in the texels of a texture allowing for a fine subdivision of surfaces
without introducing vertex overhead. Several modifications to the progressive refinement algorithm
are introduced which will be discussed below. Section 4.3 features an improved version of this
algorithm and explains additional details.

Stereographic hemisphere projection The shooting patch does not render a hemicube, but
instead employs stereographic rendering to project the entire hemisphere at once. The single pro-
jection is preferable over the five projections of the hemicube since the rendering cost for visibility
determination is mainly determined by the overhead of a projection pass. This method introduces
some error since graphics hardware is limited to rendering straight polygons whereas projection on
a hemisphere results in curved lines. The error depends on the tessellation of the geometry and the
distance to the view origin.

Gathered writes The traditional progressive refinement algorithm writes to all patches which are
visible in the rendered hemicube, resulting in scattered memory writes. Graphics hardware however,
is optimized for coherent memory writes. Coombe et al. introduce a method to unite the shooting
perspective of progressive refinement radiosity with coherent memory writes. After rendering the
hemisphere from the shooting perspective, the algorithm does not loop over all hemisphere pixels
but instead loops over all receiving elements. Each element checks for its presence in the hemisphere
to ensure correct visibility. The disk approximation is used to avoid retrieving the projected size of
the receiving element.

To cull surfaces which are entirely occluded in the hemisphere, hardware occlusion queries can
be employed during the hemisphere rendering. If no pixels of the surface are rendered to the
hemisphere, the occlusion query reports this surface as occluded, thus allowing it to be omitted from
the subsequent loop over the receiving elements.
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Shooting patch selection Following traditional progressive refinement, Coombe et al. use sub-
structuring the reduce the amount of shooting patches. The selection of shooting patches is done
in groups to amortize the selection cost. For each surface a mipmap chain is generated for the
unshot radiosity texture. The highest mipmap level consists of one pixel and represents the average
radiosity. This value is converted to the total unshot radiosity of the surface and used in a selection
process to find the surface with the highest unshot radiosity. All patches on the selected surface
shoot their radiosity in turn.

Adaptive subdivision The use of textures as radiosity storage complicates using different subdi-
vision levels across a surface, as textures are inherently uniformly subdivided. Adaptive subdivision
is incorporated by Coombe et al. through the use of coarse geometric subdivision. After a signifi-
cant radiosity gradient has been detected during the shooting process, the geometry of that patch is
subdivided. The four new leaves each contain a new small radiosity texture (with e.g. 16x16 pixels)
for which the shooting of radiosity is repeated.

The adaptive subdivision introduces a significant overhead in the algorithm. Furthermore, the
quality is compromised as radiosity interpolation is not possible across different radiosity textures.
This feature is not used in the implementation presented in this thesis.

2.3.2 Enlighten
Enlighten is a commercial middleware radiosity package used in real-time simulations such as games
[28]. Execution time is critical for Enlighten, since it must run simultaneously with demanding
simulations. The radiosity implementation has been customized specifically for this purpose. The
type of optimizations used, such as the low resolution proxy mesh, indicate how the techniques
introduced in this thesis may be adapted for usage in games.

Algorithm The radiosity algorithm itself is executed on the CPU using a low resolution proxy
mesh of the original mesh which resides in GPU memory. The algorithm computes exclusively
indirect illumination, the direct illumination is performed on the GPU using regular lighting tech-
niques. The framebuffer of the previous frame is sampled sparsely on the GPU and subsequently
those samples are transferred to CPU memory as input for the radiosity algorithm. The samples
are projected on the low resolution proxy mesh which initializes the radiosity algorithm. Only one
iteration of radiosity propagation is executed per frame. Multiple light bounces are simulated by
using the previous frame as light input for the computation.

After the radiosity solution has been computed, the solution is transferred back to the GPU in
a lightmap format. The lightmap is sampled on the high resolution mesh with the use of a smart
upsampling technique.

Hierarchical radiosity Although unconfirmed, we expect that Enlighten employs a hierarchical
radiosity technique which is explained in Section 2.2.6. This is indicated by the dependency on
precomputation and its focus on speed. Hierarchical radiosity is the most efficient radiosity solution
when relying on precomputation.

However, dynamic geometric is not easily supported due to this dependance on precomputation.
The use of light probes allows for the dynamic geometry to receive indirect illumination but it
cannot participate in the radiosity computation. To facilitate participation, the hierarchical radiosity
links would have to be inserted and removed throughout the hierarchy, which is a computationally
expensive process.
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2.3.3 Antiradiance
The main computational bottleneck in radiosity algorithms is the visibility computation. The antira-
diance technique omits visibility computations altogether by shooting antiradiance from the backside
of patches to create shadow [13]. The antiradiance shot from the back is equal to the radiance re-
ceived at the front and thus cancels out the radiance erroneously received by shadowed surfaces.
The technique expands on hierarchical radiosity to ensure low computational complexity.

Directional storage Antiradiance cannot be propagated diffusely as shadow has a specific direc-
tion. The direction of the antiradiance is exactly opposite to the direction of the incoming radiance.
To retain the directional information for subsequent iterations, the radiosity is stored in bins which
represent discretized directions. Directional reflection is easily incorporated in the algorithm since
the directional storage is already accounted for.

Due to the limited accuracy provided by the directional storage of radiosity, the accuracy of the
solution is suboptimal. This manifests itself in overly blurred shadows.

Shadow propagation In each iteration of the antiradiance algorithm radiosity is transported
once over all links. In the first iteration all surfaces receive radiance from the light sources. In the
second iteration, the received radiance is transported as antiradiance from the backside. If a surface
is shadowed by two overlapping occluders, it will receive antiradiance twice and thus be overly shad-
owed. This effect is corrected for by shooting out the received antiradiance as regular radiance from
the backside. The second occluder will receive antiradiance from the first occluder and consequently
shoot positive radiance from its backside, which corrects for the surplus of received shadow. Multiple
layers of occluders cause a fluctuating convergence to the final solution. Intermediate results are
thus less suitable for display.

Link generation The execution of antiradiance on the GPU is relatively straightforward as only
propagation over existing links is required. In the original antiradiance algorithm by Dachsbacher et
al. the links have been precomputed on the CPU. Meyer et al. introduced an algorithm to execute
the link creation on the GPU including adaptive subdivision [30]. The techniques do not support
dynamic geometry, thus requiring the entire algorithm to be repeated when geometry is modified.
The technique of Meyer et al. is sufficiently fast to achieve real-time performance in simple scenes
while repeating the entire algorithm for each frame.



Chapter 3

Dynamic Radiosity

The main objective of this thesis is to explore the possibilities for radiosity-based techniques which
can generate high quality global illumination solutions at real-time frame rates. It is expected that
the property of radiosity that the solution can be modified is essential for achieving real-time speed.

To guide the investigation, a new theoretical framework is introduced in Section 3.1. This
framework distinguishes and analyzes the modifications required to adapt the radiosity solution and
it formulates the correctness requirements.

The existing dynamic radiosity technique is analyzed in Section 3.2. After identifying the funda-
mental performance problem of the existing technique, the framework is used to guide the creation
of the novel cross redistribution radiosity technique as presented in Section 3.3. The theoretical
framework is used to show that the quality of the modified radiosity solution is equal to a newly
generated solution and consequently that the radiosity solution does not degrade after many subse-
quent modifications.

3.1 Requirements for Adaptivity

After a geometric change, the interactions between all pairs of patches must potentially be revised.
The redistribution function R (X,Y ) accounts for the geometrical modifications. Here, X is the set
of patches emitting radiosity and Y is the set of patches receiving radiosity. It should be noted that
each patch can emit and receive radiosity. The subdivision in sets X and Y merely denotes the role
of the patches. Patches can be assigned both roles simultaneously and thus be in both X and Y .

Basic mathematical implementation The basic implementation Rg(X,Y ) for the redistribu-
tion function R (X,Y ) is formulated in Equation 3.1.1. Vector notation is used to include the set
of receiving patches Y into the formulation. (This was handled less explicit in the radiosity equa-
tions in Section 2.2). The result of the equation is a vector of radiosity difference values, denoting
redistribution radiosity for all patches in Y . A radiosity difference value is used exactly like the ∆Bi
radiosity difference value in progressive refinement radiosity, i.e. it is added to both Bui and Bi.
As opposed to progressive refinement radiosity, this equation is not iterative. The incremental form
factor ∆Fij is defined as ∆Fij = F ′

ij − Fij , where F ′
ij is the form factor after the modification and

Fij is the unmodified form factor. ρi is the albedo of patch i.

Rg(X,Y ) =

ρi∑
j∈X

Bsj∆Fij


i∈Y

(3.1.1)

Intuitively explained, this formula modifies the radiosity which has already been transferred using
the old form factor, to the result it would have if it were transferred using the new form factor.

16
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It should be noted that the redistribution function does not result in the final modified solution.
Iterations of regular progressive refinement radiosity are necessary for the changes to propagate
through the scene and thus for the solution to converge to its final modified state.

Distinguishing types of patches Different sets of patches are distinguished. The total set of
patches is defined as P and split into a set of static patches C and a set of geometrically modified
patches M , such that P = C tM .

After a modification, radiosity must potentially be transferred between all types of patches, i.e.
R (P, P ). We distinguish between the different types of patches by separating the redistribution in
the four following parts: R(C,M), R(M,C), R(M,M) and R(C,C). Those functions combined are
equal to R (P, P ), as formulated in Equation 3.1.2.

R(P, P ) =
(

R(C,M) + R(M,M) , R(M,C) + R(C,C)
)

(3.1.2)

Each part of the redistribution process has distinct properties:

R(C,M) As the position and orientation ofM changes, all form factors for radiosity transport from
C to M change.

R(M,C) Similar to R(C,M), all form factors change.

R(M,M) Form factors for radiosity transport within the setM change in most situations, but there
are exceptions. The form factor remains unmodified when both patches have been transformed
using the same rigid transformation, unless the visibility between the patches has changed due
to an unrelated patch.

R(C,C) The relevant form factors only change when the visibility between a pair of patches is
changed by the intrusion of an unrelated patch, which must be in M .

Implementation considerations The redistribution function does not require a converged solu-
tion. The use of the shot radiosity term Bs in Equation 3.1.1 allows the function to execute correctly
on partially converged solutions.

However, in the case of multiple consecutive modifications, the redistribution function cannot
always be performed when a previous redistribution function is in progress. The requirement is that
radiosity must always be modified in chronological order from the viewpoint of the emitter. This
is also caused by the use of the shot radiosity term Bs in Equation 3.1.1, as the term may not
be modified halfway through the execution of the equation. In practice each emitting patch must
perform the redistributions in chronological order.

Another observation is that the algorithm is entirely incremental, thus results are only modi-
fied and not recalculated. If an implementation uses an approximation for radiosity redistribution,
a small approximation error might accumulate over the course of many subsequent redistribution
iterations, resulting in a significant incorrectness. High accuracy is required to prevent this accumu-
lation of error. We can only deviate from this strict accuracy requirement if it can be proven that
the error will not accumulate over time.

3.2 Analysis of Incremental Radiosity

Dynamic radiosity techniques were partially discussed in Section 2.2.5. In this section, the incre-
mental radiosity technique by Chen [5] will be analyzed using the theoretical framework proposed
in Section 3.1. The analysis will also hold for the other dynamic radiosity technique by George et
al. [16] due to its similarity.
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Incremental radiosity is an extension of progressive refinement radiosity, and thus uses a shooting
perspective to transport radiosity. The form factors are calculated implicitly with every radiosity
transfer. After redistributing radiosity to adjust for a geometrical modification, progressive refine-
ment radiosity is employed to converge to the new solution.

