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Abstract

The last decade has seen the transition from unicore processors to their multi-core (and now

many-core) counterparts. Today, multi-cores are ubiquitous - they form the core fabric of our

laptop and desktop PCs, supercomputers, datacenters, and also mobile devices. This transition

has brought about renewed focus on compiler developers to extract performance from these

parallel processors. In addition to extracting parallelism, another important responsibility of

a parallelizing (or optimizing) compiler is to improve the memory system performance of the

source program. This is particularly important because all cores on the chip simultaneously

demand for data from the slow memory, and thus computation ends up waiting for the arriving

data. In other words, the multi-cores have accentuated the memory-wall. These simultaneous

requests for data from off-chip memory also leads to contention for bandwidth in off-chip net-

work (called bandwidth wall), leading to further increase in the effective memory latency as

seen by the executing program.

While the above responsibilities of a parallelizing compiler are better understood, we iden-

tify three key challenges facing the compiler developers on current processors. These include,

(1) the diverse set of microarchitectures existent at any time, and more importantly, the changes

in micrarchitecture between generations. We identify that the existing compilers have partic-

ularly been unable to adapt to some of the important changes to microarchitecture in the last

decade, resulting in suboptimal optimizations. (2) Poor show of compilers in real applications

that contain large scope of statements amenable for optimization. This weakness stems from

the lack of a good cost model for deciding statements to fuse, and sheer inability to fuse due to

ineffective dependence analysis. (3) Unscalability of compilers - this is a traditional limitation

of compilers where the compilers choose to optimize small scopes to contain the compile time

and memory requirement, and thus loose optimization opportunities.

In this thesis, we make the following contributions to address the above challenges.

1. We revisit three compiler optimizations (loop tiling and loop fusion for enhancing tem-

poral locality and data prefetching for hiding memory latency) for improving memory

(and parallel) performance in light of the various recent advances in microarchitecture,

including deeper memory hierarchy, the multithreading technology, the (short-vector)

iii



SIMDization technology, and hardware prefetching, and propose generic algorithms im-

plementable in production compilers for a range of processors.

2. We propose wise heuristics in a cost model to choose good statements to fuse, and also

improve dependence analysis to not loose critical fusion opportunity in application pro-

grams when it exists.

3. The final contribution of this thesis is a solution to the unscalability problem. Based on

program semantics, we devise a way to represent the entire program with much fewer rep-

resentative statements and dependences, leading to significantly improved compile time

and memory requirement for compilation. Thus, real applications can now be optimized

not only efficiently, but also at a very low overhead.
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Chapter 1

Introduction

Until a decade ago, Moore’s law translated into deeper pipelines (and corresponding increase

in processor frequency), sophisticated cores with newer technologies for branch prediction and

Instruction-level Parallelism (ILP), and larger on-chip caches. All this meant increasing perfor-

mance gains without any involvement of the programmer or the optimizing compiler. However,

this trend has changed for various reasons. It is now no longer possible to increase the clock

frequency due to power dissipation issues (1). The era of ILP has also witnessed an end since

very little gains from employing transistors for extracting ILP are estimated, and the community

has exhausted options in this regard (2). The combined effect has been a shift to multiple cores

on a chip, where each core runs at a lower frequency to save power. Since the number of tran-

sistors can now be increased in accord with Moore’s law without excessive power consumption,

continued increase in performance can be sustained. This performance increase is, however,

contingent on ability of the source program to tap into the parallelism exposed by the hardware.

This marked shift in the processor design has brought about a renewed focus on compiler

design. Earlier, the onus of improving performance was borne mostly by the hardware without a

significant contribution by the compiler or the programmer. This was natural since performance

improvement could be achieved by optimizing execution of instructions within a small window

through techniques for extracting ILP. These techniques included dynamic out-of-order execu-

tion, superscalar processing, speculative execution and non-blocking caches. However, with the

introduction of multi-core processors, extracting parallelism from within a few instructions is

not sufficient, and parallelism at a much more coarser level is necessitated. This coarse-grained

parallelism is not easy for the hardware to extract since it has a view of a narrow window of

1
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instructions. Therefore, the onus of improving performance on multi-core processors has to be

now borne by either the compiler or the programmer.

Clearly, extracting coarse-grained parallelism where the compiler directs each core on the

host hardware to execute specific portions of the source program, is certainly one important

responsibility of the compiler. However, the shift to multicore has also had other important

implications which cannot be ignored. In particular, when multiple cores on the chip compute

in parallel, they also consume data in parallel. This implies simultaneous requests for data from

the off-chip memory. Now, it is well known that the improvement in memory speed has not

kept up pace with the processor speed (leading to the memory wall), and multiple cores on chip

only help to accentuate this gap between the processor and memory. Another related effect that

creeps in and is equally harmful to performance is the bandwidth wall, where effective memory

latencies increase due to bandwidth contention resulting from memory-intensive applications

and poor memory performance. Thus, alleviating effects of memory wall and bandwidth wall

for multi-cores is the second important responsibility of the parallelizing compilers. Again, like

parallelization, the hardware cannot excavate opportunties existent in the source programs for

any potential improvements in memory performance. It is certainly unrealistic to pass this re-

sponsibility to the programmer, because the host platforms tend to be so different and evolving,

and NOT all programmers like to be ‘close to the silicon’ or feel comfortable at reasoning an

optimization for long sequences of loop nests at their disposal. In such a scenario, traditional

memory optimizations such as loop tiling, loop fusion, and data prefetching performed by a

parallelizing compiler assume renewed significance.

1.1 Key challenges for compiler developers in the present day
While the two important responsibilities of a parallelizing compiler are well understood, it

is also important to understand the challenges facing the compiler developers when meeting

these resposibilities. Our experience with parallelizing compilers and present-day architectures

reveals that there are three key challenges in this regard:

1.1.1 The diverse world of computer architecture that also keeps on evolving

The first key challenge in developing a compiler stems from its intimate relationship with the

host hardware. For any compiler to yield the best performance when applying a particular opti-

mization, it must have a thorough understanding of the host hardware. For example, the choice

of a good tile size depends on the size of the cache, its set-associativity, number of levels of
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cache, prefetching behavior of the hardware, etc. Similarly, the degree of aggressiveness at

which loops should be fused, depends on cache characteristics, vectorization potential of the

host hardware, etc. As a result, it becomes difficult for a compiler to perform optimally on

the diverse set of microprocessors that exist today. While the characteristics of the contempo-

rary microprocessors from different vendors such as AMD and Intel are largely the same, we

identify that an even more important problem is that traditional compiler optimizations such as

loop tiling, loop fusion and prefetching as they exist in present-day processors have failed to

evolve with the major changes to computer microarchitecture in the last decade (over multiple

microarchitecture generations). The changes include the following:

1. Deep memory hierarchies - Having recognized the importance of alleviating off-chip

memory accesses, the existing multi-cores have seen a shift from single-level, to two-

level, to now a three-level cache hierarchy. However, important compiler optimizations

such as loop tiling as they exist in current production compilers do not account for this

change. Most of the work on loop tiling assumes that processors need to achieve data

reuse in a single level of cache, and there is some work that assumes a two-level cache

hierarchy, but the optimization is still not tuned for optimal reuse. Similarly, existence

of multiple levels of cache and the opportunity to prefetch data selectively to those lev-

els requires a carefully executed strategy for optimal performance in current processors,

perhaps with coordination between the compiler and hardware.

2. The multithreading technology - In current processors, multithreading is available through

either Chip Muti-Processing (CMP) or Simultaneous Multi-Threading (SMT). Both these

technologies have a bearing on the memory optimizations performed by the compiler. For

example, if 2 threads are running in CMP, then the two threads simultaneously bring the

data to the shared last level cache. Similarly, if 2 threads are running in SMT, then they

bring in data simultaneously to even the private L1 or L2 cache on each core, and thus

reduce each other’s share of the cache. Threads in SMT may have an even more involved

relationship. For example, in Intel’s latest many-core processor, Xeon Phi, a thread can

only issue instructions once every 2 cycles, and another thread is granted opportunity for

the next cycle. In such cases, the compiler must account for such behavior for optimal

performance.

3. The vectorization technology - Current processors employ efficient vectorization or
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SIMD (Single-Instruction Multiple Data) units to perform parallel computation (called

vectorization) on short vectors. The vectorization technology is used to extract the second

level of parallelization available in source program which is at a much finer-granularity

(generally the innermost loop in a loop-nest) than the coarse-grain or outer-loop paral-

lelism. Current production compilers, particularly the Intel compiler, are adept at finding

vectorizable loops because vectorization purchases considerable performance improve-

ment. We recognize that although production compilers are not so good in finding coarse-

grain parallelism, they can find fine-grain parallelism because the analysis merely in-

volves a single loop and its body, instead of an entire loop-nest. However, they still fail

to study its interaction with other memory optimizations such as loop tiling and loop fu-

sion. For example, if the compiler takes the approach of aggressive loop fusion, then

that might hurt vectorization because of introduction of loop-carried dependences in the

innermost loop. Similarly, certain tile sizes benefit significantly more from vectorization

than others, and thus vectorization has an important say in tile size selection as well. In

some cases, tiling may even degrade performance of the source program because of its

detrimental impact on vectorization.

4. The prefetching technology - Data prefetching is the single most important and gen-

erally applicable technology that fetches performance on existing multi- and many-core

processors. This is because the gap between the processor and the memory speed is the

largest in the present day, and it is therefore required to pre-fetch the data from the slow

memory for timely execution. The way this technology interacts with the compiler is that

the compiler is also armed with prefetch instructions, and thus software and hardware

prefetching contend with each other. To add to this, there are hardware prefetchers for

different levels of cache, and so are there software prefetch requests for different levels,

and to decide how they should coordinate to achieve the best performance is a live chal-

lenge. Certainly, the compiler cannot perform the prefetching optimization oblivious of

the hardware prefetcher’s abilities and inabilities. It should instead know those and com-

plement the weaknesses of the hardware prefetcher. Also, since prefetching is so crucial

to performance, other optimizations such as tiling and fusion must be performed by the

compiler so as to not hurt prefetching. For example, tiling induces block-wise execution

of the program arrays instead of sequential execution. This hurts prefetching, and thus re-

quires a careful balance. Similarly, aggressive fusion may result in merging many arrays



5

into the same nest. This increases the number of prefetch streams required to monitor

them, and the processor may fall short of them which can potentially hurt performance.

Since such an intimate interaction exists between compiler memory optimizations and the

above-mentioned important advances in computer microarchitecture, it is important for the

compiler to take into account the host hardware features for best performance. We suggest

that the compiler should ideally extract this needed information from the processor’s host OS

or during its installation, and then use it every time it goes ahead to perform its optimizations.

In any case, these optimizations need to be implemented in a compiler in a way that it provides

the needed flexibility to adapt to different hosts.

1.1.2 Real applications and poor show

The greatest times of need for a programmer are when the source code is large and requires

memory optimizations to improve performance. Such is the case in many real scientific ap-

plications, and the compiler’s help is inevitably sought. However, our experiments with the

state-of-the-art production compilers on such real applications from popular benchmark suites,

show that it is in such cases, that the compiler is particularly ineffective. Although there exists

immense opportunity to improve temporal locality of data accessed in such applications, the

compiler is actually able to do very little to help the programmer in need. We identify that this

unfriendliness of the compiler in such circumstances arises from 2 key reasons:

1. The hot subroutines in various scientific applications contain sequences of loop nests.

These loop nests tend to access common data and thus contain substantial opportunity

for data reuse through fusion. However, the production compilers either simply choose to

ignore the possibility of fusion, or choose to be very restrictive in fusing nests. The first

important reason is that they only consider very small scopes for fusion, such as just con-

secutive nests in ‘pair-wise fusion’. Thus, if two nests that are not adjacent are fusable,

the compiler will simply ignore the possibility. This is a consequence of the compiler’s

view of reducing analysis time by deciding on small scopes and thus fewer dependences

to analyze. Also, the criteria to be chosen for deciding the best fusion structure is unclear

especially in the wake of recent changes to microarchitecture as discussed above. For ex-

ample, if the compiler leads to an imperfect fusion of nests (which results when the fused

nests have different loop-depth) with the help of the insertion of conditional clauses in
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the loop body, then it could hurt vectorization, and be unprofitable. Thus, a clear criteria

or more precisely, a cost model, is necessitated to decide on good fusion structures.

2. The second important problem is that even if the criteria for choosing nests to fuse is de-

cided, the fusion is hindered by the occurrence of certain artificial dependences between

the candidate nests due to the frequent use of temporary variables in such large scientific

applications. The use of such temporary variables, both scalars and arrays, arises from the

fact that these applications compute partial results to be immediately used in the program.

Those partial results are stored in temporary variables to avoid re-computation. Existing

production compilers, because of their oversight of the importance and opportunity of

fusion in such applications, tend to ignore the presence of such fusion-preventing depen-

dences. These dependences are artificial because they can be safely relaxed if certain

criteria are fulfilled, in which case they no longer remain fusion-preventing.

Thus, it is important for the compiler to address these weaknesses to be a ‘friend in deed’

of the programmer.

1.1.3 Unscalability: The traditional woe of compilers

The third and the most important reason for the poor performance of current production com-

pilers especially for large programs is their own choice in doing so. This choice, is however,

forced, because they need to maintain programmer productivity through short compile times.

That is, the compilers choose to not consider global program optimizations (or optimizations

spanning a large scope of statements) so as to circumvent the issue of analyzing a large number

of dependences for reasoning the application of a certain optimization such as fusing multiple

loop nests. In short, the compiler’s capability of performing useful optimizations does not scale

to large programs.

Traditionally, large compile times have been associated with analyzing (many) dependences

in a large program to generate the Program Dependence Graph (PDG). The PDG is then used to

reason optimizations such as parallelization, fusion, distribution, etc. However, our experiments

with a state-of-the-art polyhedral compiler that is armed with the capability of analyzing large

scopes and performing useful global optimizations, reveal that the unscalability of compilers is

more a problem when applying useful optimizations than just analyzing dependences to build

the PDG. For example, it takes less than a second to analyze dependences and construct the PDG

in a scientific application, lu, whereas effectively optimizing it takes around 3 hours. We are not
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aware of an existing work that attempts to tackle this important problem, and this problem is in

fact, now well recognized in the polyhedral compiler community as a key challenge.

1.2 Contribution of this thesis
This thesis makes contributions to address all three above-mentioned challenges involved in de-

signing parallelizing compilers. In addition to parallelism, we focus on three key compiler opti-

mizations to improve the memory system performance of applications, which in effect amounts

to parallel performance. The three optimizations are loop tiling, loop fusion and data prefetch-

ing. Through our work on these three optimizations, we address all three challenges as follows.

1. We look at memory optimizations in light of the present-day processors that contain the

recent advances in microarchitecture such as multi-level caches, multithreading, vec-

torization, prefetching. In particular, we revisit the locality enhancing optimization,

loop tiling, such that interference misses in caches that stem from the caches being set-

associative instead of fully-associative, are minimized, and the chosen tile size best ben-

efits from vectorization and prefetching. Its interaction with multi-threading is also con-

sidered, and a generic algorithm that takes these parameters as input is presented, which

can thus find utility in any compiler on any host. Similarly, the latency hiding optimiza-

tion, data prefetching, is visited in light of the hardware supporting prefetching in current

processors, a multi-level cache hierarchy, and also multithreading. The decision on the

aggressiveness of loop fusion is also made based on cache sizes and maximizing bene-

fits of vectorization. Experimental results indicate significant performance gains over the

production compilers on existing multi- and many-core processors when considering the

important recent advances in microarchitecture.

2. The solution to the challenge of optimizing large programs includes, (1) relaxing the

extra-stringent fusion preventing dependences between temporary variables across loop

nests so as to enable effective fusion while also preserving program correctness in the

wake of relaxed dependences, and (2) implementing an effective cost model that chooses

wise heuristics to decide the statements to be fused to achieve global data reuse; the fusion

achieved is such that it does not hurt coarse-grain parallelism. This work is implemented

in the state-of-the-art PLuTo polyhedral compiler and has been shown to provide parallel

performance improvement of as much 2.17x for individual applications, and as much as
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6.8x over the Intel compiler for individual hot regions in those applications when run on

an 8-core Intel Xeon processor.

3. The unscalability problem at its very root stems from the large number of program state-

ments and dependences within hot regions in real application programs. The algorithms

employed for the purpose of computing transformations have a time and memory com-

plexity that varies as a large power in the number of statements, and thus become un-

scalable. We address this problem with a one-shot solution - condense the program (or

hot region) to be represented by a semantically equivalent but smaller set of statements

and dependences. Essentially, we choose a single representative statement in an entire

loop, which we call an Optimization-molecule. This condensation also then helps us to

condense the set of program dependences. With this condensation, global program trans-

formations such as loop fusion (and its supporting transformations such as interchange

and shifting) can still be effectively reasoned, and that too, at a much lower overhead.