Progressive redistribution function The basic redistribution function Rg(X,Y ) was defined
in Equation 3.1.1. This function can intuitively be understood as the gathering of redistribution
radiosity. Incremental radiosity shoots redistribution radiosity instead. This gives more scheduling
freedom as it is easier to keep the Bs term constant throughout the execution, as explained in
Section 3.1. Due to the freedom, radiosity transfers that are expected to have a high influence on
the redistribution can be prioritized. Less important transfers can be deferred.

Equation 3.2.1 defines the progressive implementation Rp(X,Y ). The reciprocity relationship
AiFij = AjFji has been used to employ the shooting perspective. This formulation bears similarity
to the original progressive refinement radiosity distribution equation, as described in Section 2.2.4.
Most symbols were explained for Equation 3.1.1. Additionally, Ai denotes the surface area of patch
i.

Rp(X,Y ) =
∑
j∈X

({
ρiB

s
j∆Fji

Aj
Ai

}
i∈Y

)
(3.2.1)

Intuitively explained, Equation 3.2.1 shoots redistribution radiosity from a shooter j to all re-
ceivers i, and repeats this for all shooters.

Patch set specialization The incremental radiosity algorithm employs the progressive redistri-
bution function for all redistribution involving modified patches, thus it uses Rp(C,M), Rp(M,C)
and Rp(M,M). It is ignored that form factors can be unchanged in the R(M,M) redistribution. In
the case of R(C,C), a lot of incremental form factors are zero. While the same progressive redistri-
bution function Rp(C,C) is used, it is specialized to filter out unmodified form factors. This is done
implicitly during form factor calculation. Instead of rendering an entire hemicube, the rendered
hemicube region is clipped to areas which are affected by the geometry modification. Hemicube ren-
dering is combined for Rp(M,C) and Rp(M,M), and it is combined for Rp(C,M) and Rp(C,C).
This is possible because both partial redistribution functions share the same shooter patches. To
calculate the incremental form factor, two hemicubes are rendered for each shooting patch. One to
calculate the old form factor and another to calculate the new form factor.

3.3 Cross Redistribution Radiosity

Incremental radiosity uses the shooting perspective to redistribute radiosity and consequently renders
a hemicube for each shooter. More specifically, 2 · |M | hemicubes are completely rendered and 2 · |C|
hemicubes are partially rendered, which results a complexity of O(2|M | + 2|C|). Anticipating on
the hardware accelerated adaptations in Chapter 4, it is noted that partial rendering of hemicubes
is inefficient on graphics hardware and should not perform much better than rendering a complete
hemicube in our usage scenario.

In this section the novel cross redistribution radiosity algorithm will be presented which has an
O(4|M |) hemicube complexity. It is expected that in common usage scenarios |M | � |C|, and thus
this technique will prove to be a significant performance improvement.

3.3.1 Redistribution Functions
Cross redistribution radiosity does not render hemicubes for patches in C, but only for patches in
M . To accomplish this, the redistribution functions must be constructed carefully. The progressive
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Figure 3.3.1: Two hemicubes, displaying a scene before (left) and after (right) a geometry mod-
ification. The transparent areas produce form factor modifications for a single shooting patch in
Rp(C,C). The patches in the red area are unoccluded and in the blue area surfaces are occluded.

redistribution functions Rp(M,C) and Rp(M,M) can be used as they render hemicubes for all
shooting patches M . To implement the R(C,M) redistribution function, we use the basic gather-
based redistribution function Rg(C,M) as this function requires a hemicube to be rendered for all
receiving patches M . The R(C,C) redistribution function poses a challenge, as neither the gather-
based nor the progressive redistribution function can implement this function without rendering a
(partial) hemicube for each patch in C. Instead, the new cross projection redistribution function
Rx(C,C) is used to redistribute radiosity between patches in C whilst only using hemicubes for the
patches in M .

3.3.2 Cross Projection Redistribution Function
In the incremental radiosity technique, the Rp(C,C) function was specialized to render partial
hemicubes in the direction of the modified geometry M . The other directions would yield a form
factor difference of zero, and therefore are not relevant in the redistribution process. There are
two specific areas on the hemicube where the form factors for R(C,C) are changed, as illustrated
in Figure 3.3.1. In the hemicube containing the scene after the modification, the area which is
unoccluded by the movement yields form factor changes. In the pre-modification hemicube, the
form factor changes occur in the area which is occluded by the modification.

An important observation is that all redistributed radiosity passes through the modified geometry
in either the new or old position. This fact is the basis for the cross projection redistribution function.
The redistribution is done for each patch i in C using the patches of the modified geometry (defined
in the set M) which are visible from patch i. Those visible patches from M combined cover all areas
with form factor modifications, i.e. the transparent areas in Figure 3.3.1.

When viewed from the perspective of a patch in M , the redistribution radiosity passes through
it forming a cross-like shape, hence the name cross projection. The cross projection redistribution
function can only be applied for a R(C,C) type of redistribution, due to this specialized approach.
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Figure 3.3.2: Cross projection redistribution example showing intermediate projection. In this figure
M = {j} and C = {r, g, b, i, ...}.

General approach Figure 3.3.2 depicts the Rx(C,C) redistribution from the part of C which is
visible through a single patch j ∈M towards a single patch i ∈ C. Instead of directly redistributing
the radiosity from the part of C which is visible through j towards i, an intermediate step is
introduced. The radiosity from C is projected on j, using patch i as origin for the perspective
projection. Subsequently, the radiosity projected on j is transported to i.

The justification of the hemicube, as explained in Section 2.2.2, states that the form factor is
transitive under multiple projections when using the same perspective origin. Consequently, the
combined form factor for the visible C patches, Fir + Fig + Fib equals Fij . In other words, when
the radiosity on j (intermediately projected from r, g and b) is transferred to i, the result is equal
to the direct transportation of radiosity from r, g and b to i. This relation also holds when patches
in C are partially projected on j because the parts projected outside of j do not contribute to the
redistribution.

The final projection from j to i is equal to the R(M,C) redistribution. This is solved using the
progressive redistribution function Rp(M,C).

Mathematical formulation Equation 3.3.1 formulates the cross projection redistribution func-
tion. The equation bears similarity to the progressive redistribution function Rp(M,C). The shot
radiosity Bsj has been replaced with the projected radiosity function P (C, j, i). The incremental
form factor ∆Fji = F ′

ji − Fji has been expanded and negated. The negation accounts for the fact
that the appearance of patch j causes the removal of radiosity originating from patches behind patch
j (i.e. the creation of shadow) and vice versa. j′ denotes the new position of patch j. The cross
projection is defined exclusively for transport from C to C. The patches in set M , which cause the
redistribution, are explicitly required.

Rx(C,C) =
∑
j∈M

({
ρi
Aj
Ai

(
−F ′

jiP (C, j′, i) + FjiP (C, j, i)
)}

i∈C

)
(3.3.1)

The projected radiosity function P (C, j, i) is defined in Equation 3.3.2. The function calculates
the area-weighted sum of the shot radiosity projected from C on the surface of j. PerspProjArea (k, j, i)
denotes the surface area of a projection on a surface where k describes the patch being projected,
j denotes the surface k is projected upon, and i is the origin for the perspective projection. The
projected area is normalized using the total area of j.
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P (C, j, i) =
∑
k∈C

(Bsk · PerspProjArea (k, j, i) /Aj) (3.3.2)

3.3.3 Hemicube Usage
The radiosity projection function stated in Equation 3.3.2 is implemented using a hemicube rendered
at the backside of patch j. The patches in C have been rendered on this hemicube using their shot
radiosity. The hemicube is used to create a projection on j from the perspective origin of i. To
correct for the different projection origin, a reprojection technique is used which will be discussed
in Section 4.5.

The remainder of the cross projection redistribution function is implemented using two hemicubes
at the front of patch j to calculate Fji and F ′

ji, similar to Rp(M,C).
The total number of hemicubes required for the redistribution amounts to O(4|M |). Two are

rendered at the front of each patch in M , of which one uses the old position and the other the new
position. These hemicubes are used to shoot redistribution radiosity for Rp(M,C), Rp(M,M) and
Rx(C,C). Additionally, they are also used to gather radiosity for Rg(C,M). The remaining two
are the hemicubes rendered at the backside of each patch in M in both the old and new location.
These are used by the intermediate projection in Rx(C,C).

3.3.4 Implementation Considerations
In Section 3.2 several implementation considerations were stated. Firstly, Bs must be constant
throughout the redistribution. The redistribution formulation of incremental radiosity allows the
calculation to be subdivided without violating the constant Bs rule, therefore creating freedom
in the scheduling of the calculations. Cross redistribution radiosity does not offer this flexibility
because of the partial gathering formulation. The entire redistribution must be completed before a
new redistribution can be initiated.

To prevent errors in the solution to accumulate over multiple redistributions, both the formu-
lation and implementation must take care. There are multiple potential sources of error in cross
redistribution radiosity. Firstly, it employs a partial gathering formulation while using a progressive
approach for the regular radiosity propagation. The implementation of gathering and shooting will
yield slightly different outcomes, resulting in error. Fortunately, this error does not accumulate. The
error is introduced when the radiosity, which was gathered during a redistribution, is shot during
the regular progressive propagation. However, for the next redistribution where gathering occurs as
part of the Rg(C,M) phase, the Rp(M,C) phase reverts all previously shot radiosity including any
error introduced.

The second potential source of error is the projection function used in the cross projection
redistribution function. The accumulation of error depends on the implementation of the projection
function, which will be discussed in Section 4.5.



Chapter 4

Hardware Accelerated Adaptations

This thesis targets real-time performance of the proposed algorithms on consumer hardware. To
achieve this mark, the use of graphics hardware is essential. Modern GPUs have a multitude of
processing power available compared to the CPU, both in terms of arithmetic compute power and
memory bandwidth. However to utilize this processing power, algorithms must be adapted specifi-
cally for the GPU architecture. Graphics hardware accommodates high computational throughput
at the cost of the flexibility. Main factors contributing to this trade-off are the use a single instruc-
tion multiple data (SIMD) architecture, and the use of fixed-function hardware such as rasterizers.
Even though the trend in graphics hardware is to increase flexibility, it is highly unlikely that the
SIMD paradigm will be replaced in the foreseeable future.

Developing a good hardware accelerated adaptation is far from trivial for complicated algorithms
such as global illumination techniques. A lot of factors must be taken into accounts such as reducing
bottlenecks, coherence and concurrency in memory access, SIMD occupancy for parallelism and
latency hiding, and limitations in functionality.

Four hardware acceleration adaptations of radiosity algorithms have been developed for this thesis
to allow comparative benchmarking. The progressive refinement adaptation is an improvement of
the technique discussed in Section 2.3.1. The incremental radiosity and cross redistribution radiosity
adaptations are new.

Gather radiosity An adaptation in the spirit of hemicube radiosity, which is essentially a pure
gathering approach. It is discussed in Section 4.2.

Progressive refinement radiosity As detailed in Section 4.3, this adaptation is an improvement
upon the existing progressive hardware adaptation discussed in Section 2.3.1.

Incremental radiosity This adaptation features a reformulation of incremental radiosity to re-
duce the computational load. As explained in Section 4.4, it uses elements of the progressive
refinement adaptation.

Cross redistribution radiosity Elements from both the progressive refinement adaptation and
the gather adaptation are used for cross redistribution radiosity. The most essential part of this
adaptation is the realization of the cross projection redistribution function. This adaptation
is discussed in Section 4.5.

All four adaptations use the same underlying principles which are detailed in Section 4.1.

4.1 Common Properties

Our implementation framework supports exclusively rectangular quadrilaterals. Arbitrary meshes
using vertex-based radiosity are not supported for simplicity reasons. Radiosity is stored in textures.

22
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Figure 4.1.1: Radiosity interpolation is disabled which exposes the discrete storage of radiosity.
Small squares are subtly visible on the surfaces. Each square is one radiosity element.

Each quadrilateral has a texture region assigned. Linear interpolation is used to interpolate between
radiosity samples. Figure 4.1.1 shows a Cornell scene without linear interpolation to expose the used
storage structure.

Cross-texture radiosity interpolation It is important that radiosity is interpolated across the
boundary of adjacent coplanar surfaces to avoid pronounced interruptions in interpolation. To
achieve this cross-texture interpolation, the texture is positioned such that the edges of the quadri-
lateral intersect with center of the outer boundary of texels1, as visualized in Figure 4.1.2. Two
adjacent quads will have their boundary texels at exactly the same position. As the radiosity com-
putation is based on the texel position, the boundary texels will contain identical radiosity values
and therefore radiosity will seemingly interpolate across quadrilaterals without interaction between
quadrilaterals being required. This approach is a 2D version of the interpolation approach used in
[11].

The disadvantage of this interpolation approach is that the surface area A differs for border
elements. This must be accounted for in the radiosity computations.

Having the radiosity samples computed at the edges of quadrilaterals causes artifacts in cor-
ners. The corners are singularities in the radiosity computation as the distance to other patches
is infinitesimally small. A small offset for the radiosity computation of corner texels solves this
problem.

Draw call batching To increase SIMD efficiency in graphics hardware, the use of many small
operations is to be avoided. Instead of rendering all quadrilaterals separately, they are batched

1A texel is a texture element, i.e. one pixel in a texture.
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Figure 4.1.2: Texel centers intersect with the blue quad.

into groups for each independently moving object. Batching disallows the switching of state such
as texture bindings inside a batch. Consequently, the textures of the batched quadrilaterals are
combined into one texture or texture array.

4.2 Gather Radiosity

The gather adaptation functions as a reference implementation for verifying the quality and as a
baseline for the performance comparison. The technique is inspired by the hemicube algorithm as
explained in Section 2.2.2.

Hemicube rendering Form factor calculation is combined with radiosity propagation to avoid
the large storage requirements for the form factors. The radiosity of the scene is rendered to a
hemicube for each patch iteratively, as shown in Algorithm 4.1. The form factor is present implicitly
in the area covered by each patch. To retrieve the radiosity value, the hemicube is multiplied by
a precomputed multiplier map and subsequently integrated. The multiplier map contains the delta
form factors for the hemicube to hemisphere conversion as explained in Section 2.2.2.

Integration All values in the processed hemicube must be summed to yield the final radiosity
value. The integration method is chosen based on the capabilities of the GPU. The preferred method
uses a parallel reduction algorithm in a compute shader to sum all values in a SIMD friendly manner.
For compatibility with older graphics hardware, an alternative method is implemented. This method
computes a complete mipmap chain for the hemicube. The lowest mipmap level contains the average
value for the hemicube, which is multiplied by the hemicube size to obtain the summation. Mipmap
generation is not the preferred method as it requires each level to written to and subsequently
read from memory, thus adding unnecessary bandwidth usage to an already bandwidth limited
computation.

Algorithm 4.1 Gather radiosity
for b← 0,maxBounces do

for i← 0, N do
Render all Bj to a hemicube placed on patch i
Multiply the hemicube with the precomputed delta form factors
Integrate the hemicube
Store the integration result in Bi

end for
end for
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Multisampling Graphics cards are equipped with fixed function hardware for multisample anti-
aliasing. This method provides more visibility samples without the corresponding increase in band-
width usage. Using this technique allows the hemicube size to be reduced significantly.

Hemicube orientation The discretization inherently used in rasterization may produce small
errors, especially when small intense light sources are used. Even though these errors are barely
noticeable individually, they are objectionable when forming patterns over the surface. To counter
these patterns, the hemicubes are rotated randomly based on their position.

4.3 Progressive Refinement Radiosity

The hardware accelerated progressive refinement adaptation discussed by Coombe et al. [10] in
Section 2.3.1 is used as basis for the adaptation presented in this section. The adaptation by Coombe
et al. has several limitations which are addressed in the new adaptation. The improvements result
in an adaptation which supports more diverse scenes, has a higher quality and executes faster.

The general approach of both the adaptation by Coombe et al. and the new adaptation is
equal and is discussed in Section 4.3.1. The new adaptation is detailed in Section 4.3.2, and the
improvements it made over the adaptation by Coombe et al. are discussed in Section 4.3.3.

4.3.1 Gathering Shot Radiosity
An iteration in the classical progressive refinement algorithm writes radiosity to visible elements in
the scene. It should be noted that substructuring is used and thus shooting patches are subdivided
into receiving elements. The rendered hemicube determines which elements radiosity is being shot
to and their form factor. A parallel implementation would write to the corresponding element
for each pixel in the hemicube. Because one element is represented in multiple pixels, such an
implementation would lead to concurrent memory writing which is difficult to solve efficiently in
such parallel environments. A gathering approach is chosen instead of the shooting strategy. In
this formulation, the parallel implementation is executed for each element potentially receiving shot
radiosity. Thus the element gathers the radiosity being shot towards it.

The original progressive refinement algorithm calculates the form factor using the coverage of the
element in the hemicube. This is difficult to implement efficiently for massively parallel environments
such as the GPU due to the searching behavior required. Instead, the disk approximation is used as
defined in Section 2.2.4. This alternative method analytically calculates the form factor instead of
deriving it from the coverage of the element in the hemicube. A binary visibility test is used, which
does not influence the quality as long as the elements are relatively small. An additional benefit of
the disk approximation is that the resolution of the rendered hemicube can be relatively low as the
form factor accuracy no longer depends on it.

4.3.2 Algorithm
Pseudocode for the progressive refinement adaptation introduced in this thesis is listed in Algorithm
4.2. The adaptation by Coombe et al. is similar to this algorithm. The main differences are explained
in Section 4.3.3. The following functions are defined in the algorithm.

ShootingIteration This is the main function which executes one iteration in the progressive
algorithm. Instead of shooting for only one patch, radiosity is shot for all shooters in a quad
to amortize for the cost of selecting a shooter.

FindShootingQuad The progressive algorithm sorts shooting for patches which are expected
to contribute the most. To find the most contributing quad, the quad with the highest area-
weighted unshot radiosity value is to be found. By generating a mipmap chain, the average
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Algorithm 4.2 Progressive refinement radiosity
1: function ShootingIteration()
2: q ←FindShootingQuad()
3: if q.averageUnshotRadiosity < convergenceThreshold then
4: return
5: end if
6: S ←GenerateShootingPatches(q, unshot)
7: Clear the unshot radiosity texture of q
8: for all s ∈ S do
9: Render quad IDs to a hemicube placed on patch s
10: for all elements e do . Executed in parallel on the GPU
11: ReconstructionShader(s, e, unshot)
12: end for
13: end for
14: end function

15: function FindShootingQuad()
16: for all Quads do
17: Generate a complete mipmap chain for the unshot radiosity texture
18: Write quad ID to a 1×1 render target with highest mipmap level as (inverse) depth value
19: end for
20: Transfer the quad ID and average unshot radiosity to the CPU from the 1× 1 render target
21: return quad for the retrieved quad ID
22: end function

23: function GenerateShootingPatches(quad q, radiosityType type)
24: S ← Subdivide q into shooting patches, depending on q.averageUnshotRadiosity
25: for all s ∈ S do . Executed in parallel on the GPU
26: Sum the type radiosity for all elements in s and store in an intermediate texture T
27: end for
28: return S
29: end function

30: function ReconstructionShader(shooter s, element e, radiosityType type)
31: id← Sample s.hemicube in the direction of e
32: if id 6= e.quadId then
33: return
34: end if
35: Fse ← Compute form factor using disk approximation
36: Bus ← Retrieve type radiosity for s from the intermediate texture T
37: ∆Be ← ρeB

u
sAsFse

38: Add ∆Be to both Be and Bue
39: end function
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unshot radiosity value is computed for each quad. The depth testing capabilities of the GPU
are used to find the quad with the maximum average unshot radiosity. The average unshot
radiosity value is used as depth value. Due to the (inverse) depth testing, only the highest
depth value is not overwritten in the render target. To retrieve which quad the highest depth
value belonged to, the quad ID is stored as color value in the render target. Transferring the
final quad ID and average unshot radiosity to the CPU introduces a stall as the GPU must
synchronize with the CPU.

GenerateShootingPatches The quad must be subdivided into individual patches. Adaptive
subdivision is used which allows very bright quads to be processed in more detail, creating
soft shadows. The amount of radiosity to be shot by a shooter is gathered from its elements
and stored to be accessible during the radiosity computation in the ReconstructionShader
function. The type parameter is used in later algorithms. In progressive refinement radiosity
only the unshot type is being used. As all unshot radiosity has been saved in the intermediate
texture, the original unshot radiosity can already be cleared.

ReconstructionShader In this function the actual radiosity computation is performed. The
shooter hemicube is used for the visibility test by comparing IDs. Quad IDs are used instead
of Element IDs to increase the accuracy of visibility testing with low hemicube resolutions.
The ReconstructionShader function can be modified to process multiple shooters at once,
thus allowing for batching optimizations.

4.3.3 Improvements
The improvements over the progressive refinement adaptation by Coombe et al. are subdivided in
four subjects.

Dynamic shooter subdivision is the inclusion of the GenerateShootingPatches function
for reasons explained in

In the implementation of Coombe et al., shooting patches always consist of 4 × 4 elements.
This allows the shooting radiosity to be retrieved from the third lowest mipmap level of the unshot
radiosity texture. The main problem with this approach is that the shooting accuracy is constant.
In scenarios with a large penumbra, the observed penumbra is not smooth. The adaptation in this
thesis dynamically determines the shooter size depending on the amount of radiosity shot. This
is done in the GenerateShootingPatches function in Algorithm 4.2. The dynamic subdivision
creates a high quality penumbra while keeping the number of shooters low for shots where this
accuracy is not required. Furthermore, the subdivision is no longer restricted by mipmap levels as
the shooting radiosity is gathered in a separate texture (denoted by T in Algorithm 4.2).

Reconsideration of stereographic rendering The adaptation by Coombe et al. uses stereo-
graphic projection, which creates a projection on the hemisphere. The main benefit is that the scene
is projected once, whereas a hemicube requires projection for each face. Stereographic projection
produces curved polygon edges which is not supported by graphics hardware. The projected ge-
ometry must therefore be sufficiently subdivided to reduce the projection error. The optimal level
of geometry subdivision depends on the distance to the hemisphere which differs for each shooter.
Coombe et al. made a trade-off between quality (due to projection error) and performance (reduced
by the increase vertex processing).

Contemporary graphics hardware contains fixed-function support for dynamic tessellation, which
can vary the tessellation level at run time and thus allows for a high quality projection with only
the minimal amount of subdivision required. Stereographic tessellation with dynamic tessellation
has been implemented for the adaptation in this thesis. It performed better than static tessellation,
but unfortunately not by a large margin. The cause is expected to lie in the execution overhead
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of dynamic tessellation and the lack of predictability, which is difficult for graphics hardware to
schedule efficiently.

Intuitively, we would expect we stereographic projection method to render faster than the
hemicube method because it only requires a single projection. However, benchmarking revealed
that hemicube rendering is faster than stereographic projection with dynamic tessellation. Profiling
suggests that the graphics driver combines the 5 separate projections of hemicube rendering to a
single draw call, reducing the multiple projection overhead.

The adaptation presented in this thesis uses regular hemicube rendering as it is the fastest
method.