Experimental results indicate significant improvement in compile time and memory re-

quirement for program subroutines with more than 100 statements.

1.3 Organization of the thesis
In the following chapters of this thesis, each compiler optimization is dealt separately with the

focus on addressing the above-identified 3 challenges for parallelizing compilers. Chapter 2 pro-

vides the background for the thesis - it introduces the three compiler optimizations that are dealt

in this work and particularly provides a gentle introduction to the polyhedral compiler frame-

work. Chapter 3 discusses loop tiling and tile size selection for present-day processors, clearly

showing the impact of hardware on this optimization and then our solution to account for all of

them in a neat algorithm. Chapter 4 discusses data prefetching as an important latency hiding

optimization for both the latest multi-core and the many-core processors. This chapter shows

how the optimal prefetching strategy on each platform is clearly a function of the host platform

and is widely different on these two platforms. Particularly, the best performing strategy on one

is the worst on the other and vice-versa. On each platform, we propose an algorithm for the

compiler to selectively prefetch data using carefully tuned prefetch distance at different levels

of cache, and also coordinate with the existing hardware prefetcher on the host platform when

helpful. Chapters 5 through 7 deal with global program optimizations, particularly loop fusion

for real application programs. Chapter 5 presents our solution to relaxation of dependences on
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temporary variables across loop nests to enable effective loop fusion in large programs. Chap-

ter 6 complements Chapter 5 by providing an effective cost model to decide what statements

should be fused to benefit most from data reuse while preserving parallelism. Chapter 7 nicely

closes this discussion by addressing a long-standing problem in compilers - scalability. Thus,

finally, real applications can be effectively optimized for locality and parallelism, and that too,

at a cheap price in terms of time and memory. Finally, we present the conclusions from our

work in Chapter 8.

1.4 Related Publications
Portions of the work presented in this thesis have been published in the form of three papers.

They are as follows.

1. Sanyam Mehta, Gautham Beeraka and Pen-Chung Yew. Tile Size Selection Revisited.

In ACM Transactions on Architecture and Code Optimization, 10, 4, Article 35 (Decem-

ber 2013), 27 pages.

2. Sanyam Mehta, Pei-Hung Lin and Pen-Chung Yew. Revisiting Loop Fusion in the Poly-

hedral Framework. In Proceedings of the 19th ACM SIGPLAN symposium of Principles

and Practice of Parallel Programming (PPoPP ’14). ACM, 233-246.

3. Sanyam Mehta, Zhenman Fang, Antonia Zhai and Pen-Chung Yew. Multi-stage Coor-

dinated Prefetching for Present-day Processors. In Proceedings of the 28th ACM Inter-

national Conference on Supercomputing (ICS ’14). ACM, 73-82.



Chapter 2

Background

Traditionally, compiler optimizations for improving the memory performance of a processor

have been broadly categorized into, (1) locality enhancing, and (2) latency hiding optimizations.

Many application programs involve multiple updates (writes) to the same data in the form of

arrays, lists, etc. Such programs thus reuse data. However, the program may be written in a way

that it cannot reuse the data in a faster level of memory hierarchy due to its limited size. Thus,

locality enhancing optimizations transform the program to allow such data reuse. This prevents

incurring costly off-chip memory accesses, and also reduces the use of off-chip bandwidth, both

amounting to improved performance. Loop tiling and loop fusion are the two most prominent

locality enhancing compiler optimizations.

In other applications, there may not be much opportunity to reuse data, or at least the com-

piler may not be capable of automatically transforming the program to extract such reuse. In

such cases, an application (particularly if it is memory intensive as is the case with most scien-

tific applications) could suffer performance loss due to waiting for data to arrive from memory.

In such cases, data prefetching as a latency hiding optimization comes to the rescue. In this

optimization, the compiler identifies the data needed in the immediate future, and pro-actively

requests for it, so that the execution can proceed unimpeded without suffering from memory

latency. Thus, data prefetching makes for the slow memory speed, and boosts program perfor-

mance.

In the rest of this chapter, we provide more specific background for each of these three

optimizations. In particular, loop fusion and the polyhedral compiler framework are discussed

in more detail.

10
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for(i = 0; i < N; i++) 
   for(j = 0; j < N; j++)  
      for(k = 0;  k< N; k++) 
         C[i][j] += A[i][k] * B[k][j];

     matmul

Figure 2.1: Matmul - untiled (left) and tiled (right)

2.1 Loop Tiling and Tile Size Selection
Loop tiling converts a program that originally involves sequential traversal of the data (in arrays)

to data traversal in tiles. This reduces the amount of data accessed between consecutive accesses

to the same (i.e. reusable) data, and thus promotes data reuse in faster and smaller levels of the

memory hierarchy such as caches.

Figure 2.1 shows the original matmul (matrix-multiplication) kernel and also its tiled ver-

sion. The 3 loops in the original code become 6 loops, 3 of which traverse the data within

the tile and are called the intra-tile loops, and the remaining 3 loops iterate between tiles and

are called the inter-tile loops. In the figure, the loops (iT-jT-kT) in the tiled program are the

inter-tile loops, and loop (i-j-k) are the intra-tile loops. To aid the understanding of our work

on tile size selection in relation to loop tiling, it is important to understand the following con-

cepts/definitions.

There are 2 types of data reuse that are especially relevant to tile size selection:

Self-temporal reuse. This happens when the same reference reuses a data item in distinct

loop iterations. For example, the array referenceB[k][j] in the tiled matmul kernel in Figure 2.1

reuses the same data items in every iteration of loop i, and thus can be said to have self-temporal

reuse in loop i. Similarly, array references A[i][k] and C[i][j] have self-temporal reuse in loops

j and k, respectively. However, array reference B[k][j] reuses an entire tile in each iteration of

the outermost loop i, array reference C[i][j] reuses a tile-row in each iteration of loop k, and

the array reference A[i][k] reuses only an element in each iteration of loop j.

Thus, only array references with self-temporal reuse in the outermost loop such as B[k][j]

provide opportunity for considerable data reuse. It is only in the presence of such references in
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the source code that loop tiling gives a significant benefit. Thus, it is important to track such

references and focus on minimizing conflict misses caused by such references.

Self-spatial reuse. This happens when a reference reuses the same cache line in distinct

loop iterations. For example, the array referencesC[i][j],A[i][k] andB[k][j] in the tiled matmul

kernel in Figure 2.1 all reuse same cache lines for multiple successive iterations of loops j, k

and j, respectively, and can be thus said to have self-spatial reuse in the respective dimensions.

It is for this reason that self-spatial reuse is best availed when the tile dimensions are a multiple

of the cache line size.

Data reuse is enabled by data locality, i.e. data is reused if the data is not replaced from

the cache before subsequent use. Thus, corresponding to the 2 types of data reuse, there are 2

types of data locality, i.e. self-temporal and self-spatial locality. Loop tiling improves the self-

temporal locality of data by reducing its reuse distance. Since the reuse distance is a function

of the tile size, tile size should be chosen such that data items accessed within a tile are not

replaced from the cache due to capacity or conflict misses.

In the tiled code, capacity misses can be easily avoided by choosing a tile whose working

set size is smaller than the cache capacity. This, however, doesn’t avoid conflict misses that

result from non-contiguous memory accesses within the tile. The conflict (or interference)

misses are of 2 types - self and cross interference misses. Self interference misses occur when

a reference with self-temporal reuse accesses multiple data items that collide in the cache, i.e.

they are mapped to the same set. For example, in tiled matmul, self-interference occurs when

data items accessed by the reference B[k][j] collide. This is demonstrated in Figure 2.2a which

shows the snapshot of a 32KB 4-way set associative L1 cache with 16-element cache lines,

at the instance when self-interference begins to cause misses during the execution of an array

tile. Self-interference is pronounced for problem sizes1 that are a power of 2. This is because

the cache size is also a power of 2. In such a case, different rows in the tile are prone to map

to the same set. This is seen in Figure 2.2a where the leading dimension of array B (ldB) is

512 - the 17th row of the tile interferes with the first row of the tile. Thus, for the given cache

configuration and problem size, the tile height, or number of rows in the tile, should not exceed

16 or else conflict misses will result. In this example, the tile width was chosen to be 16, the

size of the cache line, but the case of pronounced conflict misses depends primarily on the tile
1Problem size refers to the size of the array or matrix in a program. However, in this chapter, we mention problem

size to particularly refer to the leading dimension of the array, which is critical for tile size selection. For row-major
2D arrays as in C, elements from one row to the next are a leading dimension apart.
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height.

Cross interference misses occur when two or more references collide in the cache and one

of them has self-temporal reuse. For example, in the tiled matmul kernel, cross-interference

occurs when data items accessed by the references to arrays A, B and C collide. Figure 2.2b

shows a snapshot of the cache demonstrating cross interference between references to arrays

A and B, where the leading dimension of the arrays is 2000. In the figure, we assume that

references A[0][0] and B[0][0] map to sets 0 and 6, respectively. However, run-time addresses

of the arrays are not known at compile-time and thus cross interference is harder to account

for. Among works based on an analytical model, (3) and (4) have attempted to minimize cross-

interference misses, but only for direct-mapped caches.

Figure 2.2: (a) Demonstration of self-interference (ldB = 512); (b) Demonstration of cross-
interference (ldA = ldB = 2000); [ldA and ldB are leading dimensions of arrays A and B,
respectively]

2.2 Data Prefetching
Data prefetching involves detection of specific access patterns in the executing program and

leveraging it to issue requests for data to be accessed in the future to hide the latency of data ac-

cess. For example, for the (untiled) matmul kernel shown in Figure 2.1, we see that consecutive

elements of array A will be referenced since loop k is the innermost loop, and it corresponds to

its fastest running subscript. Thus, future data needed by such a reference is easily predicted,
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and prefetched for performance improvement. However, matmul is not particularly memory in-

tensive due to available reuse, and thus benefits more from tiling. But, not all applications have

such inherent reuse. Over the years, data prefetching has proved to be very useful for memory

intensive applications, and thus both hardware and software techniques exist to detect access

patterns and thereby issue prefetch requests.

In hardware-based prefetching, some special hardware monitors data access patterns to a

particular cache and identifies data suitable for prefetching based on obtained information. Cur-

rent processors employ multiple hardware prefetchers for streaming as well as strided accesses.

Software-directed prefetching, on the other hand, involves the insertion of prefetch instruc-

tions into the original code by the programmer or the compiler that request data needed a few

iterations later. This distance in the number of loop iterations is called the prefetch distance.

Like hardware prefetchers that sit on multiple levels of cache and can prefetch data to those lev-

els, the latest instruction sets provide prefetch intrinsics for prefetching data at different levels

of cache.

In software-directed prefetching, it is the responsibility of the programmer to ensure timeli-

ness and prevent redundant prefetches by deciding the data to prefetch and the prefetch distance.

The hardware prefetchers usually ensure timeliness through aggressive prefetching, i.e. main-

taining a prefetch degree of more than one. For example, the streamer hardware prefetchers on

SandyBridge (a multi-core processor) and Xeon Phi (a many-core processor) have prefetch de-

grees of 2 and 4, respectively, and can maintain a prefetch distance of a maximum of 20 cache

lines. Depending on implementation, software prefetch instructions can also be used to train

and thus control the prefetch distance at which the hardware prefetcher operates. Comparing

software-directed and hardware-based prefetching, software-directed prefetching has the ad-

vantage of being used in a controlled manner, but is associated with an additional instruction

overhead which may compete with the gains.

While the above-mentioned facts about prefetching are better known, the impact of other

hardware features influencing prefetching are less well understood. We brief this interaction

between hardware features and prefetching here to help the understanding of our strategy of

coordinated prefetching in Chapter 4. The hardware tracks the outstanding prefetch requests

through a buffer or a queue. This hardware structure is called the Line Fill Buffer (LFB) in

SandyBridge and MSHR (Miss Status Handling Registers) file in Xeon Phi, and is responsible

for rendering the data prefetch requests non-blocking. The size of the LFB or the MSHR file,
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for i = 1 to N
    a[i] = b[i] + c[i];

for i = 1 to N
     d[i] = a[i] + e[i];

Loop fusion

for i = 1 to N
    a[i] = b[i] + c[i];
    d[i] = a[i] + e[i];

Figure 2.3: Loop fusion

among other factors, has a significant bearing on the most appropriate choice of prefetching

strategy on a particular architecture. This is because, on Xeon Phi, if the MSHR file is full, the

pipeline stalls. On SandyBridge, if the LFB is full, subsequent prefetches/loads enter the load

buffer, which when full, stalls the pipeline. Thus, any prefetching strategy must issue prefetch

requests in such a way that it leads to minimum contention for this scarce resource - the LFB or

the MSHR file.

2.3 Loop Fusion and Polyhedral Compiler Framework
Loop fusion groups references to the same data by merging the loop bodies of multiple loop

nests into the same nest. For example, in Figure 2.3, the array a is referenced in two different

loop nests which leads to access to similar data in both nests. In the fused program, the two

references are grouped into the same nest. As a result, the successive uses of the same data (of

array a) happen in the same iteration of loop i, as compared to the original program, when such

accesses were separated by N loop iterations. This improved temporal locality of data reduces

the costly accesses to off-chip memory, amounting to improved performance.

In this dissertation, we implement loop fusion within the polyhedral compiler framework,

and use our framework to then address loop fusion in real applications. Thus, we next provide

a gentle introduction to the polyhedral framework with particular emphasis on aspects relevant

to our work in this thesis. The reader is referred to existing literature (5; 6; 7) for more detail on

polyhedral compiler frameworks.

DEFINITION 1 (Affine Hyperplane). An affine hyperplane is an n - 1 dimensional affine

sub-space of an n dimensional space. An affine hyperplane can be viewed as a one-dimensional

affine function that maps an n-dimensional space onto a one-dimensional space, or partitions

an n-dimensional space into n-1 dimensional slices. Hence, as a function, it can be written as,

Φ(~v) = h.~v + c. A hyperplane divides the space into two half-spaces, the positive half-space,

and a negative half space.
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DEFINITION 2 (Polyhedron). A polyhedron is an intersection of a finite number of half-

spaces. A polytope is a bounded polyhedron.

LEMMA 1 (Affine form of the Farkas lemma). If a non-empty polyhedron is defined by p

inequalities or faces,

ak~x+ bk ≥ 0, k = 1, p (2.1)

then, an affine form ψ is non-negative everywhere in that polyhedron iff it is a non-negative

linear combination of the faces:

ψ(~x) ≡ λ0 +

p∑
k=1

λk(ak~x+ bk), λ0, λ1, ..., λp ≥ 0 (2.2)

2.3.1 Overview of the Polyhedral Framework

The polyhedral framework for compiler optimizations is a powerful mathematical framework

based on parametric linear algebra and integer linear programming. It provides an effective

intermediate representation that captures nearly all the complex high level optimizations per-

formed by a traditional automatic parallelizing compiler.

The polyhedral framework performs loop transformations on a Static Control Part (SCoP),

a maximal set of consecutive statements (S1, S2, ..., Sn), where loop bounds and conditionals

are affine functions of the surrounding loop iterators and parameters. The iteration domain of

the statements within a SCoP can be specified as a set of linear inequalities in the polyhedral

framework as shown in Figure 2.4b. This set of linear inequalities defines a polyhedron, with

each iteration of a loop represented by an integer point within this polyhedron. With such an

abstraction, it is possible not only to obtain the exact dependences between statements, but also

to model a composition of complex transformations as a single algebraic operation.

A dependence between two statement instances belonging to statements Si and Sj respec-

tively, is represented by a set of equalities and inequalities in the dependence polyhedron,

P
eSi→Sj , where eSi→Sj ∈ E is an edge in the Data Dependence Graph (DDG), G = (V,E),

with each vertex representing a statement. The dependence polyhedron not only captures the

iteration domain of the statements involved in the dependence, but also the exact dependence
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for (i=0; i<N; i++)  // parallel loop  
  for (j=0; j<N; j++)
    S1:  B[i][j] = A[i][j] + u1[i]*v1[j]        

                      + u2[i] * v2[j];

for (k=0; k<N; k++)  // parallel loop  
  for (l=0; l<N; l++)
    S2:  x[k] = x[k] + beta* B[l][k]*y[l]; 

for (i=0; i<N; i++)  // parallel loop  
  S3:  x[i] = x[i] + z[i];         

for (i=0; i<N; i++)  // parallel loop  
  for (j=0; j<N; j++)
    S4:  w[i] = w[i] + alpha* B[i][j]*x[j];   

    (a) Original gemver program

1    0    0    0
0    1    0    0
-1   0    1    -1
0    -1   1    -1

i
j
N
1

≥  0

(b) Domain of S1

1   0   0   0   0   0          i
0   -1  0   0   1   -1         j
0   0   1   0   0   0          k
0   0   0   -1  1   -1         l
1   0   0   -1  0   0          N
0   1   -1  0   0   0          1

≥  0
≥  0
≥  0
≥  0
=  0
=  0

(c) Dependence Polyhedron for S1 →S2 edge

                   ф1  -->  scalar        
     T:  (ф1, ф2, ф3)     ф2  -->  parallel loop

               ф3  -->  forward loop

for (i=0; i<N; i++)    //  parallel loop
  for (j=0; j<N; j++){
     B[j][i] = A[j][i] + u1[j]*v1[i]       /*  TS1:  (0, j, i)  */

                      + u2[j] * v2[i];

     x[i] = x[i] + beta* B[j][i]*y[j]; }  /*  TS2:  (0, i, j)  */

for (i=0; i<N; i++)    
   x[i] = x[i] + z[i];             /*  TS3:  (1, i, 0)  */

for (i=0; i<N; i++)    
  for (j=0; j<N; j++)
     w[i] = w[i] + alpha* B[i][j]*x[j];   /*  TS4:  (2, i, j)  */

(d) Statement-wise multidimensional affine function 
         for the transformed gemver program

Figure 2.4: Overview of the Polyhedral Framework

information such as which iterations are involved in the dependence. For example, in Figure

2.4c, the equalities express that there is dependence when i=l and j=k. The dependence poly-

hedron could express such a precise dependence relation because there existed an affine relation

between the iterations and the referenced data.