Adaptive form factor subdivision The adaptation by Coombe et al. does not subdivide the
disk approximation formula (as defined in Equation 2.2.7) to calculate the form factor. This creates
small artifacts in corners. The adaptation in this thesis does subdivide the form factor, but only in
specific cases to reduce the performance overhead. The form factor subdivision is initiated when the
ratio between the area of the shooter and distance towards the shooter is above a threshold.

Cross texture interpolation As previously discussed in Section 4.1, all adaptations in this thesis
supports cross texture interpolation. The adaptation by Coombe et al. does not support this, which
clearly had to be taken into account in the construction of their scenes.

4.4 Incremental Radiosity

For the hardware accelerated incremental radiosity adaptation, the theoretical analysis presented in
Section 3.2 is reformulated extensively in Section 4.4.1. The adaptation is discussed in Section 4.4.2
and uses elements from the progressive refinement adaptation previously discussed.

4.4.1 Reformulation
The reformulation for incremental radiosity presented in this section has two benefits. It includes one
progressive refinement iteration for all patches without significant overhead and it partially reshoots
radiosity which is faster to compute.

Reshooting is applied for all patches in the setM (which contains geometrically modified patches).
As all form factors involvingM are expected to change, radiosity towardsM can be reshot completely
instead of modifying it (thus for the Rp(C,M) and Rp(M,M) redistribution). Reshooting only
requires the form factor F ′

ji to be evaluated instead of the complete incremental form factor ∆Fji =
F ′
ji−Fji. It should be noted that the form factor includes the visibility test, which is computationally

most demanding. Furthermore, when using reshooting all patches must shoot their radiosity to
complete the recalculation for the patches in M .

Reshooting can be combined effortlessly with a regular progressive refinement iteration. Reshoot-
ing shoots shot radiosity Bsj while a regular progressive iteration shoots unshot radiosity Buj . Com-
bining these two can be done by shooting the total radiosity Bj .

Rp(C,M) redistribution The reshooting for Rp(C,M) is formulated in Equation 4.4.1, where
B′ and Bu′ are vectors of Bi and Bui for all i ∈ M which are partially calculated (i.e. only using
radiosity shot from patches in C, radiosity from M is added later in the Rp(M,M) redistribution).
It should be noted that the radiosity in B′ and Bu′ is overwritten and not accumulated.

B′ = Bu′ =
∑
j∈C

({
ρiBjF

′
ji

Aj
Ai

}
i∈M

)
(4.4.1)
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Rp(M,M) redistribution The Rp(M,M) redistribution is also done by reshooting and must be
performed after the Rp(C,M) redistribution. This is implemented by shooting B′ using regular
progressive refinement, which is equal to reshooting combined with shooting unshot radiosity. The
equality can be explained by regarding B′ from Equation 4.4.1 as the shot radiosity Bs plus an
unknown quantity of unshot radiosity. Because the Rp(M,M) redistribution is effectively a regular
progressive refinement shooting iteration, it is deferred to after the redistribution phase where it will
be included naturally in the progressive refinement iterations.

Rp(M,C) redistribution The Rp(M,C) redistribution is not implemented using reshooting. In-
stead, the progressive redistribution equation is decomposed into two equations using the incremental
form factor ∆Fji = F ′

ji − Fji. The first equation uses the −Fji part, thus effectively shooting nega-
tive shot radiosity using the old form factor. The second equation uses the F ′

ji part and is combined
with a regular progressive pass, exactly like Rp(M,M) redistribution. The first equation is exe-
cuted before Bs is overwritten in the Rp(C,M) redistribution. The second part is combined with
Rp(M,M) redistribution and deferred to after the redistribution phase.

Rp(C,C) redistribution In the Rp(C,C) redistribution, the form factor is only modified when
the visibility term changes. The redistribution is combined with a regular progressive refinement
iteration. Four cases are discerned:

• The previous form factor Fji was nonzero, and the new form factor F ′
ji is zero. The moving

geometry has introduced an occlusion. Negative shot radiosity is being transferred to the patch
to account for the occlusion.

• The inverse case where unocclusion occurs. Fji equals zero whereas the new form factor F ′
ji is

nonzero. In this case the total radiosity (shot plus unshot) is transferred.

• The case where both Fji and F ′
ji are nonzero. This case is equal to a regular progressive

refinement iteration, thus unshot radiosity is transferred.

• And finally the case where both form factors are zero and nothing is transferred.

Overview The reformulated redistribution is summarized to give an overview. The following steps
are executed in order:

• First part of the Rp(M,C) redistribution. Shoot negative shot radiosity using the old form
factors.

• Clear the stored radiosity of patches in M to accommodate reshooting.

• For the Rp(C,M) redistribution, shoot the total radiosity.

• The Rp(C,C) redistribution shoots radiosity depending on the visibility term in the old and
new form factors.

• Finally, a regular progressive refinement iteration performs the Rp(M,M) redistribution and
the second part of the Rp(M,C) redistribution.

4.4.2 Algorithm
Algorithm 4.3 lists the pseudocode for the incremental radiosity adaptation. The algorithm must be
complemented with subsequent progressive refinement iterations for complete redistribution. Two
hemicubes are rendered for each patch in the algorithm. For the patches in C, the two hemicubes
are rendered in line 11 and 12. For the patches in M , the first hemicube is rendered in line 4 and
the second hemicube is rendered as part of the subsequent progressive refinement iteration.
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Algorithm 4.3 Incremental radiosity
1: function IncrementalRedistribution()
2: Split the set of Quads into moved quads M and static quads C
3: for all q ∈M do
4: Shoot negative shot radiosity to C similar to Algorithm 4.2
5: end for
6: Reset radiosity textures of M to their emissive values
7: for all q ∈ C do
8: S ← GenerateShootingPatches(q, shot and unshot) . Defined in Algorithm 4.2
9: Clear the radiosity texture of q
10: for all s ∈ S do
11: Render quad IDs to a hemicube placed on the old position of patch s
12: Render quad IDs to a hemicube placed on the new position of patch s
13: for all elements e ∈M do . Executed in parallel on the GPU
14: ReconstructionShader(s, e, total) . Defined in Algorithm 4.2
15: end for
16: for all elements e ∈ C do . Executed in parallel on the GPU
17: IncrementalReconstructionShader(s, e)
18: end for
19: end for
20: end for
21: end function

22: function IncrementalReconstructionShader(shooter s, element e)
23: oldId← Sample s.oldHemicube in the direction of e
24: newId← Sample s.newHemicube in the direction of e
25: if oldId 6= e.quadId and newId 6= e.quadId then
26: return
27: else if oldId = e.quadId and newId 6= e.quadId then . e is occluded
28: Rs ← Retrieve negative shot radiosity for s from the intermediate texture T
29: else if oldId 6= e.quadId and newId = e.quadId then . e is unoccluded
30: Rs ← Retrieve total radiosity for s from the intermediate texture T
31: else
32: Rs ← Retrieve unshot radiosity for s from the intermediate texture T
33: end if
34: Fse ← Compute form factor using disk approximation
35: ∆Be ← ρeRsAsFse
36: Add ∆Be to both Be and Bue
37: end function
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4.5 Cross Redistribution Radiosity

The adaptation of cross redistribution radiosity is explained in Section 4.5.1 and uses both a shooting
and a gathering approach, as described in the theory in Section... It also uses reshooting for the
patches in M , similar to the incremental radiosity adaptation. The most interesting part is the
adaptation for the cross projection redistribution, which is presented in Section 4.5.2. Finally the
total algorithm is listed in Section 4.5.3.

4.5.1 Reformulation
Similar to the incremental radiosity adaptation, reshooting is employed for patches in M (i.e. their
radiosity is recomputed completely) which improves computational efficiency. Combining redistri-
bution with a progressive refinement iteration, as done in the incremental adaptation, is only done
for the patches in M . The combination is not possible for the shooters in C as no hemicubes are
rendered for those patches. Substructuring is only applied for the patches in C, not for those in M
as this would make the gathering part very expensive.

The cross redistribution radiosity adaptation first applies the gathering Rg(C,M) redistribution,
and subsequently the other redistribution parts are executed combined.

Rg(C,M) redistribution The shot radiosity from the patches in C is rendered to a hemicube
placed on a patch in M , similar to the gather radiosity described in Section 4.2. The gathered
radiosity overwrites the existing radiosity for the patches in M , which can be seen as reshooting
but in a gathering fashion. This reshooting approach is beneficial because a regular incremental
implementation would require two hemicubes to calculate the incremental form factor.

Rp(M,M) redistribution This part of the redistribution is implemented identically to the incre-
mental radiosity adaptation. Reshooting is used and the redistribution is combined with a regular
progressive iteration, which is implemented as a regular progressive refinement iteration using the
total radiosity. As opposed to the incremental adaptation, the execution is not deferred until after
the redistribution phase.

Rp(M,C) redistribution The Rp(M,C) redistribution uses the incremental formulation from
Section 3.2 and combines it with a regular progressive iteration. The redistributed radiosity is equal
to the negative shot radiosity using the old form factor, plus the total radiosity using the new form
factor. As the radiosity for patches in M is overwritten by the Rg(C,M) redistribution, the shot
radiosity must be stored beforehand.

Rx(C,C) redistribution The cross projection redistribution is the most interesting redistribution
phase. It redistributes the radiosity between two patches in C using the perspective of a patch in
M as explained in Section 3.3.2. The adaptation of the theory is introduced in Section 4.5.2.

4.5.2 Cross Projection
The variations of the cross projection redistribution adaptations are discussed. The first adaptation
is recalculates the redistribution completely, while the second adaptation modifies the redistribution
incrementally. The first non-incremental adaptation will be used in the remainder of the thesis, as
the incremental adaptation introduces too much error.
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i

j

Figure 4.5.1: The construction of sampling rays. Patch j is subdivided into a grid. Each grid cell
shoots a ray using patch i as projection origin.

Non-incremental cross projection

The adaptation concerns the P (C, j, i) function in Equation 3.3.1 discussed in Section 3.3.2. The
other part of Equation 3.3.1 is executed similar to regular progressive redistribution. The function
P (C, j, i) is executed twice, once using the old form factors and once using the new form factors.

The projection function P (C, j, i) calculates the area-weighted sum of the shot radiosity pro-
jected from C on the surface of j using patch i as the perspective origin, where j ∈ M and i ∈ C.
As opposed to the implementation provided in Equation 3.3.2, a sampling based approach is chosen
to implement P (C, j, i). The surface of j is subdivided and rays are shot through these areas from
the perspective of patch i, as shown in Figure 4.5.1. The subdivided grid on patch j can be seen
as a grid of pixels used to shoot rays through in ray tracing. The rays gather shot radiosity from
patches in C. The area-weighted sum is obtained by taking the average of the gathered radiosity.

Tracing the rays The constructed rays are not traced against the geometry of the patches in C as
ray tracing is relatively costly. Instead, the rays sample a pre-rendered image of C. The pre-rendered
image is a hemicube positioned on the back of patch j containing the shot radiosity of the patches
in C. However, the projection origin of the rays and the hemicube differs. The hemicube is rendered
using the center of patch j as projection origin, whereas the rays use patch i as projection origin.
To correct the sampling position in the hemicube for the different projection origin, a reprojection
technique is used.

Reprojection The goal of the reprojection is to find the correct sampling direction for sampling
in the hemicube. The process of reprojection is visualized in Figure 4.5.2. The sampling direction
is retrieved using samplingDirection = p − j.position, but this requires sampling position p in
world space to be known. The sampling position is somewhere along the ray r, but it is unknown
at which depth and this information cannot be retrieved without additional visibility testing. An
approximation for the depth will be made using the assumption that the depth distribution is
coherent. The depth buffer of the rendered hemicube is sampled to find depth information. The
sample is taken in the direction of ray r′, which is a guess based on ray r. Taking r′ parallel to r
works well in practice. The sampled depth is used to create an approximated world position p′ along
ray r. The direction of p′ is used as final sampling position.