Since the dependence polyhedron captures dependences among all loop iterations for affine

programs, the dependence information in the DDG is exact. With this exact dependence infor-

mation, the goal is to find a statement-wise multi-dimensional affine function (T ) to represent

a composition of loop transformations for the entire SCoP. Each dimension or level of this

multi-dimensional affine function is represented by φ(~i) and is defined as follows:

φS(~iS) = (c1S c
2
S ... c

mS
S )(~iS) + c0S (2.3)

where ~iS is the loop iteration vector for statement S, and c0S ...c
mS
S are constants. Figure 2.4d

shows the multi-dimensional affine functions (TS1 through TS4) for each of the four statements

of the gemver benchmark, where each function has 3 dimensions or levels represented by φ1,

φ2, and φ3, respectively.

The one-dimensional affine transform (φ) for each statement can either specify a loop hy-

perplane or a scalar dimension. A loop hyperplane is an n−1 dimensional sub-space of an n di-

mensional space represented by the normal
(
c1S c

2
S ... c

mS
S

)
6= ~0. A legal loop hyperplane corre-

sponds to a loop in the transformed program. For example, for gemver, φ2S2 = (1 0)(i j)T = i,

and it represents a hyperplane that corresponds to the outermost loop (i-loop) for statement S2 as

shown in Figure 2.4d. A legal hyperplane does not violate any unsatisfied dependence, eSi→Sj ,

at that loop level, i.e.
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φSj (~t)− φSi(~s) ≥ 0, 〈~s,~t〉 ∈ P
eSi→Sj (2.4)

where ~s (source) and ~t (target) are instances of statements Si and Sj , respectively. The above

condition implies the loop hyperplane preserves the direction of dependences between any two

instances of statements Si and Sj .

The above condition (2.4), when expanded becomes,

(
c1Sj

c2Sj
... c

mSj

Sj

)
~t−

(
c1Si

c2Si
... c

mSi
Si

)
~s ≥ 0, 〈~s,~t〉 ∈ P

eSi→Sj (2.5)

This is, however, non-linear in the unknown co-efficients of the phis and loop index vari-

ables. Thus, the affine form of the Farkas lemma is used for linearizing this legality condition

as follows.

(
c1Sj

c2Sj
... c

mSj

Sj

)
~t−

(
c1Si

c2Si
... c

mSi
Si

)
~s ≡ λe0 +

me∑
k=1

λekP
k
e , λek ≥ 0 (2.6)

Thus, the non-linear form in terms of the loop variables (Equation 2.5) is now expressed as

a non-negative linear combination of the faces of the dependence polyhedron through the use

of Farkas lemma. Now, the coefficients (denoting a hyperplane) on the LHS and RHS can be

equated to get rid of the loop variables. It is important to note that the legality condition has to

be satisfied for every dependence in the SCoP, and thus Farkas lemma is also applied for every

dependence. The resulting constraints (linear in the coefficients of the phis) are aggregated. For

the purpose of eliminating the Farkas multipliers, Fourier-Motzkin elimination is employed.

In the polyhedral model, a fusion partitioning can be represented by a scalar dimension in

the multi-dimensional affine function. For a scalar dimension, c1S = c2S = ... = cmS
S = 0, ∀

S, and c0S determines the partition number that the statement belongs to. The statements with

the same value of c0S belong to the same partition, or in other words, they are fused at that loop

level. For example, for gemver, φ1 represents a scalar dimension, and statements S1 and S2

both have c0S = 0, and as a result, they are perfectly fused in the transformed gemver code

shown in Figure 2.4d. Since, c0S is 1 and 2, respectively, for statements S3 and S4, they are



19

distributed in the transformed code.

Thus, a multi-dimensional affine transform consists of multiple one-dimensional affine

transforms representing legal loop hyperplanes interspersed by scalar dimensions. This multi-

dimensional affine transform, because of the convex combination property, allows it to capture

a sequence of simpler transformations such as coarse-grained parallelism, loop interchange,

skewing, shifting, fusion and tiling. For example, in gemver, it allowed to capture parallelism,

interchange and fusion in a single optimization step as seen in Figure 2.4d.



Chapter 3

Tile Size Selection, from Then to Now

3.1 Introduction
Loop tiling (8; 9; 10; 11) is a widely used loop transformation to enhance data reuse in higher

levels of memory hierarchy. In essence, loop tiling reduces the reuse distance from being a

function of the problem size to a function of the tile size. Loop tiling thus minimizes the cache

capacity misses. However, tiling leads to non-contiguous data accesses in memory resulting in

an increased probability of conflict misses in the cache. These conflict misses are a function

of the tile size in tiled code. For example, for a problem size of (N=2000), a 2D tiled code of

the dsyr2k kernel from BLAS library (12) with the tile size (TS1=8x128) performs 2.44x better

than the one with the tile size (TS2=128x8) even though both codes have the same working

set size in the L1 cache, when tested on an Intel Xeon processor based on the Sandy Bridge

microarchitecture. One of the key reasons for this significant difference in performance is that

the tile size TS2 leads to pronounced conflict misses, that are 22 times more compared to those

observed for tile size TS1.

Thus, tile size selection is critical to performance of the tiled code, and an optimal tile size is

one which minimizes not only capacity but also conflict misses within a tile.

In the past, the problem of tile size selection has been attempted using analytical model-

driven approaches (13; 14; 3; 15; 16; 4; 17; 18). However, these approaches have proved to be

less robust because the models used did not fully capture the interaction between the source pro-

gram (features like problem size and reuse characteristics of the arrays) and critical features in

the modern processor microarchitecture such as multi-level and set-associative caches, and the

20
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SIMD unit. This has resulted in a widening gap between performance delivered by best known

tile sizes and that achieved by using tile sizes predicted by the previous analytical models.

Tile size selection has also been widely studied using empirical auto-tuning as in ATLAS

and PHiPAC for linear algebra (19; 20), FFTW and SPIRAL for Signal Processing (21; 22),

ETile (23), and others (24; 25). However, each of these techniques is faced with a large search

space of tile sizes when considering multidimensional, non-cubic tiling. For example, the size

of search space for a level-3 BLAS kernel such as gemm scales at n3, where n is a function

of the size of cache being considered. If reuse opportunity in multiple levels of cache must be

considered, the search space expands significantly for the larger caches, lower in the memory

hierarchy. As a result, the adopted approach is either too time consuming (19; 21; 20; 22; 24)

or less accurate when heuristics are used to reduce the search space (25).

In this work, we propose a new analytical model for selecting tile size in modern processors.

The Tile Size Selection (TSS) algorithm proposed in our model chooses a tile size such that the

following 4 objectives are met,

• it leverages the high set-associativity in modern caches to minimize interference and yield

stable performance for all ranges of problem sizes in a variety of source programs.

• it considers data reuse at multiple levels of cache, which further boosts the performance

of the tiled code.

• it considers the interaction of tiling with the SIMD unit on the host architecture and

chooses a tile size that best benefits from it.

• it considers the impact of tiled code execution in a multithreaded environment (both chip

multiprocessing and simultaneous multithreading environments) and achieves good per-

formance.

Although the analytical model developed in this work chooses a particular tile size, it could also

be used in conjunction with an auto-tuning framework to prune/navigate the search space.

We implement the TSS algorithm within a source-to-source polyhedral compiler frame-

work, PLuTo (26), which automatically tiles the source programs. For the generated tiled code,

PLuTo chooses a cubic tile size by default. The TSS algorithm instead, estimates the optimal

tile size which is then used by PLuTo to generate the corresponding tiled code. We tested our

model on 12 benchmarks comprising a mix of linear algebra, data-mining and stencil kernels,

all of which are known to benefit significantly from tiling. We tested each kernel with 2 dif-

ferent problem sizes on two different machines with different microarchitectures. Experimental
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results show that accommodating the impact of multi-level caches and the SIMD unit within

the analytical model adds significant performance to the tiled code, and the tile size thus chosen

is similar to that obtained from an exhaustive search for the best tiled code in a constrained

search space. In comparison to the best square (cubic) tiled code for the test benchmarks, our

tile size selection algorithm chooses tile sizes that perform 9.7% and 20.4% faster on average,

respectively, for the 2 problem sizes. We also show that our model achieves good performance

for tiled codes run in multithreaded environment using either the chip multiprocessing or the

simultaneous multithreading technology.

The rest of this chapter is organized as follows. Section 3.2 re-evaluates the problem of tile

size selection from the point of view of a compiler via a case study and reinforces the motivation

for this work. Section 3.3 discusses the multiple factors that influence tile size selection and

explains our approach to accommodate them in our tile size selection model. In Section 3.4,

we describe our algorithm for estimating the optimal tile size and discuss its scope. Section 3.5

describes the experimental setup and the benchmarks used for our experiments. We discuss the

experimental results in Section 3.6. The related work is presented in Section 3.7. Finally, we

conclude in Section 3.8.

3.2 Motivation
Tile Size Selection has been deemed a complex problem from the point of view of a compiler. In

this section, we re-evaluate the major reasons behind such a view and present a viable alternative

to tackle the problem of tile size selection at compile time.

3.2.1 Modeling the effect of set-associativity.

An analytical model for tile size selection must choose a tile size such that the conflict misses

are minimized. Past works did not consider set-associative caches and proposed probabilistic

approaches (3; 4; 27; 28; 29) for minimizing conflicts among array references. In such a sce-

nario, a conservative approach based on eliminating conflict misses as in (3; 4) results in tiles

with undesirable shapes (too “skinny” or too “fat” tiles) for some problem sizes, leading to sub-

optimal performance in those cases. On the other hand, an optimistic approach as in (27; 28; 29)

is based on ignoring the non-unity set associativity of caches. This too gives below optimal per-

formance because multiple cache lines accessed in the source program may map to the same set

of an n-way set associative cache, causing conflicts more likely than that predicted by such an

optimistic analytical model.
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With multiple array references within the loop body of a source program, modeling the

effect of set associativity on the execution time behavior of a tiled code has been considered non-

trivial. We re-evaluate this problem in the example of matrix-multiplication (matmul) kernel

shown in Figure 3.1.

Figure 3.1: Source codes of matmul and jacobi-2d, before and after tiling through PLuTo

In 2D-tiled matmul, the maximum working set that should fit the cache comprises all the

data accessed in a single iteration of outermost untiled loop i as shown in Figure 3.1b. Thus, the

working set consists of a tile row each in arrays A and C (i.e. K and J elements, respectively),

and an entire tile of array B (i.e. K*J elements)1. Clearly, the working set is dominated by the

data accessed by array reference B. Further, if this working set fits a particular level of cache,

the entire tile of array B can be reused in each iteration of loop i. Thus, for matmul (and similar

other kernels that allow data reuse), the task of modeling the effect of set-associativity for mul-

tiple array references in the source program is reduced to only those references with temporal

reuse in the outermost loop such as the array reference B. Therefore, in a set-associative cache,

most ways could be assigned to such a reference and the effect of set-associativity be modeled

only for that reference, independent of the other array references. However, if there are multi-

ple array references with temporal reuse in the outermost loop (as in jacobi-2d kernel shown in

Figure 3.1d that has 2 such references, A[i][j] and B[i][j]), the available ways in each set can

be equally partitioned among them and the effect of set-associativity be modeled for any one of
1If an LRU cache replacement policy is considered instead of an optimal replacement policy, then the working

set will also include another tile row of array C and an element of array A (30)
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them as all such references exhibit similar runtime behavior.

3.2.2 Tapping into data reuse at multiple levels of cache.

With multi-level caches on modern processor architectures, tapping into the reuse opportunities

at the different levels of cache is important for effective tiling. For example, the best 2D tile

for matmul performs 13% worse than the best 3D tile that considers data reuse in the L2 cache

on an Intel Sandy Bridge core for a problem size of 2000. The possibility of reusing data in

different levels of cache arises from the fact that different array references have different reuse

distances. For example, in the 3D-tiled matmul shown in Figure 3.1c, each tile of array B is

reusable in every iteration of loop i, whereas each tile of array C is reusable in every iteration

of loop kT .

While reusing data in multiple levels of cache is important, past works have assumed 2D

tiling and determine tile sizes that target data reuse in a single level of cache, generally the L1

cache. If data reuse in caches that are lower in the memory hierarchy (such as L2, L3 caches)

must be considered, the impact of set-associativity assumes greater significance as those caches

usually have higher set-associativity than the L1 cache. Hence, ignoring set-associativity will

lead to unoptimal cache utilization and limited performance gains.

Figure 3.2: Normalized metrics for matmul (N=2000); L1 size = 32KB; L2 size = 256KB

Figure 3.2 substantiates the various arguments made in this section to motivate our work.

Figure 3.2 plots 3 different metrics, execution time, L2 data cache misses and L1 data cache
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misses, for the matmul benchmark tiled in 3 dimensions with 9 different tile sizes. The exper-

iments were all performed on an Intel Xeon processor (E5-2650, 2.0 GHz) with 32KB private

L1 cache, 256KB private L2 cache and a 20MB L3 cache shared by 8 Sandy Bridge cores. In

each tiled code, the outermost dimension was fixed at 128 to illustrate the performance impact

of L2 cache misses. For each metric, the figure plots values normalized within the range 0...1.

Normalized values for each metric are computed using the standard min-max normalization as

the ratio, (x-min)/(max-min), where x, min and max are the absolute, minimum and the max-

imum values, respectively, of that particular metric. Each tiled code uses values of J and K

such that the tile maximally occupies the L1 cache without incurring conflict misses. The metric

L1 DCM∗ shows the L1 cache misses for tile sizes that are greater than the 9 sizes shown on

the x-axis by just 1 cache line in the K dimension. From the figure the following messages can

be taken.

1. The working set for each of the 9 maximal tiled codes is nearly 24 KB2, which is well

within the L1 cache size of 32KB. A small increase in tile size leads to a significant

increase in the L1 cache misses as shown by the metric L1 DCM∗ in the figure. This

increase in the L1 cache misses is attributed to the conflicts that occur in L1 cache even

though the cache capacity is not reached. The increase in L1 cache conflict misses is

reflected in the increased execution time as compared to that of the maximal tiles as

shown in the figure through the metric Ex. Time∗. Thus, it is critical to consider the

impact of set-associativity when determining the optimal tile size.

2. With the L1 misses held nearly constant for the 9 maximal tiled codes as shown by the

metric L1 DCM in the figure, the execution time follows the pattern of L2 cache misses,

with a sharp increase in the execution time beyond J = 152. This is because, beyond this

point, the working set comprising the data accessed within each iteration of the kT loop

overflows the L2 cache, leading to loss of reuse of data accessed by reference C. Thus,

it is critical to choose a tile size that targets reuse of data in the L2 cache in addition to

the L1 cache. A similar analysis was used to motivate the need to consider data reuse in

multiple levels of memory hierarchy in (18).

The algorithm presented emulates execution-time behavior of references with reuse in a

particular level of cache by considering the cache size, line size and set-associativity. The

algorithm considers data reuse in multiple levels of cache to provide an estimate of the optimal
2The size of the working set in the L1 cache, as derived earlier in Section 3.2.1, is given by (K*J + 2*J + K + 1)
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tile size. The details of our algorithm are presented in Sections 3.3 and 3.4.

3.3 Our Approach
In this section, we discuss the various factors that influence tile size, and our approach for ac-

commodating them in our algorithm. For this purpose, we first consider linear algebra and data

mining kernels that have considerable reuse and thus benefit from tiling. The factors affecting

tile size selection in such kernels are considered in Sections 3.3.1 through 3.3.4 through the ex-

ample of matmul introduced in Section 3.2. The conclusions presented are, however, applicable

to a variety of kernel programs that allow data reuse and thus benefit significantly from the tiling

transformation. Although the example of matmul that has a 3D loop nest is considered, the ap-

proach is applicable to nD loop nests as described in Section 3.4.1. It must be noted that we

assume single-level nD tiling (i.e. n inter-tile loops and n intra-tile loops) for a source code that

has n loops and still achieve data reuse in multiple levels of cache - the array reference(s) that

has reuse in the outermost intra-tile loop is reused in the L1 cache and the array reference(s)

that has reuse in the innermost inter-tile loop is reused in the L2 cache. In other words, we do

not consider multi-level tiling to achieve data reuse in multiple levels of cache.

Apart from linear algebra and data mining kernels, stencils are another class of codes that

benefit significantly from tiling. In stencils, tiling is performed after loop skewing, and is called

time skewing (31). The factors affecting tile size selection in stencils is considered separately in

Section 3.3.5.

3.3.1 Data reuse in L1 cache.

Data reuse in L1 cache, that is the fastest among all levels of cache, is critical to performance

of a tiled code. For the 3D-tiled matmul shown in Figure 3.1c, data reuse in the L1 cache is

achieved by reusing the data accessed within a tile of arrayB in every iteration of the outermost

intra-tile loop i. This requires the tile dimensions (K,J) to be chosen such that data locality for

array reference B is ensured between successive iterations of loop i. We define two metrics to

analyze the impact of tile size selection on data reuse:

(1) Total Cache Misses (TCM) - The total number of misses incurred in a particular level

of cache for the entire execution of the program.

(2) Reuse Ratio (RR) - The ratio of the amount of reusable data to the total working set

size for a particular level of cache.

TCM for L1 cache as a function of the tile dimensions (I, J,K) is calculated as follows:
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The number of cold misses incurred in the first iteration of loop i equals the number of

cache lines accessed in each iteration of loop i, i.e. a tile (J ∗K elements) of array B, and a tile

row each of arrays A and C (K and J elements, respectively). It is given by

K ∗ d J

CLS
e+ d K

CLS
e+ d J

CLS
e (3.1)

where CLS is the cache line size

Since our goal is to reuse a tile of array B in each iteration of loop i, we assume that the tile

size is such that there are no capacity or conflict misses that cause the data accessed within a

tile of array B to be evicted from the cache. Thus, the total number of cache misses for the I

iterations of loop i equals

K ∗ d J

CLS
e+ I ∗ d K

CLS
e+ I ∗ d J

CLS
e (3.2)

Thus, TCM for the L1 cache equals

(
K ∗ d J

CLS
e+ I ∗ d K

CLS
e+ I ∗ d J

CLS
e
)
∗ N3

I ∗ J ∗K
(3.3)

where N3

I∗J∗K are the number of loop iterations in the inter-tile loops. This, when simplified

(assuming I, J and K are multiples of CLS) becomes

(
1

I
+

1

J
+

1

K

)
∗ N3

CLS
(3.4)

RR for the L1 cache is defined as the ratio of the reusable data (i.e. J ∗K elements) to the

total working set size at L1 cache. The total working set size at L1 cache can be calculated as

the sum of Minimum Working Set Lines (18) and the correction for the cache replacement policy

(as discussed in Section 3.2). It is given by
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K ∗ J + 2 ∗ J +K + 1 (3.5)

Thus, RR for L1 cache is

K ∗ J
K ∗ J + 2 ∗ J +K + 1

(3.6)

From Equations 3.4 and 3.6, two inferences can be drawn -

1. Each of the tile dimensions should be as large as possible for effective data reuse and

minimization of cache misses, and

2. RR for the L1 cache is close to 1. This implies that the array reference B dominates the

working set, and would occupy most of the ways in a set-associative cache.

3.3.2 Data reuse in L2 cache.

Data reuse in the L2 cache is critical as L2 misses are more costly than L1 misses. Data reuse

in L2 cache is achieved by reusing the data accessed within a tile of array C in every iteration

of the innermost inter-tile loop kT . We again consider the TCM and RR for the L2 cache to

analyze the impact of tile size selection on data reuse. TCM for L2 cache as a function of the

tile dimensions, can be calculated as follows.

The number of cold misses incurred in the first iteration of loop kT equals the number of

cache lines accessed in each iteration of loop kT , i.e. a tile each of arrays A, B and C (I ∗K,

K ∗ J and I ∗ J elements respectively).

I ∗ d K

CLS
e+K ∗ d J

CLS
e+ I ∗ d J

CLS
e (3.7)

Since our goal is to reuse a tile of array C in every iteration of loop kT , we assume that the

tile size is chosen such that there are no capacity or conflict misses that cause the data accessed

within a tile of array C to be evicted from the cache. Thus, the total number of cache misses for

the N
K iterations of loop kT equals
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I ∗N + J ∗N + I ∗ J
CLS

∗ N2

I ∗ J
(3.8)

which when simplified becomes

(
1

J
+

1

I
+

1

N

)
∗ N3

CLS
(3.9)

RR for the L2 cache is defined as the ratio of the reusable data (i.e. I ∗ J elements of array

C) to the total working set size at L2 cache. The total working set size at L2 cache can be

calculated as the sum of number of Distinct Lines (32) accessed within the intra-tile loops and

the correction for the cache replacement policy. This allows L2 reuse in the innermost inter-tile

loop. The working set at L2 cache is given by

(I + 1) ∗K + 2 ∗K ∗ J + I ∗ J (3.10)

Thus, RR for L2 cache is

I ∗ J
(I + 1) ∗K + 2 ∗K ∗ J + I ∗ J

(3.11)

From Equations 3.9 and 3.11, two inferences can be drawn -

1. The tile dimensions I and J should be as large as possible for effective data reuse and

minimization of L2 cache misses, and

2. Unlike L1 cache, the value of RR for the L2 cache cannot be easily estimated.

3.3.3 Data reuse in both L1 and L2 cache

The Tile Size Selection (TSS) algorithm presented in this chapter emulates execution-time be-

havior of a single reference in a particular level of cache by considering the size of the cache,

its line size and associativity. The algorithm thus aims to minimize conflict misses at that level

of cache to enable effective data reuse. For the L1 cache, clearly, the reference(s) with temporal

reuse in the outermost intra-tile loop such as the array reference B in matmul, dominates the
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Figure 3.3: Choosing a tile size that exploits data reuse in both L1 and L2 cache

working set and occupies most ways in a set-associative cache. Thus, the TSS algorithm (de-

scribed later in Section 3.4) works on the assumption that the array reference B occupies all but

1 way of the L1 cache and returns a list of (K,J) tuples all of which correspond to maximal

tiles, i.e. tiles whose sizes can be increased no further without incurring conflict misses. The

best (K,J) tuple and the size of the I dimension are chosen by considering further criteria.

We concluded from Equation 3.9 that tile dimensions I and J should both be large for

effective data reuse in the L2 cache. Further, we observe from Figure 3.3 that the product J ∗K
is nearly constant in each of the (K,J) tuples that minimize conflict misses in the L1 cache.

Thus, for J to be large, a correspondingly smaller K must be chosen. With a large J (and a

large I) and a small K, it can be concluded that the RR for L2 cache as given by Equation

3.11 will also tend towards 1. This shows that the working set that should fit L2 cache is also

dominated by a single array reference, C, that has reuse in the innermost inter-tile loop, kT . In

such a scenario, the TSS algorithm assumes that the array reference C occupies all but 1 ways

of the available ways in the L2 cache, and similarly yields a list of (I, J) tuples all of which

correspond to maximal tiles in L2 cache. From the list, the tuple (I, J) that minimizes
(
1
I + 1

J

)
is selected in accord with Equation 3.9 (marked as step 1 in Figure 3.3). For the chosen J , a
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corresponding K is chosen from the list of tuples (K,J) obtained earlier (marked as step 2 in

the figure). Thus, the 3 tile dimensions (I, J,K) are determined using the TSS algorithm that

considers reuse at both the L1 and L2 cache (marked as step 3 in the figure). Although we have

only considered reuse in the L1 and L2 caches in this work, the latest microarchitectures employ

a shared L3 cache and a similar analysis can be extended to analyze reuse in the L3 cache.

3.3.4 Interaction with vectorization.

Short-vector SIMD instruction sets such as AltiVec and SSE (and now AVX) have proved to be

promising for enhancing performance on modern processors. It is thus critical to consider the

interaction of tiling with the SIMD unit on the host architecture.

As a result of loop tiling, all loops including the vector loop are strip-mined, i.e. they

are fragmented into smaller segments or strips. While this helps data reuse, it reduces the

length of the vector pipeline. Thus, strip-mining the vector loop deprives the vector unit of the

needed fodder for Instruction Level Parallelism (ILP). This effect is more pronounced in the

latest microarchitectures as they have larger vector registers requiring longer loops and multiple

vector load/store units that reveal more opportunity for ILP.

To make the best use of a bad bargain, the tile size should be so chosen that while data

reuse is exploited, losses from a reduced vector pipeline length are minimized. This is ensured

when the tile dimension corresponding to the vector loop is large, but only large enough that

the tile doesn’t cause interference misses. We evaluate this interplay between vectorization and

data reuse in 3 different scenarios. The 3 scenarios are shown in Figure 3.4, where loops j, i

and k are the vector loops in matmul, trisolv and strsm benchmarks, respectively. In all the 3

benchmarks, the inter-tile loops are in the same order (iT-jT-kT), but the order of intra-tile loops

is different in each case and is decided by the PLuTo compiler such that efficient vectorization

could be achieved. The PLuTo compiler applies the loop interchange transformation within

the polyhedral framework to achieve this and as a result, any of the 3 loops could be made the

innermost (vector) loop. We thus consider all the 3 possible scenarios.

According to Equation 3.11, tile dimensions I and J should be large for effective data reuse

in the L2 cache. This further implies that the tile dimension K should be small for effective

data reuse in the L1 cache. Thus, in matmul and trisolv benchmarks, where loops j and i are

the vector loops respectively, the goals of achieving efficient vectorization and data reuse are

concomitant. However, this is not the case for the strsm benchmark, where loop k is the vector
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Figure 3.4: Vectorization, reuse and tile size

loop. Choosing a small value of K would severely hurt vectorization. However, choosing a

large value of K although prevents data reuse in the L2 cache, data reuse within the L1 cache

can still be achieved in addition to effective vectorization. Empirical verification supports that

in such cases, 2D tiling that aims at data reuse in only L1 cache and effective vectorization,

gives the best performance. This is incorporated in our framework by choosing the largest

rectangular tile from the list of tile size tuples returned by our algorithm for the L1 cache; the

outermost tile dimension is effectively left untiled by choosing its size to be the same as the

problem size.

Also, since the TSS algorithm chooses each tile dimension to be a multiple of the cache

line size (for achieving spatial locality), the tile dimension corresponding to the vector loop is

ensured to be a multiple of the vector size. This leads to effective vectorization.

3.3.5 Interaction with Time Skewing.

For stencil codes such as jacobi-2d (shown earlier in Figure 3.1d), time skewing can significantly

improve temporal locality. For time-skewed codes, however, estimating the optimal tile size is

more involved because of the shifting tiles as shown in Figure 3.5 - the tile space shifts by the

corresponding skewing factors (SH and SW in case of 2-D tiles) in each dimension for each

iteration of the tiled time loop (loop t in Figure 3.1e). This leads to the following essential

differences in the case of time-skewed codes:

1. In non-time-skewed codes, adjacent tiles access distinct data (except for some possible
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Figure 3.5: Illustration of skewed-tile traversal

overlap at tile boundary). However, as a result of shifting tiles in time-skewed codes,

there is an opportunity for reusing common data between adjacent tiles. For example,

tilei,j and tilei,j+1 access common data for t = 1, shown by the darkly shaded region in

Figure 3.5. Thus, if the data accessed by tilei,j in all T (length of the tiled time loop, t)

time steps fits the cache, the common data can be reused by tilei,j+1 in all T iterations. In

such a scenario, the only misses incurred by tilei,j+1 for t = 1 (or for t = k, in general)

are due to the new data accessed as shown by the unshaded region in tilei,j+1,t=1 in the

figure. Thus, the number of misses are given by W∗SH
CLS , where CLS is the Cache Line Size

in terms of the number of elements. The total misses incurred in time steps 1 through T

are given as W∗SH∗T
CLS . Similarly, the total misses incurred in the program that has a total

of N
W ∗

N
H tiles and that iterates for T0 time steps, is given as

SH ∗ T0 ∗N2

CLS ∗H
(3.12)

Since the total cache misses are inversely related to the tile height, the TSS algorithm
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chooses a tile with largest height such that the tile width is equal to a single cache line,

from the list of tile size tuples that minimize interference in L1 cache. This ensures that

tilei,j for any t(= k) fits the L1 cache. However, to enable inter-tile data reuse in L2

cache, the data accessed by tilei,j in time steps 1 through T should fit the L2 cache. In

addition, more data is brought into the cache by tilei,j+1, with the possibility of interfer-

ence in the L2 cache. As can be seen from the figure, any two consecutive tiles such as

tilei,j and tilei,j+1 access data within a block of dimensions (2*W+T*SW )x(H+T*SH ),

for all T iterations of the tiled time loop. Thus, the TSS algorithm assumes the worst case

scenario, and chooses T such that this block fits in the L2 cache. This also minimizes

interference in the L2 cache. With W and H known, the value of the tile in the time

dimension, T , is thus calculated, and the tile chosen achieves reuse both in L1 and L2

caches.

2. The discussion above favors tiles with smaller widths to achieve data reuse in the L2

cache for stencil codes. This, however, is unproductive for efficient vectorization as ex-

plained. Thus, if a stencil code is vectorizable in the innermost loop, the two factors

conflict with each other. Empirical results show that for stencil codes that are not vec-

torizable because of dependences such as seidel, smaller tile widths perform better, and

vice-versa for vectorizable stencils such as jacobi and fdtd. Thus, for vectorizable sten-

cils, we choose tiles with larger widths (such that the tile height is no less than a cache

line) in favor of effective vectorization. In such cases, since inter-tile data reuse in the L2

cache is not achieved, the height and width of the tile are chosen such that a single tile

fits L2 cache and the time dimension is chosen to be the total number of time steps.

3.3.6 Other factors that influence tiling.

Interaction with multi-level TLB. The authors in (29) argue that in addition to data reuse in

the L1 cache, the tile size chosen must also minimize TLB misses. Their rationale was based

on the assumption that TLB misses are much more costly than cache misses (and also possibly

quite frequent given a small TLB). However, the recent architectures employ a 2-level TLB. For

example, Intel’s Sandy Bridge has a 64-entry L1 TLB and a 512 entry L2 TLB, while there was

just a single level 64-entry TLB in the Intel’s Netburst microarchitecture. On Sandy Bridge that

uses a 4-level page table, the cost of a page walk is also reduced to merely 30 cycles, which

is same as the latency for an L2 cache miss. In addition, tiling compilers such as PLuTo (used
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for this work) permute the intra-tile loops such that most references achieve spatial locality and

effective vectorization in the innermost loop. This also minimizes the TLB misses as for such

references, consecutive elements reside on the same page. It is for these reasons that empirical

results reveal minimal impact of TLB misses on tile size selection.

Interaction with shared caches. Chip Multiprocessing (CMP) and Simultaneous Multi-

threading (SMT) are the two techniques currently employed to extract the inherent Instruction-

level parallelism in programs run in a multithreaded environment. In a multithreaded environ-

ment, multiple cores may bring in different data to the shared cache on a chip multiprocessor,

and similarly, multiple threads may bring in different data to the private cache on a core using

the SMT technology. We account for this in our algorithm by adjusting the set-associativity to(
1
T

)
of the actual value, where T is the number of threads/cores that share the cache. This is

done to prevent any cache conflicts even for the worst case when all T threads/cores execute

different tiles and thus bring different data into the cache.

Data re-layout of the tiles/To copy or to not copy. Copy optimization or copying is a

technique to adjust the data layout for reducing cache conflicts within a tile, wherein a tile

is copied into a temporary linear array and copied back to its original memory location after

execution. As a result, all elements within a tile are mapped to contiguous locations, instead of

disparate locations in the cache. This data re-layout improves the cache behavior by minimizing

conflict misses (33). If we thus re-layout the tiled arrays, the tile size is then largely governed

by cache capacity and is easily estimated (30). However, production quality compilers such as

GCC and ICC do not support such data re-layout because (1) the additional cost of copying may

offset the savings, (2) there is a need to write complex clean-up code when the problem size is

not a multiple of the tile size, and (3) the complexity of the transformation itself, i.e. it must

be determined what to copy and when to copy. Also, another important reason is that copying

cannot be performed for stencil codes, as the tiles shift in every iteration of the tiled time loop.

The TSS algorithm avoids copying. It instead achieves the purpose of minimizing interfer-

ence by analyzing the source program and its interaction with the architecture and the compiler.