Figure 4.5.3 displays two images, one without using reprojection and the other with reprojection
enabled. The necessity of using reprojection can clearly be seen.
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Figure 4.5.2: Reprojecting the sampling direction. The left image shows the desired direction to p.
The right image displays the reprojected direction, which is in the direction of p′. The approximated
position p′ is constructed by sampling the depth in the direction of r′, and using the sampled depth
as distance along ray r.

Figure 4.5.3: The effect of reprojection in the radiosity redistribution. Reprojection has been disabled
in the left image.

At sharp depth discontinuities, the coherency assumption does not hold and the reprojection
approximation is not optimal. However, no artifacts due to this behavior have been observed in the
redistribution.

Hemicube rendering and sampling The number of samples for cross projection has to be lim-
ited to keep execution time within real-time bounds. To reduce the effects of undersampling, the
radiosity hemicube is blurred. Blurring is done implicitly during rendering by employing multisam-
pling in graphics hardware. The hemicube is rendered at resolutions as low as 16×16 per face, while
using the highest multisampling level available.

Samples taken from the hemicube are filtered bilinearly for additional blurring. Care must be
taken with the edges of the hemicube to avoid erroneous interpolation.

Error analysis Undersampling can be a significant source of error when the light sources are
small and sharp. Additionally when the distance between patch i and patch j is small, the sampling
rays become divergent thus undersampling is increased. Experiments with dynamically adjusting
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the quantity of sampling rays have not been fruitful, primarily due to the large number of samples
required in the worst case.

Error is not accumulated as the method is non-incremental. For each redistribution, the effect
of the previous redistribution is negated and the new redistribution is added, exactly as stated in
Equation 3.3.1. However, if the shot radiosity Bs changes (for a patch in C) in between the redistri-
bution iterations, this change is not negated thus introducing error which accumulates. Fortunately,
this situation can be avoided. Before a regular progressive refinement iteration is initiated (and thus
Bs is expected to change for patches in C), all patches in M are removed from the simulation using
the unchanged Bs. After the iteration, the patches in M are inserted again using the modified Bs.
As this approach is costly, the implementation in this thesis only uses it for the initial radiosity
propagation.

Incremental cross projection

This alternative cross projection adaptation originates from the observation that usually only small
modifications are made on the dynamic object between redistributions. Non-incremental cross pro-
jection recomputes the redistribution entirely (equal to a deletion and insertion), but it might be
more efficient to only calculate the difference. For cross projection, only occlusion and unocclusion
is relevant. When patch j moves only slightly to the new position j′, the projection of C on j and j′

from the perspective of i will have a large overlap. The areas which do not overlap cause occlusion
or unocclusion. The occluding area is where j′ protrudes over the edge of j, and the unoccluding
area is formed by the protruding of j over the edge of j′. To calculate the redistribution for one of
these areas, the form factor must be modified and only the radiosity for the protruding area must
be regarded.

The radiosity for the (un)occluding area is gathered using a sampling based method. This method
is equal to the sampling strategy used for the non-incremental cross projection, with the exception
that all rays r which intersect the overlapping area are culled.

The form factor is computed using a disk approximation with a modified area term. The area
of the (un)occluding part of the patch is computed by subtracting the overlapping area from the
area of the patch. The overlapping area is computed as follows. The patch in its other state (j for
occlusion and j′ for unocclusion) is projected on the plane of the patch using patch i as perspective
origin. The surface of the intersection area is computed using a modified 2D polygon area algorithm
which is executed in uv-space. The polygon area algorithm is modified to clip the patch in its other
space to the unit square which forms the current patch in uv space. This algorithm is GPU friendly
as a constant amount of memory is used and branching is limited. A sweep line algorithm would be
the common approach for these types of problems but its GPU compatibility is very poor.

Multiple patches are coplanar which form a quad. (Un)occlusion only occurs when a patch
protrudes beyond the quad boundary. Therefore entire quads are used to test (un)occlusion against.

Error analysis Due to the incremental nature of this cross projection adaptation, it is sensitive
to accumulating error over multiple frames. When the unocclusion does not exactly negate the
occlusion of previous frames, error will accumulate. Unfortunately, the accuracy is not perfect and
thus error accumulates which becomes unacceptable after many frames, as visible in Figure 4.5.4.

4.5.3 Algorithm
Pseudocode for the complete cross redistribution radiosity adaptation including cross projection is
listed in Algorithm 4.4 and 4.5. Unlike the incremental radiosity adaptation, an additional progres-
sive refinement iteration is not necessary for complete redistribution.

The CrossProjectionReconstructionShader function executes both Rp(M,C) and Rx(C,C)
redistribution. The ProjectedRadiosity and Reproject functions have been explained in Sec-
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Figure 4.5.4: Error accumulation after 30 frames when using the incremental cross projection adap-
tation.

tion 4.5.2. The gridSize constant in the ProjectedRadiosity function is set by default to 4. It
should be noted that the non-incremental cross projection adaptation is used.

Although not listed, the loop over S in the main CrossRedistribution function can be inter-
rupted to decouple the display frame rate from the redistribution rate. This functionality has not
been used for the benchmarks. Intermediate display of the redistribution is not visually consistent,
thus double buffering must be employed.

Algorithm 4.4 Cross redistribution radiosity, continued in Algorithm 4.5
1: function CrossRedistribution()
2: Split the set of Quads into moved quads M and static quads C
3: for all q ∈M do
4: S ← S∪GenerateShootingPatches(q, shot) . Defined in Algorithm 4.2
5: Clear the radiosity textures of q
6: end for
7: for all s ∈ S do
8: Render quad IDs to a hemicube on the front of s, old position
9: Render quad IDs and shot radiosity to a hemicube on the front of s′, new position
10: Render shot radiosity to a low resolution hemicube on the back of s, old position
11: Render shot radiosity to a low resolution hemicube on the back of s′, new position
12: GatherRadiosity(s)
13: Update shooter texture T for s with unshot radiosity using Bs

. T was filled with shot radiosity in line 4
14: Clear the unshot radiosity texture of s
15: for all elements e ∈M do . Executed in parallel on the GPU
16: ReconstructionShader(s, e, total) . Defined in Algorithm 4.2
17: end for
18: for all elements e ∈ C do . Executed in parallel on the GPU
19: CrossProjectionReconstructionShader(s, e)
20: end for
21: end for
22: end function

Continued in Algorithm 4.5
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Algorithm 4.5 Continuation of Algorithm 4.4
23: function GatherRadiosity(shooter s)
24: Multiply s.newPositionFrontShotHemicube with the precomputed delta form factors
25: Integrate the multiplied hemicube
26: Bs ← Bs+ Integration result
27: end function

28: function CrossProjectionReconstructionShader(shooter s, element e)
29: oldId← Sample s.oldPositionFrontIdHemicube in the direction of e
30: if oldId = e.quadId then
31: Rs ← Retrieve negative shot radiosity for s from the intermediate texture T
32: Rs ← Rs+ProjectedRadiosity(s.old, e)
33: Fse ← Compute old form factor using disk approximation
34: ∆Be ← ρeRsAsFse
35: end if
36: newId← Sample s.newPositionFrontIdHemicube in the direction of e
37: if newId = e.quadId then
38: Rs ← Retrieve total radiosity for s from the intermediate texture T
39: Rs ← Rs+ProjectedRadiosity(s.new, e)
40: Fse ← Compute new form factor using disk approximation
41: ∆Be ← ∆Be + ρeRsAsFse
42: end if
43: Add ∆Be to both Be and Bue
44: end function

45: function ProjectedRadiosity(shooter s, element e)
46: for x← 0, gridSize do
47: for y ← 0, gridSize do
48: Construct ray r from e to grid cell (x, y) on s
49: r ← Reproject(r,s)
50: Sample s.backShotHemicube in the direction of r
51: total← total+sampled radiosity
52: end for
53: end for
54: areaWeightedRadiosity ← total/gridSize2

55: return areaWeightedRadiosity
56: end function

57: function Reproject(ray r, shooter s)
58: estimatedDepth← Sample s.backDepthHemicube in the direction of r
59: p′ ← point on ray r at estimatedDepth
60: reprojectedRay ← Construct ray from s.centerPosition to p′

61: return reprojectedRay
62: end function



Chapter 5

Measurements and Results

The radiosity adaptations are assessed using the scenes described in Section 5.1.
Section 5.2 examines the visual quality. The method for comparison is discussed first. Subse-

quently the differences and their causes are analyzed in Section 5.2.1.
In Section 5.3 the execution time will be evaluated. Both the total frame time and the internal

composition of the execution time will be analyzed.
To assess the significance of our cross redistribution radiosity method, it will be compared to

several other state of the art techniques in Section 5.4.

5.1 Scenes

Four scenes are chosen for the evaluation. The scenes are chosen to highlight the most important
aspects for our technique, including many bounce indirect light and light source size. Due to the
complexity and variability of global illumination there are many influencing factors, and isolating
them all would be nearly impossible. The scenes are constructed based on the aspects which were
expected to be most valuable for analysis.

Indirect light An indoor environment where indirect daylight enters at the right side and a rotat-
ing box is placed at the left side. This scene is used to examine the results for many bounce
indirect illumination. Due to the high albedo of 0.9, comparable to bright white paint, at least
20 light bounces are required for convergence. The scene simulates an indoor environment
exclusively lit using indirect sunlight. Indoor scenes used to demonstrate global illumination
algorithms often contain many lamps or an abundance of direct sunlight entering through
windows. Scenes which rely on many bounce indirect illumination are rarely focused on, while
these scenarios are abundant in reality. It should be noted that this scene is exceptionally dif-
ficult for global illuminations to compute due to the high number of bounces and the variation
in intensity. There are 10296 static elements in the scene and 318 on the rotating box. The
cross redistribution adaptation uses 52 elements on the box.

Cornell box with large light source The classic Cornell box scene with a large rotating box in
the center. The scene is constructed to be similar to the fully hardware accelerated antiradiance
implementation by Meyer et al. [30]. The ceiling light source is relatively large, similar to [30].
It is expected that undersampling in cross redistribution radiosity will not occur in this scene
due to the large light source. The number of static elements in this scene is 10254, and the
number of elements on the rotating box is 918. For cross redistribution radiosity, the number
of elements on the rotating box is reduced to 90.

37
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Cornell box with small light source The large light source is replaced by a small light source
to investigate the effects of undersampling in cross redistribution radiosity. The number of
elements used is equal to the Cornell box with the large light source.

Low quality Cornell box This scene is identical to the Cornell box with the large light source,
however all settings have been adjusted to focus on performance as opposed to image quality.
The elements are reduced to 2734 static elements and 270 dynamic elements. For gather
radiosity this reduced even further to 774 and 90 elements respectively. Cross redistribution
radiosity uses 24 elements on the rotating box. This scene allows for a better performance
comparison with competitive techniques which produces lower quality global illumination.

5.2 Visual Quality

To evaluate the qualitative results of the implemented adaptations, generated images are compared
with a reference image. The reference image is generated using the gather radiosity adaptation
with very high quality settings. Gather radiosity is suitable for generating reference images as it is
non-incremental and it scales naturally to very high quality settings. The implementation for gather
radiosity shares no radiosity related code with the other implementations.

Image capturing The examined frame was captured after several frames of time-independent
motion. The gather and progressive refinement adaptations restart their global illumination solution
each frame, while the incremental radiosity and cross redistribution radiosity algorithms modify
the previous solution each frame. The first solution of the incremental and cross redistribution
adaptations is generated using progressive refinement radiosity.

Image quality metric It is non-trivial to create a good image quality metric for comparison of
global illumination algorithms. The metric should correctly state the quantity of difference observed
by a human spectator. Čadík et al. suggest that all existing image quality metrics are unreliable
[4]. A perceptual user study is the best method of quality evaluation, but that lies outside the scope
of this thesis. Instead, the results are shown in Figure 5.2.1, 5.2.2, 5.2.3 and 5.2.4 for the reader to
observe the differences.

An image quality metric is interesting nevertheless as the numbers indicate the order of magnitude
of the objective differences. For this purpose, the normalized root mean squared error of the images
in Figures 5.2.1 to 5.2.4 is listed in Table 5.1.

Indirect light Cornell, large Cornell, small Low quality
Gather 0.0522469 0.00225834 0.0028034 0.0110786
Progressive refinement 0.0631117 0.00675699 0.0098088 0.0149107
Incremental 0.0472801 0.00741281 0.0106912 0.0197874
Cross redistribution 0.0579452 0.00694691 0.0102216 0.0147345

Table 5.1: The normalized root-mean-square error of the images in Figures 5.2.1 to 5.2.4 compared to
the respective reference image. It should be noted that the image quality metric does not accurately
represent the perceived differences.
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(a) Gather radiosity (b) Progressive refinement radiosity

(c) Incremental radiosity (d) Cross redistribution radiosity

(e) Reference using high quality gather radiosity (f) Difference image between cross redistribution radiosity and the refer-
ence. The image is multiplied by 5 to emphasize the differences.

Figure 5.2.1: Screen captures using the indirect light scene.
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(a) Gather radiosity (b) Progressive refinement radiosity

(c) Incremental radiosity (d) Cross redistribution radiosity

(e) Reference using high quality gather ra-
diosity

(f) Difference image between cross redistribu-
tion radiosity and the reference. The image is
multiplied by 5 to emphasize the differences.

Figure 5.2.2: Screen captures using the Cornell box scene with a large ceiling light source.
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(a) Gather radiosity (b) Progressive refinement radiosity

(c) Incremental radiosity (d) Cross redistribution radiosity

(e) Reference using high quality gather ra-
diosity

(f) Difference image between cross redistribu-
tion radiosity and the reference. The image is
multiplied by 5 to emphasize the differences.

Figure 5.2.3: Screen captures using the Cornell box scene with a small ceiling light source.
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(a) Gather radiosity (b) Progressive refinement radiosity

(c) Incremental radiosity (d) Cross redistribution radiosity

(e) Reference using high quality gather ra-
diosity

(f) Difference image between cross redistribu-
tion radiosity and the reference. The image is
multiplied by 5 to emphasize the differences.

Figure 5.2.4: Screen captures using the Cornell box scene with low quality settings.
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5.2.1 Visual Analysis
The observable visual differences in Figures 5.2.1 to 5.2.4 will be analyzed in this Section. The objec-
tively measured differences presented in Table 5.1 coarsely correspond to the observable differences.

General observations will be discussed first, followed by differences specific to a scene.

General observations The shadows of the progressive refinement and incremental adaptations
are slightly smaller than the reference. This is caused by the visibility detection in the progressive
algorithm (line 31 in Algorithm 4.2). Instead of taking a single sample, the four nearest pixels are
investigated. This decreases the rate of false negatives, but increases the number of false positives
resulting in smaller shadows. The shadow generated by cross projection in the cross redistribution
algorithm does not suffer from this.

The visual result of the progressive refinement and incremental approaches are observably iden-
tical in the Cornell scenes as stated by the theory. The differences reported by the image quality
metric in Table 5.1 can be attributed to minor variations in brightness. The exception is the indirect
light scene, which is discussed below.

Indirect light Differences in brightness are clearly observable in this scene and occur for all
techniques. The differences are triggered by the very high number of light bounces in this scene.
For each technique an explanation is given.

• The gather radiosity adaptation is limited at a number of iterations to keep the execution time
within bounds, but it is not enough for convergence.

• In the progressive refinement algorithm, the solution dives below the convergence threshold
for shooters.

• The incremental radiosity algorithm performs better as it always executes a progressive refine-
ment iteration on redistribution, regardless of the convergence. However, it has not converged
to the reference. While this does improve in subsequent iterations, parity with the reference
will not be achieved due to float precision issues.

• The cross redistribution algorithm results in a brightness similar to the brightness of the
progressive adaptation. This is obvious as cross redistribution radiosity only modifies the solu-
tion. If the reference solution would have been used as the initial solution, cross redistribution
radiosity would retain its brightness.

An additional difference observed in this scene is that the surfaces are not smooth for all techniques
except gather radiosity. This is caused by the shooter subdivision. Using smaller shooters would
solve this problem.

Cornell box with large light source In general, the images are remarkably similar to the
reference. The shadow in the cross redistribution radiosity solution is slightly brighter than the
other shadows, although this is difficult to observe. This might be caused by the cross projection
sampling. The blurring of the back hemicube causes the intensity of the light source to be distributed
over a larger area.

Cornell box with small light source The light source is smaller, but also more intense than
the large light source. This requires more accuracy in the computation.

• The gather radiosity algorithm has a very subtle noise at the shadow edges. An increase in
hemicube resolution would resolve this.
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• The noise for the progressive and incremental results are caused by insufficient shooter subdi-
vision.

• The most noticeable artifacts occur in cross redistribution radiosity. The undersampling in
the cross projection causes noise in the internals of the shadow. In contrast, the borders of the
shadows are less noisy.

Low quality Cornell box The low quality scene shows the degradation of each technique when
optimized for performance. Gather radiosity uses as little patches as possible, resulting in a blocky
appearance. Noise is increased in progressive and incremental radiosity due to the decrease in
subdivision of shooters. The cross redistribution radiosity algorithm also results in noise, mainly
caused by the reduction of patches on the dynamic object.

5.2.2 Artifacts
The artifacts produced by cross redistribution radiosity are caused by undersampling in the cross
projection function. These artifacts are visible in the low quality scene. Additionally, these artifacts
occur during contact shadows as visible in Figure 5.2.5. The white halo directly at the contact points
is not produced by undersampling, but by the lack of support for the intersection of surfaces.

Figure 5.2.5: Contact shadows produce artifacts in the current implementation of cross redistribution
radiosity. The white halo at the contact point is not caused by undersampling.

5.3 Execution Time

The average total frame time will be measured using the same scenes and settings used for the
visual analysis. The number of samples taken depends on the execution time as less variance is
expected for longer execution times. Between 4 and 99 frames are timed. The first 1 to 3 frames
are ignored because they produce non representable results due to the driver still compiling shaders
and optimizing for the workload.

Hardware The benchmarks are executed on different configurations of graphics hardware. This
allows for better comparison with other techniques, it shows the scalability of the techniques and it
provides additional data for the performance analysis. The first graphics card, the NVidia GeForce
GTX 670 is from 2012 and falls in the high end spectrum. It processes 2459 GFLOPS (billion
floating point operations per second) and its memory bandwidth is rated at 192GB/s. The AMD
Radeon HD 5770 is a mid-range GPU introduced in 2009 and is specified to have 1360 GFLOPS
and a bandwidth of 76.8GB/s. The third graphics card used is the mid-range NVidia GeForce GTX
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260 from 2008, rated at approximately 805 GFLOPS with a bandwidth of 112GB/s. The GTX 260
is limited to version 10.0 of the DirectX API, while the other two graphics cards can use all features
available in DirectX 11.

The CPUs used in the benchmarks are not relevant as all techniques have their performance
bottleneck on the GPU.

Vertex processing The current implementation of the techniques is limited to using quads with
textures as radiosity storage. If the techniques were to be implemented using vertex based radios-
ity storage, complex geometry can be used which increases the vertex count. To investigate the
performance implications of a higher vertex usage, additional benchmarks are performed. These
benchmarks use subdivided geometry of the same scenes previously used. Visually, the result is
identical, but much more vertices are processed. The benchmarks are shown in Table 5.3, where the
number of vertices and indices in the subdivided scenes is also listed. These results can be directly
compared to the results in 5.2a, which were generated using 80 vertices and 120 indices for the
Cornell scenes and 136 vertices with 204 indices for the indirect light scene.

No culling techniques were used, thus all vertices have been processed for all hemicube faces. It
should be noted that the vertex processing capability is not necessarily a limitation for the number
of vertices in the final displayed scene.

5.3.1 Composition of Execution Time
To analyze which parts of the algorithm dominate the execution time, the most time consuming parts
of the algorithms are measured using the GPUPerfStudio 2 profiling tool for graphics hardware. Such
measurements are not very accurate as many processes are active simultaneously on the graphics
card which can influence each other in many ways. However, the results still provide valuable insight
in the distribution of execution time over the parts in the algorithm.

The measurements only consider the hemicube rendering and reconstruction parts of the algo-
rithm. The duration of the other parts are negligible in comparison. The benchmarks have been
made in the Cornell box scene with the large light source.

Gather radiosity The algorithm consists of rendering and integrating a hemicube for each element
in the scene. Rendering a hemicube with a top face of 64×64 pixels to a 16bits RGBA floating
point render target using 4×MSAA (multisampling anti-aliasing) costs 0.043ms which includes
resolving the MSAA render target to a regular render target. Integrating the render target
(including multiplication with the delta form factors) using compute shaders has a duration
of 0.044ms. The DirectX10.0 compatible mipmap-based integration method takes 0.077ms.

Progressive refinement radiosity The algorithmmainly consists of rendering an ID-filled hemicube
repeatedly for each patch and reconstructing the shot radiosity for all elements in the scene.
Finding the next shooter is amortized over many shooters and thus is negligible in compar-
ison. Rendering an ID-filled hemicube with a top face of 64 × 64 pixels to a 32bits single
unsigned integer render target costs 0.023ms. The shot radiosity reconstruction is amortized
over 10 shooters, taking 0.150ms in total or 0.015ms per shooter. For each element in the
reconstruction, two RGBA 32bits floating point structures are written to memory.

Incremental radiosity As detailed in Section 4.4, a redistribution pass renders two ID hemicubes
for all patches, executes two reconstruction passes for each element and executes an additional
incremental reconstruction pass for the elements in C. The execution time of rendering the
hemicube and radiosity reconstruction is identical to progressive refinement radiosity. The time
necessary for the additional incremental reconstruction is different as two ID hemicubes must
be sampled. Measuring the incremental reconstruction was not possible in our implementation,
but its time should not be significantly above regular reconstruction.
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Cross redistribution radiosity Reconstruction is only executed for all patches on the dynamic
object. For each patch, four hemicubes are rendered. One regular ID hemicube, one combined
ID and radiosity hemicube and two low resolution hemicubes on the backside. One hemicube is
integrated, one regular reconstruction pass is executed for the elements on the dynamic object
and finally a cross projection reconstruction pass is performed for the static elements.
The regular ID hemicube is equal to progressive radiosity and thus takes 0.023ms. The com-
bined ID and radiosity hemicube renders using the combined configuration used in gather and
progressive radiosity (with the exception that MSAA is disabled) and takes 0.029ms to render.
The backside hemicubes are rendered using a top face resolution of 16× 16 pixels to a 16bits
RGBA floating point render target using 4× MSAA. Each hemicube costs 0.058ms to render,
which includes the MSAA resolve for both the color render target and the depth buffer.
The cost of the regular reconstruction pass is negligible as it is only executed for the dy-
namic elements. The cross projection reconstruction pass costs 1.548ms when amortized over
9 patches, or 0.172ms for a single patch.