It thus saves the overhead of copying and relieves the compiler from the burden of performing

the complex copy optimization.

Problem size and array padding. As discussed earlier in Chapter 2, conflict misses are

pronounced for problem sizes that are a power of 2. Such problem sizes are called pathological

problem sizes as the various algorithms employed for tile size selection yield either too skinny



36

or too fat tile sizes, that result in suboptimal performance. Array padding is a technique pro-

posed in previous works (27; 28) to handle such cases, where the problem size (particularly, the

leading dimension) of the arrays is increased to prevent conflicts in the cache, and achieve rea-

sonable performance even for the pathological problem sizes. As for copying, compilers such

as GCC and ICC do not support padding because (1) it transforms the array structure that must

be reflected in the entire code, (2) it cannot be directly incorporated into a library routine as the

problem size is not known apriori; copying the arrays into another array with padding helps, but

copying has its own disadvantages and overheads.

3.4 The Tile Size Selection (TSS) Algorithm
As described in Sections 3.3.1 and 3.3.2, only references such as the array reference B for the

L1 cache (and reference C for the L2 cache) in the example of matmul, access reusable data

and dominate the working set in the respective caches. For a given source program and cache

parameters, the TSS algorithm emulates cache behavior for one such array reference (say, k)

during tile execution. For the emulation, the reference k is allowed to occupy n − 1 ways of

an n-way set-associative cache, while the remaining references that have small contributions to

the working set are assumed to occupy the remaining 1 way of the cache. If there are K such

array references, cross-interference among them is prevented by assuming the effective set-

associativity of the cache to be ne = b nK − 1c instead of the actual value of n. This emulation

is done for different values of the tile width3 that are multiples of the cache line size, and

the algorithm returns in each case, a corresponding tile height at which cache conflicts ensue.

Thus, a list, L, of tile sizes that aim to minimize interference and maximize cache usage is

generated. The same algorithm is used to determine the list of tile size tuples (K,J) and (I, J)

for minimizing conflicts in the L1 and L2 cache, respectively. The estimate of the best tile size

(I, J,K) is determined by further criteria as described earlier in Section 3.3.3.

The algorithm emulates the fetching of cache lines into the cache for the array reference k.

The emulation is done using cache emu, an array whose every element stores the count of the

number of occupied ways in a set in the cache. The elements of cache emu are initialized to

a count of 0, indicating that no way of the set is occupied. The count (of a set) is increased to

emulate the fetching of a cache line into the set. A row in the tile maps to a set given by nset
3Here, the algorithm is presented for the case of 2D tiles for understandability, and is extended for the general

case of nD tiles in Section 3.4.1. Width in general represents the size of the tile in leading dimension.
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ALGORITHM 1: Tile Size Selection
INPUT:
Size of cache: cSize
Set-associativity of cache: n
Size of cache line: lSize
Leading dimension, or Problem-size: N
No. of arrays with self-temporal reuse in outermost loop: K
No. of active threads per core: T
No. of elements in a cache line: CLS

(
= lSize

size(DataType)

)
No. of sets in cache: nSets

(
= cSize

lSize∗n
)

Effective set-associativity: ne
(
= b n

K∗T − 1c
)

Step 1:
for w = 1 to min( cSizelSize ,

N
lSize) do {/* w is tile width in number of cache lines */}

r = 0
repeat {/* iterates over rows in a tile */}
nset←

(
r∗N
CLS

)
%nSets

for c = 0 to w do {/* brings a tile-row into cache */}
if cache emu[nset+ c] = ne then
h = r {/* tile height is maximum rows in tile */}
break {/* interference begins at this point */}

else
cache emu[nset+ c] + +

r + +
until r = N
if h < CLS then

Add the tile size (h,w ∗ CLS) to list L
else

Add the tile size (b h
CLS c ∗ CLS,w ∗ CLS) to list L

OUTPUT: List of tile size estimates, L
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as shown in the algorithm. Since the memory addresses wrap-around the cache, our algorithm

can safely assume that the first element of an array maps to the first line (set) of the cache.

Henceforth, for a chosen width of w cache lines in a tile-row, the algorithm brings the lines

comprising a tile-row into the cache. The cache is thus filled row-wise until all the available

ways (given by ne) in a set of the cache are filled, and interference begins to replace reusable

data in the cache. Thus, the tile height (h=r, the number of rows in tile at this point) for the

chosen tile width is obtained such that there are no interference misses. The outermost for loop

over w thus generates a list of tile sizes, L. Each tile size is the tuple (h,w ∗CLS) for a chosen

value of w. The tile height in each tuple is truncated to the nearest multiple of the cache line

size for efficient utilization of the spatial reuse.

3.4.1 Scope of the algorithm

This section describes the nature of programs that can benefit from the TSS algorithm. Firstly,

it is important to note that programs containing references that carry reuse in one of the loops

in the loop nest, can alone benefit significantly from the loop tiling transformation, and from a

good tile size chosen by the TSS algorithm.

The TSS algorithm relies on exploiting reuse at two loop levels - the outermost intra-tile

loop and the innermost inter-tile loop. Thus, for a program to benefit from TSS, it must contain

an array reference that has reuse in the outermost intra-tile loop and one that has reuse in the in-

nermost inter-tile loop. The TSS algorithm gives a list of good tile dimensions corresponding to

the inner loops based on considering intra-tile reuse but the size of the outermost tile dimension

must be obtained after considering the inter-tile reuse. The inter-tile reuse, however, depends

significantly on the loop order - if the innermost inter-tile and innermost intra-tile loops corre-

spond to the same loop in the original program as in the strsm kernel, inter-tile reuse is sacrificed

in favor of intra-tile reuse and effective vectorization. In such a case, the outermost intra-tile

loop is left untiled. In all other cases, effective inter-tile reuse can be achieved without hurting

vectorization by using the cost function obtained from Equation 3.9. This strategy proves ap-

plicable for kernels that yield non-skewed rectangular tiles, such as those in basic linear algebra

(BLAS), data mining and image processing applications.

In stencils, the inner space loops are skewed with respect to the outermost time loop. Thus,

while intra-tile reuse can be achieved in a manner similar to the non-skewed tiled codes, inter-

tile reuse is achieved in a different way, as explained in Section 3.3.5.
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TSS algorithm for imperfectly nested loop nests. An important point to note is that when

imperfectly nested loops are tiled, statements are distributed into different nests at one of the

outer inter-tile loops. As a result, the cost functions derived in this work for the intra-tile loops

as well as the innermost intra-tile loop can still be applied to such codes. However, in such

cases, multiple imperfectly nested loop nests will have to use the same tile size, which may not

be good for all nests.

TSS algorithm for programs with many array references. The TSS algorithm depends

on the effective set-associativity, computed as ne = b n
K∗T − 1c. Thus, if the number of array

references in the source program (K) is large (or, the number of threads sharing the cache, T , is

large), all array references cannot be assigned a unique way, given the limited number of ways in

the cache. In such a case, we improvise the TSS algorithm by doubling the set-associativity (n)

and halving the number of available sets. While this does not guarantee conflict minimization

due to the overlapping of data accessed by multiple references in the cache, it nonetheless

serves as a good approximation for 2 reasons, (1) with the cache size remaining constant, it

still partially emulates cache conflicts and does not fill the cache to capacity, and (2) since the

number of sets remain a power of 2, it still accounts for the case of pronounced cache misses

for certain pathological problem sizes.

TSS algorithm for nD tiles and non-square problem sizes. The TCM/RR analysis and

the TSS algorithm presented thus far assume 3D loop-nests and 2D tiles. Thus, we refer to tile

dimensions, I , J and K, and to the “height” and “width” of a tile. However, in the general case

of nD tiles, the tile size corresponding to the outermost intra-tile loop (I) represents the product

of multiple outer intra-tile loops. Thus, the same analysis gives information about the relative

impact of each tile dimension on data reuse, for an nD tile. Similarly, the TSS algorithm is

easily extended for nD tiles - tile width corresponds to the tile size in the leading dimension and

tile height is split into multiple dimensions and the mapping of a cache line to a particular set

in the cache is accordingly computed. Thus, a list of tile size tuples, (t1, ... , tn), is obtained,

and one of them is chosen as an estimate of the optimal tile size based on criteria determined

from the TCM/RR analysis, exactly as in the case of 2D tiles. This is shown in Section 3.6

through the example of a tensor contraction kernel, doitgen, that involves 3D tiles and is tiled

in 4 dimensions.

Also, the TSS algorithm only depends on the leading dimension of the array reference with

self-temporal reuse in the innermost loop. It is thus not restricted to square (cubic) problem
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sizes but will find an estimate of optimal tile size for any problem size.

3.4.2 The Framework

The TSS algorithm is implemented within PLuTo, a source-to-source transformation system

based on the polyhedral model. The complete framework of our implementation is shown in

Figure 3.6.

The PLuTo transformation framework takes as input the original source code and generates

statement-wise affine transformations. These statement-wise transformations are representative

of a composition of loop transformations including loop tiling. However, in the absence of

a user-specified tile size, PLuTo uses a default cubic tile size of 32 to generate the updated

(statement-wise) transformations through its Polyhedral Tile Specifier. Our algorithm, instead,

interacts with PLuTo at this step to provide it with its estimate of the optimal tile size. The

updated transformations with the tile size information are input to CLooG (34) to generate

transformed source code, which can then be compiled on the target machine using any back-

end compiler such as GCC or ICC.

Figure 3.6: Our Framework

The TSS algorithm needs 3 architectural parameters (cache size, line size and set-associativity)

and 3 program specific parameters (the order of intra-tile loops, K i.e. the number of arrays with

self-temporal reuse in a particular loop, and the skewing factors). The cache parameters can be

determined through the OS, e.g. by a kernel call to ‘GetLogicalProcessorInformation’ function

in Windows or through specific files in ‘/sys/devices/system/cpu/cpu0/cache/ ’ in Linux. They

can also be obtained using micro-benchmarks such as those in ATLAS. In our implementation,
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we used the former option to determine the cache parameters. The information about the pro-

gram specific parameters is obtained from the PLuTo transformation framework. The order of

the intra-tile loops is particularly needed, as PLuTo might interchange the loops to favor vec-

torization and this information is needed to determine the size of the tile in each dimension,

as explained in Section 3.3.6. PLuTo also provides information about the skewing factors and

loop vectorization for codes that are time skewed, to determine the tile size for such codes as

discussed in Section 3.3.5.

3.5 Experimental Setup

Microarchitecture Cache Size (L1|L2|L3) Cache Type (L1|L2|L3) Set-associativity (L1|L2|L3)
Sandy Bridge (32KB|256KB|12.5MB) (priv.|priv.|shared) (8|8|20)

Core (32KB|1.25MB|-) (priv.|shared|-) (8|8|-)

Table 3.1: Details of the microarchitectures

We tested the effectiveness of our algorithm on an Intel Xeon E5-2650 processor with 8

cores (running at 2 GHz) based on the Sandy Bridge microarchitecture, and an Intel Core2

E6400 processor with 2 cores (running at 2.13 GHz) based on the Core microarchitecture. The

details of each microarchitecture is given in Table 3.14. For our experiments, we used 12 kernel

benchmark programs from PLuTo and PolyBench (36) that are listed in Table 3.2.

Kernel Description Problem Size Data Type
matmul Matrix Multiplication N1=512; N2=2000 Double
dsyrk Symmetric rank-k operations N1=512; N2=2000 Double
dsyr2k Symmetric rank-2k operations N1=512; N2=2000 Double

lu Lower Upper Decomposition N1=512; N2=2000 Double
trisolv Multiple Triangular Solver N1=512; N2=2000 Double
doitgen Multiresolution analysis kernel (MADNESS) N1=128; N2=150 Double
strsm Linear Equation Solver N1=512; N2=2000 Float
tmm Triangular Matrix Product N1=512; N2=2000 Float

corcol Correlation Computation N1=512; N2=2000 Float
covcol Covariance Computation N1=512; N2=2000 Float

jacobi-2d 2-D Jacobi stencil computation T=128; N1=512; N2=2000 Float
seidel-2d 2-D Gauss Seidel stencil computation T=128; N1=512; N2=2000 Float

Table 3.2: Summary of the benchmarks

Of these 12 kernel benchmarks, the first 8 are various linear algebra kernels and solvers,
4In the table, we list the effective L2 cache size as presented in (35)
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the next two (corcol and covcol) are kernels employed in data mining programs and the last

2 (jacobi and seidel) are stencil kernels. Since the tile size varies with the problem size, we

tested the algorithm for 2 different problems sizes - one that is a power of 2, and the other

that is not. The problem sizes that are a power of 2 are termed as ‘pathological’, because they

cause pronounced conflict misses for certain tile sizes, whereas all other problem sizes do not

demonstrate such a behavior. It is for this reason that we chose a problem size in each of

these 2 categories. In addition, since the tile size also depends on the data type of the problem

arrays, we show the performance results of our algorithm for different benchmarks, some have

single-precision while the others have double-precision data arrays. All tiled codes used in the

experiments were generated using PLuTo (version 0.9.0) using the options ‘–tile’ and ‘–parallel’

(for extracting pipelined parallelism in time-skewed stencils). For all our experiments, we used

the Intel C Compiler (ICC v13.0.1 using ‘-O3’ optimization option) as the backend compiler

to compile the transformed source programs. We used the ‘-parallel’ compiler option with ICC

only to obtain results on the performance of the TSS algorithm on multiple cores.

3.6 Experimental Results
Among past works that used an analytical model for tile size selection, most algorithms suffered

from poor performance for the ‘pathological’ problem sizes. As a result, later models such

as eucpad (27) mentioned in Table 3.3, use padding to overcome these pronounced conflict

misses that result at such problem sizes. However, eucpad considers neither the impact of set-

associativity nor of data reuse in multiple levels of cache. The TSS algorithm, on the other

hand, considers the impact of set-associativity in generating the list of maximal tile sizes for

both the L1 and L2 cache. The TSS algorithm further considers data reuse in L1 and L2 cache

to generate its estimate of the optimal tile size as discussed in Section 3.3. We compare eucpad

and TSS in Table 3.4.

Algorithm Cost function
Pad Size

Set-associativity Data reuse in L2
single prec. double prec.

eucpad min
(
1
K + 1

J

)
6 7 Not considered Not considered

TSS min
(
1
I + 1

J

)
- - Considered Considered

Table 3.3: Comparison of the algorithms
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The eucpad algorithm chooses non-conflicting tile widths using the Euclidean GCD algo-

rithm (3) and tile heights using a simple recurrence. For pathological problem sizes, it allows

for a padding of 0-7 elements and chooses a tile size from a list of sizes obtained by considering

the different padding options. The cost function employed by eucpad tends to choose a square

tile from the list of non-conflicting tile sizes obtained. It must be noted that their cost function

is precisely based on Equation 3.4, that minimizes misses at the L1 cache. However, since the

impact of set-associativity is ignored, the tile size chosen does not minimize the conflict misses.

For example, eucpad chooses a tile size of (h,w)=(40,88) for the matmul kernel. The TSS al-

gorithm, on the other hand, generates (40,80) as one of the maximal tiles for the L1 cache. In

other words, the TSS algorithm predicts pronounced interference misses at the tile size (40,88),

which is actually observed - the L1 cache misses incurred by the tile size (40,88) are 1.4 times

more than those incurred by the size (40,80).

Table 3.4 also compares the tile size chosen by the TSS algorithm with the “Best Tile”.

To generate the Best Tile, we extensively ran all combinations of tiled codes with each tile

dimension that is a multiple of cache line size, ranging from a cache line size (8 for double

precision and 16 for single precision floating data) to
√

L2CacheSize
size(DataType) (176 for double precision

and 256 for single precision floating data). The reason for choosing this range of tile sizes

is that the working set that results from these sizes is large enough to occupy the L2 cache,

which is essential to compare with the TSS algorithm. The search space is chosen considering

the L2 cache size on Sandy Bridge, as a large shared cache in Core microarchitecture would

yield an unmanageable search space (the search space with the chosen limits already leads to

10648 tiles for double precision and 4096 tiles for single precision floating point data arrays).

However, still, the Best Tile obtained for both the microarchitectures clearly demonstrates the

various factors impacting the tile size, and that the tile size generated by the TSS algorithm is

close-to-the-optimal tile size.

Table 3.4 shows that for linear algebra and data mining kernels with 3D loop-nests, the tile

size chosen by TSS, like that of Best Tile, are rectangular and are such that the outermost and

innermost intra-tile dimensions (I and J respectively) are large. This favors both vectorization

and data reuse in the L2 cache as discussed in Section 3.3. Further, since the chosen tile size

does not incur any interference misses, the performance achieved by TSS is always close to

that achieved by the Best Tile. Since the tile sizes chosen are rectangular, in some cases the

optimal tile size cannot be captured within the already large search space and thus, the tile
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size chosen by TSS could even outperform the Best Tile. This is particularly observed for the

Core microarchitecture that has a considerably large L2 cache. From the table, an important

observation can be made about the Best Tile sizes - the tile dimension corresponding to the

innermost (vector) loop (96, for example, in matmul) is not the maximum possible length (176,

for matmul) as would be expected to favor vectorization. The Best Tile, instead conforms to the

cost model used by TSS (i.e. min(1I + 1
J )), thus validating the importance of reusing the data

in the L2 cache.

For the linear algebra and data mining kernels considered, PLuTo generates tiled code in

which the goals of achieving data reuse in the L2 cache and efficient vectorization are con-

comitant. However, as discussed in Section 3.3.6, these goals conflict in the case of tiled strsm

benchmark, where the algorithm decides in favor of efficient vectorization and data reuse in only

the L1 cache. In this case, the outermost loop is effectively left untiled by choosing the tile size

for that loop to be the problem size as shown in table 3.4. Another important observation from

table 3.4 is that while TSS performs significantly better than eucpad for most benchmarks, their

performance is comparable for lu and trisolv benchmarks. The reason for this is that both of

these benchmarks have non-rectangular iteration spaces, and thus the reuse distance in different

tiles varies as a function of their position in the iteration space. Our algorithm underestimates

the tile size in such cases. However, since no conflict misses result from underestimating the

tile size, our algorithm still achieves good performance in such cases.

Among the linear algebra kernels, doitgen has 3D arrays and a loop-nest that is tiled in

4 dimensions. To estimate the tile size for doitgen, the framework first identifies the array

references carrying reuse in L2 cache. The TSS algorithm (modified for 3D arrays, as discussed

in Section 3.4.1) generates a list of tile size triplets, all of which represent maximal tiles that do

not incur interference. From this list, the triplet that maximizes reuse in the L2 cache according

to the TCM/RR analysis is chosen as an estimate of the optimal tile size. The TCM/RR analysis

suggests that for a tile size triplet, (P,Q,R), the tile dimension corresponding to the innermost

loop (R in this case) and the tile dimension corresponding to the outermost loop (the product

P ∗Q in this case) should both be large. Thus, the tile size triplet that satisfies these criteria is

selected from the list. With P ,Q andR known, the remaining tile dimension, S, is computed by

considering reuse in the L1 cache, as demonstrated earlier for the case of 3D loop-nests through

Figure 3.3.
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Sandy Bridge Core

Benchmark Scheme
Problem Size = 2000 Problem Size = 512 Problem Size = 2000 Problem Size = 512

Tile Size
Perf.

Tile Size
Perf.

Tile Size
Perf.

Tile Size
Perf.

(GFLOPS) (GFLOPS) (GFLOPS) (GFLOPS)

matmul
eucpad 40x88 3.20 64x48 3.07 40x88 2.81 64x48 1.51

TSS 168x32x104 4.1 40x7x504 3.45 248x8x328 3.2 192x7x504 1.46
Best Tile 176x32x96 4.1 144x48x176 3.42 128x16x128 3.22 144x64x16 1.78

dsyrk
eucpad 40x88 3.22 64x48 2.55 40x88 2.80 64x48 1.96

TSS 168x32x104 3.72 40x7x504 3.35 248x8x328 3.19 192x7x504 2.46
Best Tile 160x16x144 3.89 96x32x176 3.22 160x144x16 3.09 128x16x176 2.31

dsyr2k
eucpad 40x88 3.98 64x48 2.93 40x88 2.76 64x48 2.01

TSS 120x8x88 5.11 16x4x504 3.96 248x8x136 3.72 96x4x504 2.16
Best Tile 56x8x112 5.27 176x16x176 3.90 96x16x96 3.58 176x32x176 2.20

lu
eucpad 40x88 2.82 64x48 2.07 40x88 1.89 48x64 1.63

TSS 168x32x104 2.87 40x7x504 2.79 248x8x328 2.30 192x7x504 2.01
Best Tile 176x16x160 3.01 96x32x176 2.63 176x16x144 2.01 160x16x176 1.86

trisolv
eucpad 40x88 3.76 64x48 2.43 40x88 2.52 64x48 2.19

TSS 168x32x104 3.74 40x7x504 3.43 248x8x328 2.66 192x7x504 2.48
Best Tile 176x80x128 3.81 80x32x176 2.84 176x112x176 1.80 176x176x176 2.09

strsm
eucpad 80x64 1.52 80x64 1.49 80x64 1.18 80x64 1.17
TSS3D∗ 2000x16x320 1.68 512x14x496 4.63 2000x16x320 1.26 512x14x496 1.96
Best Tile 160x144x256 1.47 208x48x256 2.58 144x240x224 1.11 128x48x256 1.48

tmm
eucpad 80x64 5.74 80x64 4.27 80x64 4.49 80x64 3.72

TSS 160x16x208 7.3 80x14x496 4.55 632x16x320 6.00 384x14x496 5.25
Best Tile 192x16x256 7.62 160x16x256 4.02 256x16x256 5.28 48x16x256 4.70

corcol
eucpad 80x64 4.31 80x64 3.58 80x64 2.14 80x64 2.09

TSS 160x16x208 6.16 80x14x496 4.68 632x16x320 2.69 384x14x496 2.46
Best Tile 144x16x256 6.41 112x16x176 4.51 176x16x256 2.38 208x16x176 2.37

covcol
eucpad 80x64 4.35 80x64 3.69 80x64 2.18 80x64 2.17

TSS 160x16x208 6.26 80x14x496 4.98 632x16x320 2.72 384x14x496 2.58
Best Tile 112x16x256 6.51 96x16x176 4.77 224x16x256 2.41 112x16x176 2.47

doitgen
eucpad - - - - - - - -

TSS 8x14x16x150 3.26 5x14x24x128 3.21 4x68x16x150 2.49 5x127x24x128 2.66
Best Tile 32x8x8x104 2.92 16x8x24x120 3.07 32x8x32x80 2.38 32x24x24x120 2.52

jacobi-2d
eucpad - - - - - - - -

TSS 128x32x560 4.82 128x48x496 3.83 128x48x2000 2.30 128x192x496 1.82
Best Tile 64x64x32 4.73 64x32x240 3.93 128x96x256 2.45 128x224x256 1.30

seidel-2d
eucpad - - - - - - - -

TSS 128x208x16 1.31 96x14x16 1.25 128x208x16 1.07 128x14x16 1.34
Best Tile 64x192x16 1.32 32x64x16 1.28 32x64x16 1.15 64x208x16 1.3

Table 3.4: Performance of TSS algorithm

Of the two stencil benchmarks considered, seidel is representative of non-vectorizable sten-

cils and jacobi is representative of vectorizable stencils. For seidel, it can be observed that the

analysis for data reuse in the L2 cache presented in Section 3.3.6 holds true - the Best Tile is

rectangular with a larger tile height. The tile size corresponding to the outermost time loop is

determined from the formula derived earlier in the same section, and the tile size determined

by TSS performs close to the Best Tile. For jacobi, however, the TSS algorithm chooses a tile

size to benefit from vectorization and intra-tile reuse in the L2 cache, at the cost of inter-tile

reuse in L2 cache. Results show that the TSS algorithm achieves performance comparable to

the Best Tile in such cases as well. The difference in the optimal tile sizes for these two classes
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of stencils clearly validate both the impact of vectorization and reuse in the L2 cache, on tile

size selection.

Comparison with other approaches
Existing compilers - Figure 3.7 plots normalized performance improvements achieved by

the TSS algorithm, the default tiling in PLuTo and the best cubic tile (BCT) with respect to the

Intel’s C compiler. We show results for 9 of the 12 benchmarks considered on Sandy Bridge.

The best cubic tiles have been chosen for comparison as some auto-tuning frameworks (20; 25)

only consider cubic tiles to decide the best tiled code. Results show that the TSS algorithm

outperforms the best cubic tile in all cases, achieving an average improvement of 9.7% and

20.4% for the 2 problem sizes. It is interesting to note that ICC could only tile the matmul

benchmark (marked with an asterik) among these 9 benchmarks, where it chose a cubic tile of

size 128. Choosing such a tile size leads to a working set size that is mid-way between the

L1 and the L2 cache size. The rationale is that some data could be reused in L1 cache and if

there are some misses, they could be serviced by the L2 cache. Although an intuitive approach,

it cannot match the performance of the TSS algorithm since it only considers 1 level of data

reuse, whereas as shown by our analysis, there are atleast 2 (loop) levels at which data can be

reused (loops kT and i for the matmul benchmark). In case of PLuto, default cubic tiles of size

32 usually under-utilize the L1 cache and thus perform sub-optimally.

Figure 3.7: Comparison of TSS with other approaches that use 3D-tiling

The DL/ML model - The authors in (18) have recently proposed a useful analytical model

for bounding the search space of tile sizes. The authors compute the Minimum working set

Lines (ML) and the Distinct Lines (DL) (32) as a function of the tile size that provide the upper

and the lower bounds on the tile size to ensure intra-tile data reuse in the L1 cache. The authors
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further use the DL model to enable inter-tile data reuse in a higher level of cache. However,

using these 3 bounds and only considering tile sizes in multiples of the cache line size, we

get a search space of 7931 tile sizes for the matmul benchmark on the Sandy Bridge processor

used in our experiments. The size of the search space is similar for other benchmarks as well,

which although much smaller than the original search space, is nonetheless significantly large.

Our work accommodates cache set-associativity to narrow down the search space to a list of

maximal tile sizes, which maximally utilize the caches without causing interference. As a result,

all maximal tiles obtained by the TSS algorithm (for linear algebra kernels) lie within the search

space obtained from DL/ML, and thus the performance achieved is similar in both approaches.

The TSS algorithm further uses a cost model derived from general principles underlying data

reuse in linear algebra (and data mining) kernels to choose a single tile from the list of maximal

tiles that minimizes cache misses.

For stencil codes, however, inter-tile data reuse does not happen in the same manner as in

linear algebra codes. For example, for seidel-2d stencil code, the lower bound according to DL

model on the Sandy Bridge processor (with 32KB L1 cache) is given as, (H+T+1)*(dW+T
CLS e+

1)≥ 512, where W, H are tile width and height, respectively, and T is the tile size corresponding

to the outermost time loop. Using this lower bound, the best tile size (32x64x16) for the problem

size of 512 and various other close-to-the-best tile sizes including that chosen by TSS lie outside

the search space of DL/ML. This is because, in the optimal tile, the tile height should be less

to avoid interference misses, and the tile width should be less to gain inter-tile reuse in the L2

cache on account of shifting tiles, as discussed in Section 3.3.5. The DL/ML model does not

consider either and thus cannot adequately bound the search space. The tile size chosen by the

TSS algorithm considers these factors affecting data reuse and achieves good performance.

Copy and Tile - Table 3.5 compares the TSS algorithm with ‘Copy and Tile’ (abbreviated as

‘C+T’) for 3 out of 6 level-3 BLAS kernels on Sandy Bridge. ‘Copy and Tile’ emulates the data

copying performed in ATLAS, where the innermost matrix is copied in a block-major layout as

described in (20) to prevent conflict misses. After data copying, a cubic tile is chosen that

maximizes the L1 cache usage based on the inequality derived in (30), which is a refinement

over (20). Further, we also ensure spatial locality for the matrices as in ATLAS, and choose

the tile size to be a multiple of the problem size to avoid complex clean-up code. We do not,

however, compare with ATLAS, as ATLAS also performs other optimizations such as register

tiling and pipeline scheduling in addition to tile size selection.
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Results in Table 3.5 show that the TSS algorithm achieves a performance improvement of

(17%) over ‘C+T’ for problem sizes that are not a power of 2 (2000 and 4000). This improve-

ment is attributed to (1) data reuse in L2 cache exploited by the tile size chosen by TSS whereas

‘C+T’ cannot capture this opportunity and results in 4% higher L2 cache miss rate than TSS,

and (2) since ‘C+T’ only considers cubic tile sizes, it cannot take advantage of the large vector

pipeline length made possible by considering rectangular tiles.

Benchmark Scheme
N=2000 N=4000 N=256 N=1024

Tile Size
Perf.

Tile Size
Perf.

Tile Size
Perf.

Tile Size
Perf.

(GFLOPS) (GFLOPS) (GFLOPS) (GFLOPS)

matmul
TSS 168x32x104 4.1 168x32x104 4.28 40x7x504 3.73 40x7x504 3.52
C+T 50x50x50 3.74 50x50x50 3.89 64x64x64 3.73 64x64x64 4.38

dsyrk
TSS 168x32x104 3.72 168x32x104 3.60 40x7x504 2.85 40x7x504 3.58
C+T 50x50x50 3.02 50x50x50 2.80 64x64x64 2.72 64x64x64 3.71

dsyr2k
TSS 120x8x88 5.11 120x8x88 4.98 16x4x504 3.87 16x4x504 4.30
C+T 40x40x40 4.14 40x40x40 3.75 32x32x32 3.30 32x32x32 2.59

Table 3.5: Comparison between TSS and ‘Copy and Tile’

On the other hand, the performance of ‘C+T’ and TSS is comparable for the pathological

problem sizes (256 and 1024), with the former even outperforming TSS in the case of matmul.

This is because, to avoid interference for such problem sizes, the TSS algorithm chooses ‘thin’

tiles, (for example, the tile size chosen for matmul at N=1024 is 28x7x504). This leads to less

effective data reuse in the L2 cache, as compared to square tiles chosen by ‘C+T’. The reason

that ‘C+T’ could choose square tiles even for these pathological problem sizes stems from

the fact that it is immune to the effects of problem size as a result of the copy optimization.

Data copying, however, is a complex optimization and is not supported by production-quality

compilers such as GCC and ICC. Since the TSS algorithm does not rely on copy optimization,

it can be readily implemented in any production-quality compiler.

Performance of the TSS algorithm in a multithreading environment
Table 3.6 shows the performance of TSS algorithm using 4 and 8 threads on the Intel Xeon

processor based on Sandy Bridge microarchitecture. For the purpose of evaluation, we ran the

same 10648 different tiled versions of matmul and dsyr2k benchmarks to obtain the “Best Tile”.

In the table, we compare the performance of the TSS algorithm with the Best Tile and the best

cubic tiled (BCT) code.

On Sandy Bridge that allows 2-way hyperthreading, 2 threads on a core share resources

including private L1 and L2 caches on the core and bring in data simultaneously to the caches.
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matmul (N=2000) dsyr2k (N=2000)

Scheme
4 threads 8 threads 4 threads 8 threads

Tile Size
Perf.

Tile Size
Perf.

Tile Size
Perf.

Tile Size
Perf.

(GFLOPS) (GFLOPS) (GFLOPS) (GFLOPS)
BCT 64x64x64 7.48 64x64x64 13.96 64x64x64 6.06 64x64x64 10.07
TSS 128x8x80 7.84 128x8x80 15.3 40x8x40 6.33 40x8x40 10.53

Best Tile 72x16x120 8.12 64x16x96 15.63 72x8x72 7.02 96x16x96 11.23

Table 3.6: Performance of TSS algorithm in a multi-threaded environment

This is incorporated in the TSS algorithm by reducing the effective set-associativity by a factor

of 2 or the number of threads sharing the cache. As a result, a smaller tile size is chosen by our

algorithm when using 4 and 8 threads (run on 2 and 4 cores, respectively), performs comparable

to the Best Tile and outperforms the best cubic tiled code. A smaller tile size is similarly

observed for the best cubic tiles using this 2-way hyperthreading technology as compared to

that observed when using a single thread per core, which further validates our proposed effect

of multithreading on tile size selection. As a result of using smaller tiles instead of the same

estimates of tile size for a single core, the TSS algorithm achieves an improvement of 28% and

7%, respectively, for matmul and dsyr2k benchmarks. A similar phenomenon is observed (data

not shown), when multiple cores share the L2 cache on the Core2 processor using the Chip

Multiprocessing (CMP) technology.

3.7 Related Work
In the past, the problem of optimal tile size selection has been attempted using two approaches,

(1) through an analytical framework based on analyzing the interaction between the source

program and the host architecture, and (2) through an extensive search at runtime to tune for

tile size. In approach (1), there has been considerable work in the past (13; 14; 3; 15; 4; 27;

29). However, none of these works has proved to be effective for a range of programs. The

authors in (13; 14; 15) study the impact of problem size and cache parameters on the tile size

to eliminate self-interference misses, but do not consider cross-interference misses. On the

other hand, the authors in (3; 4) aim to minimize cross-interference misses also. However,

they assume the cache to be direct-mapped and use probabilistic approaches for minimizing

conflicts that leads to sub-optimal performance, especially for the ‘pathological’ problem sizes.

The authors in (27; 28; 29) address this problem of robustness by using array padding for such

pathological problem sizes. However, these works do not accommodate set-associative caches
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in their models, nor consider the option of exploiting data reuse in the multiple levels of cache.

The authors in (37) use Presburger formulas to express cache misses and can consider moderate

levels of associativity, but cannot accommodate the high set-associativity in modern caches.