5.3.2 Performance Analysis
The results in Table 5.2, Table 5.3 and Section 5.3.1 are used to analyze the algorithms.

General observations The general timing data in Table 5.2 shows a clear ranking in execution
speed. The brute-force approach of gather radiosity takes the longest time. Due to substructuring,
progressive refinement radiosity performs significantly better. The redistribution of incremental
radiosity reduces the execution speed further in all cases. Finally the reduced number of hemicubes
required in cross redistribution radiosity clearly performs best in all scenes on all hardware.

Equalities in results As the number of elements is equal in the large and small light source
variant of the Cornell box, the performance of both scenes is also nearly equal in all measured
scenarios. Similarly, as the number of patches on the dynamic object in the Cornell box is equal
regardless of the light source size, cross redistribution radiosity also performs equal in those two
scenes in all benchmarks.

Incremental versus progressive refinement The indirect scene shows a large difference in
performance between progressive refinement radiosity and incremental radiosity, while the difference
is small in the Cornell scene. This is caused by the number of bounces which are required for
convergence. The indirect scene requires many bounces to converge, but incremental radiosity only
redistributes a few bounces as the moving object only influences the light bounces at the end of
the light paths. In the Cornell scenes only a few bounces are required for convergence. As the
single redistribution pass in incremental radiosity has the same cost as 2 to 3 shots for each patch
in progressive refinement, incremental radiosity is less beneficial in low bounce circumstances.

Bottleneck analysis The AMD Radeon HD 5770 and NVidia GeForce GTX 260 graphics cards
have interesting contrasting properties. The 5770 has nearly twice the arithmetic compute power
of the 260, but the 260 has nearly twice the memory bandwidth of the 5770. For gather radiosity,
the 5770 has a small advantage which suggests that the gather adaptation has a small arithmetic
bottleneck (although the bottleneck could also lie somewhere else).

In the case of progressive refinement and incremental radiosity, the situation is different. The
260 has a large advantage over the 5770, suggesting that the algorithms are fully bandwidth limited.
The difference is about equal to the difference in bandwidth between the two graphics cards. The



CHAPTER 5. MEASUREMENTS AND RESULTS 47

Indirect light Cornell, large Cornell, small Low quality
Gather 4,757 2,437 2,440 150
Progressive refinement 265 116 87 49
Incremental 52 108 70 14
Cross redistribution 16 24 25 7

(a) Using the NVidia GeForce GTX 670

Indirect light Cornell, large Cornell, small Low quality
Gather 11,587 6,028 6,077 357
Progressive refinement 1,047 387 302 162
Incremental 146 261 173 43
Cross redistribution 63 93 93 20

(b) Using the AMD Radeon HD 5770

Indirect light Cornell, large Cornell, small Low quality
Gather 13,315 6,899 6,237 412
Progressive refinement 581 214 193 71
Incremental 83 133 118 25
Cross redistribution 37 53 59 13

(c) Using the NVidia GeForce GTX 260

Table 5.2: Performance benchmarks for all scenes and techniques. The unit is milliseconds.

Indirect light Cornell, large Cornell, small Low quality
Gather 4,939 2,535 2,510 152
Progressive refinement 393 148 125 52
Incremental 54 118 81 16
Cross redistribution 23 39 41 10

(a) Medium subdivision level. The Cornell scenes use 3004 vertices and 15552 indices. The indirect scene
uses 2938 vertices and 14316 indices.

Indirect light Cornell, large Cornell, small Low quality
Gather 26,222 16,142 16,639 884
Progressive refinement 1,218 948 745 175
Incremental 330 864 574 111
Cross redistribution 88 191 195 40

(b) High subdivision level. 23147 vertices and 131886 indices are used in the Cornell scenes. The indirect
scene uses 21660 vertices and 120702 indices.

Table 5.3: Benchmark results using a higher vertex load, generated with the NVidia GeForce GTX
670. The unit is milliseconds.
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bandwidth bottleneck hypothesis is supported by the theory. Gather radiosity uses 64bits render
targets for the hemicubes and the elements, while progressive and incremental radiosity use two
128bits render targets for the elements (and a 32 bit render target for the hemicubes). Unfortunately,
the precision of the 128bits render targets is necessary in the current adaptation.

Cross redistribution radiosity also shows a clear bandwidth bottleneck, although the difference
is slightly smaller than with progressive refinement and incremental radiosity. The smaller differ-
ence may be explained by the difference in DirectX API support. As the 260 card only supports
DirectX10.0 it cannot use the faster compute-based integration method and perhaps it may be less
suited for complicated algorithms in general.

Additional vertex processing In Table 5.3, the effects of a higher vertex load are displayed.
The medium subdivision level shown in Table 5.3a shows a small effect on the execution time. Due
to the bandwidth bottleneck, the arithmetic power which was previously unused is now employed for
vertex processing thus resulting in only a minor increase in execution time. The increase is slightly
larger for cross redistribution radiosity, suggesting that the cross projection is more arithmetically
demanding.

The high subdivision level benchmarks displayed in Table 5.3 show a large effect on the execution
time. The effect is proportional to the number of hemicubes rendered. As cross redistribution
radiosity renders the fewest hemicubes per frame, its advantage over the other techniques is increased.
This is especially clear for the indirect scene as the proportion of dynamic patches compared to static
patches is lower than in the Cornell scenes.

Real-time performance The execution time required for real-time performance is subject of
discussion. We consider it to be at most 33ms, as it corresponds to 30 frames per second. The
radiosity computation can be decoupled from the actual frame rate, which allows the redistribution
time to be significantly higher without the real-time perception being lost.

Empirical experiments show that all scenes rendered with cross redistribution radiosity using the
AMD HD 5770 GPU are perceived as real-time. In this regard, the cross redistribution algorithm is
real-time on mid-range graphics hardware from 2008 when using a simple scene. For a scene with
many vertices, cross redistribution radiosity is real-time on current high end cards if the dynamic
object has a low number of patches, such as in the indirect light scene. When adhering to the strict
33ms definition of real-time, a high end graphics card conforms to this mark for low vertex scenes.

Real-time performance is more easily achieved in the low quality scene, however these scenes do
not produce the targeted super high quality global illumination solution.

Cross projection cost Cross redistribution radiosity renders significantly less hemicubes, but
requires to execute the expensive cross projection function in return. Cross projection redistribution
for a single patch costs 0.172ms, as stated in Section 5.3.1. This part includes two redistribution
passes which would separately cost 0.015ms each. The cross projection is very costly compared to
the other parts of the algorithm. This cost can be attributed to the 16 samples taken, including the
accompanying reprojection.

The benchmarks in Table 5.2 clearly show that the cross redistribution algorithm is faster, thus
we can conclude that the cross projection cost is well compensated for by the reduction in the number
of hemicubes.

Multisampling cost The hemicubes rendered using 4×MSAA are taking significantly longer than
the hemicubes rendered without multisampling, as listed in Section 5.3.1. The main cause for this
lies in the resolve pass which is required convert the MSAA render target to a regular texture from
which can be read. The resolve pass averages 4 samples for each pixel, which is bandwidth limited
in an already bandwidth limited algorithm. However if multisampling were not to be used, the cost
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would move to other parts of the algorithm. For gather radiosity, four times as large hemicubes
would need to be used which increases the both the rendering and integration cost significantly.
For the backside hemicubes of cross redistribution radiosity, MSAA functions as a fast form of blur
which would otherwise need be replaced by an actual blurring pass.

Integration method The compute based integration strategy is much faster than the mipmap
based integration implemented for legacy purposes. As stated in Section 5.3.1, compute integration
costs 0.044ms while mipmap integration takes 0.077ms. This is caused by the intermediate memory
reading and writing by the mipmap approach. For each level in the mipmap chain, the previous
level is read, averaged and written back to memory. In contrast, the compute shader reads all data
only once and outputs a single value. This reduction in memory access is very beneficial.

5.4 Comparison with Other Techniques

Comparing between global illumination technique is very challenging because of the multitude of
different situations. Most related publications omit a comparison altogether or compare their con-
tribution exclusively to very similar techniques. We will compare our cross redistribution radiosity
technique with the state of the art in all other major high quality global illumination branches. Ap-
proximate real-time global illumination techniques such as light propagation volumes [24] or voxel
cone tracing [11] are not considered as they are limited to single bounce global illumination or cannot
provide high quality global illumination.

A comparison with non-radiosity methods is particularly difficult. The fundamental differences
between the techniques generally result in a usage of test scenes with different properties. For
example, techniques using ray tracing can accommodate complex geometry more efficiently due to
the logarithmic scaling of hierarchical acceleration structures. However, rebuilding the acceleration
structures is costly so dynamic geometry is restricted. Another fundamental difference is that
radiosity is less suited for directional reflectance due to its caching properties, but the caching does
facilitate redistribution of radiosity and fast rendering of the final scene.

A comparison focused at many bounce indirect illumination is expected to show a clear advantage
for cross redistribution radiosity. Unfortunately, other techniques rarely provide scenes demonstrat-
ing many bounce global illumination. A conclusive comparison seems therefore impossible. In spite
of this, we present a comparison that provides plausible evidence showing that cross redistribution
radiosity is faster at producing high quality global illumination for dynamic geometrically simple
scenes where the focus lies on many bounce global illumination.

5.4.1 Antiradiance
The antiradiance technique was explained in the related work in Section 2.3.3. The Cornell box
scene with a large light source is similar to the scene used in the paper extending antiradiance to
fully dynamic scenes by Meyer et al. [30]. Two images of the antiradiance implementation are shown
in Figure 5.4.1. The low quality implementation runs at approximately 33ms per frame using the
NVidia GeForce GTX 260, while the high quality settings take 63ms.

The high quality antiradiance implementation can be compared to the Cornell box with the
large light source, and the low quality settings can be compared to the low quality scene used in
this thesis. A comparison between the antiradiance screen captures and the screenshots provided
in Figure 5.2.2 and 5.2.4 illustrates a clear qualitative difference in favor of cross redistribution
radiosity. The shadow of antiradiance is blurred significantly which removes important detail in the
shadow boundaries.

The execution time of the radiosity adaptations presented in this thesis have been evaluated
with the same NVidia GTX 260 graphics card in Table 5.2c. Cross redistribution radiosity takes
53ms to render the comparable scene using high quality settings and 13ms with low quality settings,
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Figure 5.4.1: Antiradiance screen captures from the video supplied with [30]. The left image uses a
faster low quality variant while the right image uses slower high quality settings.

both clearly faster than the antiradiance implementation. It is expected that the execution time
disadvantage of antiradiance will increase significantly for a scene which requires more bounces.
Each additional bounce adds to the execution time because the entire global illumination solution
must be regenerated each frame, as opposed to the redistribution of cross redistribution radiosity.

5.4.2 Path Tracing
The commercial Brigade 3 engine is one of the most prominent real-time path tracers. Figure 5.4.2
shows images from a video published October 22nd 2013. The view is directed at the shadowed side
of a building in a city.

Two NVidia GeForce GTX Titan graphics cards were used to render the image which are com-
bined capable of delivering 9000 GFLOPS and 576,8 GB/s of bandwidth, much more than the
graphics cards used in this thesis. The exact time required to produce a single is not known but it
must be close to 33ms. When correcting for the difference in computational power, it is clear that
our technique is significantly faster.

The image quality is clearly insufficient due to the prohibitive amount of noise. While post
processing filters exist to remove the noise, such as the random parameter filtering method by Sen
and Darabi [38], their execution speed lies in the order of minutes. For scenes with a higher number
of indirect light bounces, the quality is expected to reduce further because the number of possible
paths increases exponentially.