Of all the works in approach (2), the most prominent work is the ATLAS library generator

(20), which generates optimized BLAS library on a given target platform. However, ATLAS

relies on an extensive time-consuming search for this purpose. Other self-tuning library gen-

erators (19; 21; 22) suffer from the same problem of large search space. Tiwari et. al. (38)

combine the CHiLL (39) compiler framework with Active Harmony (40) to manage the cost of

this search space, but rely on the user for the copy optimization. Yotov et. al. in (30) improve

upon ATLAS by showing that search is not necessary to generate optimized BLAS. However,

they use the code generator of ATLAS, which relies on the adhoc copy optimization to reduce

interference and thus estimate the optimal tile size. The automatic tile size creation model of

Yuki et al. (25) avoids array copying but only considers cubic tiles to contain the data col-

lection time. But, the authors in (41) and (42) show that, for linear algebra and stencil codes,

respectively, the optimal tile is not cubic, which is also corroborated by our work.

Chen et. al. (43) and Shirako et. al. (18) combine an analytical model with empirical

search to manage the search space. Chun et. al. rely on copying to work with a reduced search

space and use heuristics to traverse it. Shirako et. al. propose a model to determine the upper

and lower bounds on the search space using the existing Distinct Lines (DL) model (16) and

their Minimum Working Set Lines (ML) model, and consider data reuse in multiple levels of

cache. However, the ML model assumes an optimal cache replacement policy, thus, effectively

ignoring the impact of set-associativity in caches. In this work, we accommodate the impact of

set-associativity in our analysis of data reuse.

Recently, the auto-tuning framework has been improved to select the optimal tile size while

in the production run (ETile (23)) using parameterized tiled code (44). ETile monitors a few

loop iterations for a tile size to determine the optimality. However, this doesn’t reduce the

search space and may not give the best tile as it is difficult to capture reuse in a few iterations,

especially if data reuse is in the outermost loop.

3.8 Conclusion
This work revisits the problem of tile size selection in the context of modern processors. It

proposes an analytical framework that unveils several factors that had not been considered by
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previous models. It particularly considers the data reuse in not just the L1, but also the L2

cache. In addition, it considers the interaction of the SIMD unit in modern processors with tile

size selection. The TSS algorithm proposed chooses rectangular tiles that benefit from both

vectorization and data reuse in multiple levels of cache. Experimental results indicate that the

TSS algorithm achieves significant improvement over the previous analytical models that did

not consider these important factors on modern processors. In addition, results indicate that the

tile size chosen by the TSS algorithm is comparable to exhaustive search in a constrained search

space. Since the TSS algorithm estimates the optimal tile size at compile-time, it can be readily

incorporated within any production-quality compiler.



Chapter 4

Coordinated Multi-Stage Prefetching
for Present-day Processors

4.1 Introduction
Data prefetching proves very effective for hiding the large memory latency. In many cases, the

applicability of other memory optimizations such as loop fusion and loop blocking is limited,

and thus prefetching proves particularly useful. It is for this reason that latest processors are

equipped with improved hardware prefetching logic, and their instruction sets provide support

for software prefetch instructions that can selectively prefetch data to different levels of cache.

However, while such an extensive support exists in the form of hardware, software, or coor-

dinated hardware-software prefetching, the choice of the right prefetching strategy among the

various options continues to remain a mystery for programmers and compiler writers.

The choice of the right prefetching strategy is a function of the various features supporting

prefetching in the host architecture. One such feature is the nature of hardware prefetcher -

its effectiveness, aggressiveness and behavior in the presence of software prefetch instructions.

For example, on SandyBridge, the Mid-level cache (MLC) streamer hardware prefetcher is very

effective and prefetches data to the L2 cache. Unlike software prefetching, it is not limited by

the small size of the Line Fill Buffer at the L2 cache that allows very few outstanding prefetch

requests, but can effectively prefetch data for 32 streams. Further, it can be trained by the soft-

ware prefetch requests to the L2 cache for prefetching data to the L1 cache. This makes for

an ideal scenario for coordination between the MLC streamer prefetcher and the L1 software

52
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prefetches that together fetch the data all the way to the L1 cache and make up for the not-so-

effective L1 hardware prefetcher. The L1 software prefetching also provides other advantages:

(1) Using a larger prefetch distance helps to increase the limit of look-ahead prefetch distance

of the hardware prefetcher as the existing limit of 20 cache lines proves insufficient for small

loops (as in matrix multiplication). (2) The hardware prefetcher stops at page boundaries. How-

ever, using a large prefetch distance in the software prefetch instructions helps to re-trigger the

hardware prefetcher in time to prevent incurring any stalls at page boundaries. (3) The hardware

prefetcher can track a maximum of 32 streams. Thus, for programs with more than 32 streams,

software prefetch instructions prove particularly helpful to improve the prefetch coverage by

prefetching data for the remaining streams directly to the L1 cache.

On the other hand, on Xeon Phi, there is similarly an effective L2 streamer prefetcher but it

does not prefetch data in the presence of L1 software prefetch instructions. Thus, the advantages

of coordinated hardware-software prefetching cannot be realized on Xeon Phi. However, unlike

SandyBridge that supports very few outstanding software prefetch requests at the L2 cache, each

core on Xeon Phi supports a much larger number of outstanding software prefetch requests at the

L2 cache. Thus, like SandyBridge, the data can be brought all the way to the L1 cache through

coordinated multi-stage prefetching. But, unlike SandyBridge, the coordination is between

software prefetch instructions at different levels of cache, i.e. data is first prefetched using a

larger prefetch distance at the larger last level cache, while a smaller prefetch distance is used

at the L1 cache to prefetch data from the next level cache. A smaller prefetch distance at the

L1 cache allows for fewer outstanding prefetches, thus minimizing contention in the 8-entry

MSHR file at the L1 cache. It is interesting to note that Xeon Phi with in-order cores and

blocking caches, is more sensitive to the choice of prefetching technique than SandyBridge

because pipeline stalls due to inadequate prefetching cannot be tolerated through out-of-order

execution capability as in SandyBridge.

In recent past, hardware-based coordinated multi-stage prefetching has been implemented

in IBM’s Power6 microarchitecture (45) where the L1 hardware prefetcher coordinates with

the L2 hardware prefetcher to bring the data to the L1 cache in stages. However, as noted

above, software prefetches can be used in a similar manner to achieve this coordination and

overcome the limitations of the existing hardware prefetchers. Also, there has been some work

(46; 47; 48) that has considered employing software to aid hardware prefetching, but in such

cases, the hardware was built around achieving such coordination. This, however, is not true
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for existing processors, and thus achieving such coordination while considering other hardware

features is non-trivial. Recently, Lee et al. (49) have studied the interaction between software

and hardware prefetching but have not proposed any particular prefetching strategy.

Through this work, we make the following contributions:

1. We study the influence of various hardware features on data prefetching and their impact

on the choice of prefetching technique for different hardware platforms.

2. Based on our study, we propose a coordinated multi-stage prefetching algorithm for 2

different state-of-the-art processors (SandyBridge and Xeon Phi). The means of achiev-

ing the coordination, is however, different on each platform depending on the hardware

supporting prefetching.

3. We evaluate the performance of the different prefetching techniques possible on both

platforms and identify the reasons for their respective behaviors in different programs.

Our experiments with prefetching in multithreaded environment further provides useful

insights about the interaction between hardware and prefetching, and leads us to an in-

teresting compiler optimization to tackle pronounced contention for resources in Xeon

Phi. The coordinated multi-stage prefetching proposed in this work is a static compiler

technique with no hardware overhead and can thus be incorporated in existing production-

quality compilers, or serve as an effective tool in the hands of a programmer.

Our multi-stage prefetching algorithm works in three phases, (1) identifying what to prefetch,

(2) identifying where to insert the prefetch instructions, and (3) identifying when to prefetch, or

what prefetch distance to use at each level. The choice of prefetch instructions and the prefetch

distance at each level is carefully chosen to achieve the desired coordination. We have im-

plemented our prefetching algorithm in the ROSE source-to-source compiler framework that

transforms the original source code to include the prefetch instructions. The generated trans-

formed code is then compiled using the Intel compiler as the back-end vendor compiler. We

tested our algorithm using various memory-intensive benchmarks from the SPEC CPU2006 and

OMP2012 suites on Intel SandyBridge and Xeon Phi processors. Experimental results show that

our multi-stage prefetching achieves a speedup of 1.55X over the Xeon Phi hardware prefetcher,

and that of 1.3X over the state-of-the-art Intel compiler for Xeon Phi. On SandyBridge that em-

ploys an effective hardware prefetcher, an improvement of 1.08X is obtained.

The rest of the chapter is organized as follows. Section 4.2 reinforces our motivation through

an example. We describe our multi-stage prefetching algorithm with its three phases in Section
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4.3. The interaction of our prefetching algorithm with the multithreading technique is also

discussed in this section. Section 4.4 describes our compiler framework for implementing the

prefetching algorithm. We present experimental results and discuss the results obtained us-

ing different prefetching strategies on individual benchmarks in Section 4.5. Related work is

presented in Section 4.6 and we conclude in Section 4.7.

4.2 Motivation
On all hardware platforms, the size of the LFB or MSHR file at the L1 cache is usually small.

This is because any arriving data requests initiates a fully associative search across the struc-

ture to eliminate redundant requests, which is costly in terms of power usage and time delay,

restricting its size. Chip area concerns also limit their size since these are located close to the

core. It is for these reasons that both SandyBridge and Xeon Phi allow for only 8 outstanding

prefetch requests at the L1 cache. However, clearly, such a small number of requests are in-

sufficient to hide the large memory latencies on modern processors as pipeline stalls will result

once the MSHR file or the load buffers are full. As a result, a multi-stage prefetching algorithm

that brings the data from the memory in stages being cognizant of the resource availability at

each level, is necessitated. This is more clearly illustrated through the following example of

a well known memory-intensive weather prediction benchmark from SPEC OMP2012 suite,

swim. The Xeon Phi processor is considered below, and similar arguments hold for a multi-core

processor as well.

Figure 4.1: An example loop nest in the swim benchmark.

Figure 4.1 shows one of the three computationally (and memory) intensive loop nests in

swim. The loop nest shown has 14 array references that access different cache lines, or in other

words 14 data streams that need to be prefetched. When testing on Intel Xeon Phi that has a

maximum memory latency of 1000 cycles, we observe that a minimum prefetch distance of 6
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cache lines is needed to hide the memory latency. That is, there can be a maximum of 14*6 (=

84) outstanding prefetches per thread for swim. Thus, for the data to be prefetched directly to

the L1 cache, the L1 cache should provide 84 MSHRs per thread (in the ideal scenario when

there is enough off-chip memory bandwidth available), or at least much more than the currently

available 8 MSHRs per thread. Such a large MSHR file at L1 cache is not feasible. To make

things worse, the 8 MSHRs at L1 cache are shared by the 4 SMT threads on each core on Xeon

Phi.

Thus we implement a coordinated multi-stage data prefetching strategy, where data is first

brought to the lower-level cache, e.g., L2 cache (that on Xeon Phi, has more MSHRs to allow

holding more requests for hiding larger memory latencies) using a large prefetch distance (6

cache lines in case of swim). Subsequently, data is brought from the lower-level cache (e.g., L2

cache) to the higher-level cache (e.g., L1 cache) using a smaller prefetch distance (1 cache line

in case of swim) since the data is already in the next-level cache. As a result, a small MSHR

file at the L1 cache proves sufficient to hide the small L2-to-L1 latency, and prevent stalls

due to contention. On SandyBridge, the same coordinated multi-stage prefetching strategy is

implemented, but the coordination is between the L1 software prefetches and the L2 hardware

prefetcher, which is more effective than its software counterpart due to its ability to hold many

more outstanding prefetch requests.

4.3 Coordinated Multi-stage Data Prefetching
As stated in Section 4.1, our coordinated multi-stage data prefetching algorithm works in three

phases, namely, what to prefetch, where to insert prefetch instructions, and when to prefetch.

For each of these phases, we discuss our specific choices for the two hardware platforms con-

sidered and reasons behind those specific choices.

4.3.1 What to Prefetch

This is the first of the three phases in which the references that should be prefetched are identi-

fied. Such references include (1) those whose future memory accesses can be determined, and

(2) those when prefetched will benefit application performance.

A recent work (49) classified memory references into 5 types - (1) direct-indexed streaming

array references, (2) direct-indexed strided array references, (3) indirect-indexed array refer-

ences, (4) recursive data structures (RDS), and (5) hashing data structures. In our compiler

framework, we only handle memory references of types (1) through (3), as references of types
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(4) and (5) need to be handled differently.

Further, even among references whose future access patterns can be statically determined,

prefetching all of them is not always beneficial. For example, references that have temporal

locality in the inner loops such as references A and C in matmul (shown in Figure 4.2) have

small reuse distances and thus, the data referenced by them stays in the cache with a high

probability. Such references occur often in SPEC benchmarks and lead to redundant prefetches

that reduce performance gains, especially when the amount of computation in loop-nests is

small (as in matmul). Although Mowry et al. in (50) proposed prefetch predicates in the form

of IF statements (or its equivalent) to eliminate redundant prefetches, we empirically observe

that the instruction overhead of such predicates usually offset the performance gain from data

prefetching. These predicates also hinder automatic vectorization by the compiler. It is for

these reasons that we do not consider such references as profitable candidates for prefetching.

In addition, for references that have group reuse, such asCV [i][j] andCV [i][[j+1] in statement

S1 in swim (shown in Figure 4.1), we prefetch only for the leading reference CV [i][j + 1] as it

is the one that accesses new data first and caches it for later use.

Figure 4.2: The matmul kernel.

For all references that are thus marked for prefetching, our prefetching algorithm inserts

prefetch instructions for just the L1 cache in case of SandyBridge since it relies on the hardware

prefetcher for prefetching data to other levels. In case of Xeon Phi, however, the algorithm

inserts prefetch instructions for all levels of cache to implement pure software-directed coordi-

nated multi-stage prefetching.

4.3.2 Where to Insert Prefetch Instructions

Having identified the array references to be prefetched, the next phase is to determine where

prefetch instructions for the identified references should be inserted. For all identified refer-

ences, we insert prefetch requests in the innermost loop. This simplifies the insertion of prefetch

instructions and prefetch distance calculation by the compiler. However, even in the innermost

loop, the placement of prefetch instructions is important. For example, in the loop nest from the
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swim benchmark shown in Figure 4.1, if prefetch requests for all 14 array references are placed

contiguously in the source code without any intermittent computation, then it might lead to

pipeline-stalls because prefetches will be blocked waiting for the availability of MSHRs. This

is particularly true for L1 prefetch instructions given the small size of the L1 LFB or MSHR file.

Such stalls are particularly visible on Xeon Phi where the pipeline is stalled immediately upon

unavailability of MSHRs, whereas incoming requests could be buffered in the load buffer in

case of dynamically scheduled SandyBridge processor. Thus, our compiler framework inserts

prefetch requests between individual statements requesting data needed by the array references

in that statement - this introduces computation between a batch of prefetch requests providing

adequate time for them to finish and free MSHRs. Further, prefetch requests for different levels

of cache are intermingled, creating additional cycles for an L1 prefetch request to prefetch data

from a lower-level cache.

4.3.3 When to Prefetch

This is the last phase of our prefetching algorithm that determines when to prefetch data for a

memory reference. In particular, this phase determines for each array reference, the prefetch

distance to be used when prefetching data to a particular level of cache. Prefetch distance cal-

culation involves calculation of the loop iteration time, which is hard to precisely determine for

processors with out-of-order execution capability. Thus, in this section, we treat the prefetch

distance calculation for the in-order many-core Xeon Phi and the out-of-order multi-core Sandy-

Bridge separately.

Calculating Prefetch Distance in Xeon Phi

Mowry et al. in one of the earliest works on software prefetching (50) defined prefetch dis-

tance as d LatLIT e, where Lat and LIT are the prefetch Latency and the Loop Iteration Time,

respectively. Of the two parameters, Lat is a machine specific parameter and can be known

from vendor’s data sheets or measurements. LIT , on the other hand, must be estimated by the

compiler. In our framework, we estimate LIT using Equation 4.1 below. This estimated value

of LIT is then used to calculate the prefetch distances for prefetches to any level of cache, using

measures of the corresponding prefetch latencies.
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LIT = nrefs ∗ LatL1 + nrefs ∗ Cp ∗ i+

n∑
comp=1

Ccomp (4.1)

where nrefs is the number of distinct array references in the loop nest, LatL1 is the latency

of accessing a data item in the L1 cache, Cp is the number of cycles spent in executing a

prefetch instruction, and Ccomp is the cost of one of n computations in the loop nest measured

in the number of cycles.