The scene in Figure 5.4.2 is geometrically much more complex than our scenes. Processing such
scenes efficiently is one of the strengths of path tracing, as its hierarchical acceleration structure
provides logarithmic scaling for geometric complexity in practice. Another advantage of path tracing
is the indisputable high quality of the results. However, this can take a very long time to achieve as
a potentially enormous amount of samples must be taken to completely remove the noise.

Considering the prohibitive levels of noise and the large amount of computational power used to
achieve this, it can be concluded that our cross redistribution radiosity is more efficient at rendering
high quality global illumination for simple scenes.
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Figure 5.4.2: Screen captures of a video demonstrating the Brigade 3 path tracing engine, originating
from http://raytracey.blogspot.com/2013/10/brigade-3.html. The left image shows the path tracing
result produced in one frame. The right image displays the image generated after two seconds.

5.4.3 Photon Mapping
Many photon mapping variants have been developed, creating a spectrum of technique which bal-
ances execution time versus image quality. The image space photon mapping technique by McGuire
and Luebke was explained in Section 2.1.2 and will be used for comparison. The technique has a
similar performance compared to cross redistribution radiosity [29]. The execution time reported
for the Cornell scene depicted in Figure 5.4.3 varies between 26ms and 97ms depending on the qual-
ity settings. The results were generated using the NVidia GeForce GTX 280 graphics card. The
radiance estimation phase has been improved by Mara et al. in [27] with about 50 percent. Taking
this improvement into account in the results generated by McGuire and Luebke would decrease the
execution time to 28ms and 86ms respectively.

Our measurements in Table 5.2 show times between 13ms and 53ms for the GTX 260 and 7ms
and 24ms for the GTX 670. The capabilities of the GTX 280 used for the image space photon
mapping measurements are between the GTX 260 and GTX 670, so it can be concluded that cross
redistribution radiosity is faster.

The quality of image space photon mapping is significantly below the quality of cross redis-

Figure 5.4.3: Cornell scene rendered by image space photon mapping [29]. Direct light is not
rendered using photon mapping.

http://raytracey.blogspot.com/2013/10/brigade-3.html
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Figure 5.4.4: Photon blurring used in image space photon mapping. Captures taken from the video
accompanying [29]. The left image shows the generated photons, which are blurred extremely to
produce the smooth result in the right image.

tribution radiosity. The exclusion of the direct light computation from the algorithm is the first
indication, which is commonly done when the accuracy of global illumination algorithms is insuffi-
cient. The second sign can be found by the fact that the indirect illumination computation is done
at significantly lower resolutions (9 to 36 times less pixels). Visually examining the procedure used
by image space photon mapping provides the most convincing evidence. Figure 5.4.4 shows the
extreme amounts of blurring which must be used to generate a smooth result, thus destroying a lot
of detail in the indirect illumination.

Alternative photon mapping techniques perform a final gathering phase which is very expensive
and thus not feasible at real-time frame rates. Increasing the number of indirect bounces reduces
performance further as potentially exponentially more photons must be shot to achieve the same
visual accuracy.

5.4.4 Instant Radiosity
Many variants of instant radiosity compromise the quality of the rendered solution. As explained
in Section 2.1.4, the technique by Novák et al. is one of the best qualitative instant radiosity algo-
rithms while still targeting near real-time execution time. Still, the generated quality has significant
limitations. The direct illumination is computed using regular shadow maps which excludes the use
of area light sources. Furthermore due to the use of imperfect shadow maps, indirect shadows have
limited accuracy as depicted in Figure 5.4.5. It should be noted that contact shadows as displayed in
Figure 5.4.5 are not handled correctly by the current implementation of cross redistribution radiosity
due to undersampling.

Novák et al. evaluate the execution speed using an AMD Radeon HD 5870 graphics card which
has a computational power similar to the GTX 670 used in our benchmarks. The instant radiosity
technique uses between 61ms and 106ms to generate the global illumination solution for the Cornell
scene in Figure 5.4.3. This is significantly slower than the execution time for cross redistribution
radiosity (7ms and 24ms respectively) as listed in Table 5.2.

In scenes where more indirect bounces are necessary, the number of VPLs required for the same
level of accuracy is expected to increase exponentially. Therefore, many bounce indirect lighting
scenes are expected to increase the advantage of cross redistribution radiosity.
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Figure 5.4.5: Loss of shadow detail using imperfect shadow maps, images extracted taken from [36].
The left image is rendered using imperfect shadow maps, the right image is a path traced reference.

Figure 5.4.6: Cornell scene used in the instant radiosity paper by Novák et al. [31].

5.4.5 Comparison Overview
Table 5.4 features an overview of several relevant characteristics of the compared techniques and
approximate normalized execution time measurements. Although a perfect comparison between
our cross redistribution technique and its main competitors is impossible to make, this section has
given an indication of the differences. It has been made plausible that cross redistribution radiosity
outperforms the competition when generating high quality global illumination for simple scenes.
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Cross redistribution
radiosity

Antiradiance by
Meyer et al. Path tracing Image space photon

mapping
Instant radiosity

by Novák
Includes direct
illumination X X X

View
independent X X

Caustics X X X

Scaling to more
bounces Constant / Linear Linear Exponential Exponential Exponential

Main artifacts Undersampling noise Low resolution High frequency noise Low resolution Poor shadow
accuracy

Execution time 16ms 48ms 119ms 41ms 84ms

Table 5.4: Comparative table for the examined techniques. The execution time is an approximation
based on the average of the high and low quality settings and normalized to a GTX 670 graphics
card. A qualitative judgment is left for the reader to make.
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Conclusion

The objective of this thesis is to introduce a new radiosity style global illumination technique which
is able to provide high quality global illumination in real-time, under several restrictions such as
simple scenes.

Three hardware accelerated radiosity adaptations have been introduced: an improved version of
progressive refinement for graphics hardware, a novel incremental radiosity adaptation and the new
cross redistribution radiosity. For the latter a supporting theoretical framework has been devised
regarding the redistribution of radiosity.

Measurements have shown that the quality for all techniques is high, but not in all situations.
The most noticeable artifacts are a consequence of undersampling in the cross redistribution radiosity
algorithm. Benchmarks show that the execution time for cross redistribution radiosity is well within
the real-time constraints. A comparison with competing techniques proves to be favorable for our
novel cross redistribution radiosity.

The radiosity family of global illumination algorithms has acquired its first descendant technique
which combines high image quality with real-time results: our cross redistribution radiosity.

6.1 Cross Redistribution Radiosity Evaluation

The main advantages and disadvantages of our novel cross redistribution technique are summarized
below.

Advantages

• Redistribution of radiosity requires less computational work than the generation of the solution,
therefore contributing significantly to the low execution time.

• Cross projection removes the hemicubes rendered for static patches, only requiring them for
dynamic patches. This reduces the number of rendered hemicubes significantly for scenes with
relatively few dynamic patches.

• The generated radiosity solution is view independent and can be displayed quickly. This allows
for the amortization of the global illumination computation over several frames.

• The number of simulated bounces has a linear effect on the algorithm, as opposed to the
exponential effect of most other techniques. Additionally, the number of bounces from the
light source to a dynamic patch does not influence execution time.
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Disadvantages

• Adaptive refinement of the global illumination solution is complicated due to the caching of
illumination on the surface.

• The radiosity storage makes the inclusion of specular reflection and refraction more complex.

• Vertex density of the scene is restricted as many hemicubes must be rendered.

• Undersampling in cross projection yields artifacts for small sharp light sources and for contact
points with dynamic geometry. These issues are expected to be solvable as explained in Section
6.2.

6.2 Future Work

Suggestions for improvement focus on cross redistribution radiosity, as it is expected to have most
potential. Additionally, some variants for regular incremental radiosity are proposed. Many possible
improvements are offered, suggesting much potential in this area.

Cross redistribution radiosity qualitative improvements The main qualitative issue is the
undersampling in the cross projection. It is expected that a pre-integration scheme such as mipmap-
ping for the back-hemicubes will avoid undersampling. The appropriate mipmap level must be
selected depending on the distance between the element and the shooter. This might allow the
sample count to be reduced, which would increase performance.

Restrictions on the types of scenes are currently limiting the usage scenario for cross redistribution
radiosity. The constraint to quad-based radiosity should be alleviated by modifying the technique to
vertex-based radiosity. This enables organic shapes to be included efficiently. Furthermore, the small
scene restriction could be relaxed by employing hierarchical grouping structures for both shooters
and receivers, similar to clustered hierarchical radiosity [41]. Several levels of detail may be used to
reduce the vertex processing load during hemicube rendering. This modification would not make it
a hierarchical radiosity variant as that technique maintains a collection of links which is non-trivial
to adapt. Instead, the relevant links would be regenerated when necessary. An additional benefit of
link regeneration is that the hierarchical detail can depend on the amount of radiosity transferred.

The incremental cross projection discussed in Section 4.5.2 was not accurate enough, therefore
it accumulated error. An implementation which searches for shooters using a variant of ray tracing
would offer perfect accuracy and therefore could be implemented incrementally.

As explained in the analysis of non-incremental cross projection in Section 4.5.2, artifacts may
accumulate due to intermediate progressive refinement passes. If the hemicubes for the previous
redistribution frames are stored, these can be used so that no error will accumulate. Additionally,
fewer hemicubes have to be rendered each frame. The disadvantage is an increase in memory usage.

Support for coarse specular reflection could be implemented by using a low order hemispherical
basis to store the directional radiosity. Very few coefficients should be used to limit the increase in
memory bandwidth.

Cross redistribution radiosity performance improvements The main performance bottle-
neck is the bandwidth usage of the radiosity algorithms. This is presumably caused by the usage
of full-precision floating point render targets for the elements. If these would be reduced to a 16bit
floating point format per element, the bandwidth usage would be reduced significantly. To retain
the required accuracy, increments in radiosity should be as large as possible. This can be realized
by creating larger shooters when low amounts of radiosity are being shot.

Dynamic patches which move a very short distance between frames will render two very similar
hemicubes for the before and after scene. By using the reprojection strategy to generate the new
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hemicube from the old hemicube, the number of rendered hemicubes can be halved. Dynamic
patches appearing on the reprojected hemicubes should be excluded from the reprojection and
rendered again.

Several implementation modifications might increase performance. The used texture arrays might
be less efficient than regular texture atlases. Rendering of multiple hemicubes may be combined
more efficiently by storing all hemicubes in the same render target. The next shooter selection, as
part of the progressive refinement phases, can be optimized by using compute shaders with a parallel
reduction technique. When graphics hardware gains support for draw calls dispatched by the GPU,
the readback of the selected shooter may be avoided.

Adaptive shooter subdivision generates many shooters for direct light sources. Adaptive soft
shadow techniques may be employed to measure partial occlusion, which would significantly reduce
the level of subdivision required.

Incremental radiosity variants The incremental radiosity adaptation for graphics hardware in
this thesis uses reshooting for dynamic patches. If reshooting would be employed for the static
patches, only a single hemicube must be rendered for each patch and a single pass over all elements
is required. The static patches would reshoot their radiosity first, after which the dynamic patches
execute a regular progressive refinement shot. The disadvantage of this approach is that all patches
must reshoot before other modifications can be made to the solution.

An alternative implementation without any reshooting would adhere more closely to the original
incremental radiosity technique. When the differential form factor is calculated explicitly for all
elements, not all patches have to shoot radiosity before an additional modification can be made.
The only restriction is that each shooter handles all modifications in order. If this approach is
combined with a good heuristic for shooter prioritization, potentially very few patches have to shoot
to reach perceptual convergence. If directional radiosity is stored, it can be used to search for
shooters in the area were most (un)occlusion is expected to occur.
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