The above formula for calculating the loop iteration time (LIT) assumes that all array refer-

ences in the loop nest are accessed from the L1 cache (i.e. L1 cache hits). This is because we

accomplish a multi-stage data prefetching where the data is prefetched all the way up to the L1

cache. This assumption holds for all but the initial few iterations of the loop nest, which can be

considered as the warm-up phase. Also, since our framework inserts one prefetch instruction

for each level of the cache memory per array reference, the instruction overhead in each loop

iteration is calculated as nrefs ∗ Cp ∗ i, where i is the number of levels in the cache memory

hierarchy. To facilitate further discussion in this section, we assume a 2-level cache memory

hierarchy as in the Xeon Phi processor.

Once LIT is determined, the prefetch distance at each of the two levels is calculated as,

PDL1 =

(⌈
LatL2
LIT

⌉)
∗ α ∗ β (4.2)

and

PDL2 =

(⌈
Latmemory

LIT

⌉)
∗ α ∗ β (4.3)

where α and β are program dependent constants as explained below

When calculating the prefetch distance, it is important to consider whether or not the in-

nermost loop is vectorized. This is because, the prefetch distance computed using the formula,

d LatLIT e, gives the prefetch distance in the number of loop iterations. However, if the innermost

loop is vectorized, the same formula (using appropriate computation costs for vector operations)

gives the prefetch distance in the number of vector iterations. We accommodate this in our al-

gorithm by the parameter α, where α is size of the vector (in the number of data elements) when
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the innermost loop is vectorized and 1, otherwise. The prefetch distance is further multiplied by

the constant stride, β, for an array reference that exhibits strided access pattern. The prefetch

distance is also rounded to the next higher multiple of the cache line size in cases when the

innermost loop is not vectorized.

From Equations 4.2 and 4.3, we observePDL2 is much larger thanPDL1 (asLatmemory >>

LatL2). As a result, data is prefetched first to the larger L2 cache using a larger prefetch dis-

tance, and this data is then prefetched to the L1 cache a fewer iterations ahead. Thus, the 2

stages of data prefetching coordinate to timely fetch the data to the L1 cache. As discussed

earlier, using a smaller L1 prefetch distance facilitated by this strategy minimizes contention

(and also prevents a possible cache pollution due to early prefetches).

Calculating Prefetch Distance in SandyBridge

Unlike the many-core Xeon Phi that has single-wide in-order issue and in-order execution, the

multi-cores are usually superscalar processors with dynamic scheduling capability. As a result,

it is non-trivial to statically determine the iteration time of loops on a multi-core processor.

It is for this reason that Lee et al. (49) use the IPC values from benchmark profiling in their

prefetch distance calculation. Their calculation gives a lower bound on the prefetch distance.

The prefetch distance can, however, be increased without any negative effects until the newly

prefetched data begins to replace the previously prefetched but unused data. A larger prefetch

distance for L1 prefetches is, infact, required as this helps to increase the prefetch distance for

the hardware prefetcher. This, as explained earlier, helps to prevent stalls at page boundaries

and in particular, helps small loops that need large prefetch distances. In our algorithm we

prevent the replacement of useful data from the L1 cache by ensuring that the amount of unused

prefetched data does not exceed a fourth of the L1 cache size. We restrict ourselves to a fourth of

the L1 cache size as misses due to cache interference can set in much before the cache capacity

is reached. The prefetch distance is thus calculated as

PDL1 =

⌈
SizeL1

4 ∗ nrefs ∗ Sizeelem

⌉
(4.4)

where SizeL1 is the L1 cache size, and Sizeelem is the size of each data element. The

L1 software prefetch instructions use this prefetch distance and in turn trigger the L2 hard-

ware prefetcher which in time runs sufficiently ahead of the L1 prefetches to timely bring the
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Figure 4.3: (a) Tiled matmul; (b) Tiled matmul with prefetching as in the general case; (c) Tiled
matmul with prefetching as in the special case.

data to the L2 cache. Thus, like Xeon Phi, coordinated multi-stage prefetching that prefetches

the data all the way to the L1 cache with minimal contention in L1 LFB, is accomplished on

SandyBridge.

Prefetch Distance for Tiled Code

While the formula for calculating the prefetch distances as derived above proves applicable to

most programs, it nevertheless assumes long contiguous streaming/strided access patterns, i.e.

array references where the entire array is referenced in all loop nests within an application.

Such access patterns are not observed, however, in tiled codes and certain other scientific codes

where the computational domain is split into parts, as in gemsfdtd and mgrid benchmarks from

the SPEC suite.

We use a simple example of tiled matmul to illustrate such a case and the prefetching strat-

egy applied therein. Figure 4.3(b) shows the tiled matmul code with prefetch instructions

inserted assuming contiguous streaming access patterns - B[k][j] is identified as suitable for

prefetching and prefetch instructions are inserted in the innermost loop as shown. However,

as a result of tiling, the access pattern is no longer contiguous - only J elements of array B

are accessed contiguously, followed by another J elements from the next row of B. Thus, if a

prefetch distance, PDL2 (that is likely to be greater than J), as calculated using Equation 4.3 is

used, useless prefetches could result. Since the data does not arrive at L2 cache in time for L1

prefetches, 2-stage prefetching becomes ineffective.

Our framework identifies such cases of accesses to non-contiguous data chunks (where the

size of the innermost loop is a fraction of the array size) as in tiled matmul, and inserts prefetches

as shown in Figure 4.3(c). It prefetches one of the next array rows instead of prefetching el-

ements that are a few cache lines (= prefetch distance) away. Thus, useless prefetches are
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reduced to only those that are prefetched while processing the last few rows of a tile of array

B. Since correct data does arrive in time in L2 cache, 2-stage prefetching again becomes very

effective. In such cases, the prefetch distance is calculated in the number of array rows, instead

of elements as in the general case above discussed. It is given as follows.

PDs
L1 = max

(
1,
PDg

L1

lc

)
(4.5)

and

PDs
L2 = max

(
2,
PDg

L2

lc

)
(4.6)

where PDs is the prefetch distance in this special case, PDg is the prefetch distance in the

general case (calculated in the number of elements) and lc is the loop count of the innermost

loop, or tile size in case of tiled codes. In the formula, the lower bounds of 1 and 2 for L1 and

L2 prefetch distance is to ensure sufficient time for the data to arrive in both L1 and L2 cache.

In SandyBridge, our framework inserts prefetch requests for just the L1 cache using the above

formula, and relies on the hardware to prefetch the data to L2 cache.

4.3.4 Multi-stage Prefetching in multi-threaded environment

Chip multiprocessing (CMP) and simultaneous multithreading (SMT) can both be used to ex-

tract the inherent instruction-level parallelism in programs run in a multithreaded environment.

Both these techniques interact closely with prefetching. In CMP, threads on each core simul-

taneously place demands for data from the memory, and pronounced bandwidth contention

results. The net effect of this is an increase in the effective memory latency. As a result,

pipeline-stalls due to unavailability of slots in the load/store buffer (in multi-cores) tend to be

more prominent in such cases. Data prefetch requests that are additional requests to the regular

loads, also occupy slots in the load buffer and thus end up contributing to these stalls. It is for

this reason that we observe that for certain memory-intensive benchmarks such as swim, bwaves

and others, the performance advantage due to software-directed prefetching to L1 over the hard-

ware prefetcher, is lost. For other benchmarks that are less memory-intensive such as bt, cactus

and matmul, the performance advantage persists. In a many-core processor such as Xeon Phi

that has blocking loads, there is no load buffer and thus data prefetch requests and regular loads

do not share common resources. As a result, prefetching does not cause a side-effect to parallel
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performance as in multi-cores as long as useful data is timely prefetched.

In SMT, multiple SMT threads on a core share the LFB or the MSHR file. As a result, the

increased data access rate puts pressure on the shared MSHR file, resulting in potential stalls

due to contention. Precisely, a contention results when the maximum number of outstanding

prefetches are less than the available MSHRs.

Since MSHRs are already scarce for a single thread, we observe that prefetching generally

adversely affects performance of programs run in an SMT environment. In case of Xeon Phi,

however, prospects of an interesting compiler optimization to reduce contention for MSHRs

emerge for several reasons. Xeon Phi employs GDDR5 memory that has significantly higher

latency and the latency increases when there are multiple active data streams or the number of

distinct array references in a loop. It is for this reason that our framework detects contention

for MSHRs and performs loop distribution prior to the insertion of prefetch instructions. This

reduces the number of active streams in a loop by distributing statements in the original nest to

multiple nests and thus benefits from reduced contention for MSHRs due to reduced memory

latency. It is important to note that in cases where there is reuse among array references in

original nest, loop distribution hurts temporal locality and thus reuse. However, since we dis-

tribute at the innermost loop, only L1 cache locality is hurt, which is more than compensated by

effective data prefetching rendered possible by reduced contention. In multi-cores that employ

a DDR3 memory, the latency does not increase significantly with the number of active streams,

and thus loop distribution is not beneficial.

4.4 The Compiler Framework
Figure 4.4 gives an overview of our compiler framework for coordinated multi-stage data prefetch-

ing. Our prefetching strategy is implemented in the open-source ROSE (51) compiler, which

performs source-to-source transformations and provides many APIs for program analysis and

transformations based on its Abstract Syntax Tree (AST).
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Figure 4.4: Compiler framework for coordinated multi-stage prefetching.

As shown in Figure 4.4, there are mainly five steps to insert multi-stage prefetches to the

input source code after it is parsed to the AST. Steps 1 through 3 determine what to prefetch - all

array references in the innermost loops are recognized and those with either temporal or group

locality are discarded for prefetching. Step 4 is the key step to determine the prefetch distances

or, when to prefetch, for multi-stage prefetching. As stated in Section 3, prefetch distance for

each cache level is calculated using Equations (2)-(6). This requires information such as the

total number of array references as well as the number and type of computations involved in the
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Benchmark Benchmark Suite Category Problem Size

cactus SPEC CPU2006 General Relativity Ref Input
hmmer SPEC CPU2006 Search Gene Sequence Ref Input

libquantum SPEC CPU2006 Quantum Computing Ref Input
gemsfdtd SPEC CPU2006 Computational Electromagnetics Ref Input
bwaves SPEC OMP2012 Fluid Dynamics Ref Input
swim SPEC OMP2012 Weather Prediction Ref Input
mgrid SPEC OMP2012 Fluid Dynamics Ref Input

bt SPEC OMP2012 Fluid Dynamics Ref Input
matmul BLAS Matrix-Matrix Multiplication N=4000
spmv General-purpose Sparse Matrix-Vector Multiplication N=10000

Table 4.1: Summary of benchmarks with problem sizes.

loop nest, which are obtained by querying the AST. The last step is to insert those prefetches

with the calculated prefetch distance into the AST. After our multi-stage prefetching transfor-

mation, ROSE unparses the AST to the transformed source code with prefetch instructions.

Finally, a back-end vendor compiler is used to compile the transformed source code to the final

executable.

4.5 Experimental Results and Discussion
In this section, we present the results of our coordinated multi-stage data prefetching and com-

pare it with other prefetching strategies in both SandyBridge and Xeon Phi processors. Results

comparing multi-stage prefetching and other strategies in a multithreaded environment are also

presented.

4.5.1 Experimental Environment

We first present our experimental setup. We chose a diverse set of memory-intensive bench-

marks from the SPEC CPU2006 and OMP2012 benchmark suites that have high cache miss

rates. We also chose two frequently used kernels, dense matrix-matrix multiplication (that can

be tiled) and sparse matrix-vector multiplication (that involves indirect array indexing). Table

4.1 lists all the benchmarks used with their problem sizes.

We ran our experiments on the two different hardware platforms discussed in this chapter

- the multi-core Intel SandyBridge and the recently released many-core Intel Xeon Phi. The

micro-architectural details of the two processors are compared in Table 4.2.

Also, Xeon Phi contains instructions for prefetching data as ‘exclusive’ into either of the

two caches, whereas SandyBridge does not provide this functionality. On Xeon Phi, we use the
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‘exclusive’ prefetches to prefetch writes. Since Xeon Phi has 2-level cache hierarchy and Sandy-

Bridge (with 3-level cache hierarchy) also allows to prefetch only to the L1 and L2 caches, the

coordinated prefetching strategy is implemented in 2 stages on both platforms. After generating

the transformed source code that contains the prefetch instructions, we use the Intel compiler

(v13) (52) as the back-end compiler to generate the executable.

Microarchitecture Cache No. of Cores SMT Hardware prefetcher
SandyBridge Non-blocking 8 2-way Streaming, Strided (L1+L2)

Xeon Phi Blocking 60 4-way Streaming (L2 only)

Table 4.2: Details of the microarchitectures

4.5.2 Results for Multi-stage Prefetching in single-threaded environment

Figure 4.5 compares the performance results obtained on SandyBridge and Xeon Phi, respec-

tively, for the different prefetching strategies summarized in Table 4.3. In addition to the in-

herent hardware-based prefetching on Intel processors and the icc-directed prefetching, we

implemented four other prefetching strategies for the purpose of comparison. As discussed,

we propose a 2-stage coordinated software prefetching for Xeon Phi and 2-stage coordinated

hardware-software prefetching for SandyBridge. Of the seven different strategies listed in Table

4.3, we could not implement the baseline prefetching on Xeon Phi because the BIOS did not

provide the facility to turn off the hardware prefetcher as in SandyBridge. Thus, the hardware-

based prefetching serves as the baseline in case of Xeon Phi. On the other hand, the Intel

compiler for multi-cores is largely passive in the matter of prefetching and relies primarily on

Strategy Description
Hardware prefetching The prefetching strategy used by Intel processors

L1 SW pref. Data is prefetched only to L1 cache
L2 SW pref. Data is prefetched only to L2 cache

2-stage SW pref.
Data is prefetched to both L1 and L2 cache
using carefully chosen prefetch distances

2-stage HW-SW pref.
Data is prefetched to L1 cache assuming that

hardware prefetcher brings the data to the L2 cache
icc SW pref. The prefetching strategy used by the Intel compiler

Baseline pref. The baseline configuration with all prefetching disabled

Table 4.3: Summary of different prefetching strategies.
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Figure 4.5: Performance speedup of different prefetching strategies on single thread in (a)
SandyBridge (results normalized wrt baseline pref.) (b) Xeon Phi (results normalized wrt hard-
ware pref.)

the hardware prefetcher. Thus, in our results for SandyBridge, we do not show the performance

results for icc-directed prefetching which performs similar to the hardware-based prefetching

for all benchmarks. In our analysis, we explain the behavior of the prefetching strategy adopted

by the Intel compiler by studying the assembly code generated for different benchmarks.

According to the data access pattern, we divide the benchmarks into four categories: 1) pro-

grams with streaming or strided accesses, 2) programs with indirect array indexes, 3) programs

with array of structures (and pointers), and 4) programs with loop sizes that are fractions of the

problem size.

1. Programs with streaming or strided accesses. Among the benchmarks used for our ex-

periments, cactus, hmmer, bwaves, swim, and matmul involve streaming array accesses whereas

bt involves streaming as well as strided accesses. Results show that on both hardware platforms,

2-stage coordinated prefetching as proposed for the respective platform, either outperforms or

performs close to the best performing prefetching strategy for all benchmarks. It is interest-

ing to note that 2-stage coordinated hw-sw prefetching which is the best performing strategy

on SandyBridge, is the worst performing on Xeon Phi owing to the difference in interaction

between hardware and software prefetching on the two platforms. On Xeon Phi, the software

prefetches cannot train the hardware prefetcher and both cannot co-exist. On SandyBridge, on

the other hand, we employ software-based prefetching to train the hardware prefetcher (because

such an opportunity is provided by hardware) to overcome its limitations, and thus outperform

other strategies. It is similarly interesting that the 2-stage sw prefetching which is the best per-

forming strategy on Xeon Phi performs poorly on SandyBridge. This is because of a very small
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LFB at the L2 cache in SandyBridge. The L2 sw prefetching performs poorly on SandyBridge

for the same reason. The L1 sw prefetching performs worse than the L2 sw prefetching on

Xeon Phi due to fewer MSHRs at L1 cache (and thus more contention), whereas it performs

slightly better than the L2 sw prefetching on SandyBridge due to prefetching the data to the L1

cache (that has same-sized LFB as L2 cache). The performance results for each benchmark are

discussed in more detail below.

swim, bwaves and matmul. These benchmarks involve streaming access patterns with long

loops. Although matmul has temporal locality, it behaves like other streaming benchmarks

when it is not tiled since the data set size is much larger than L2 cache size. Here, multi-stage

prefetching performs considerably better than the other prefetching strategies. It wins over

the hardware and L2 sw prefetching for hiding the L2-to-L1 latency by prefetching the data

to the L1 cache. The improvement is significant since the L1 misses are significant given the

streaming nature and large working sets in these benchmarks. On SandyBridge, the 2-stage

coordinated hw-sw prefetching improves considerably over the hardware-based prefetching in

case of matmul even though the L1 hardware prefetcher proves sufficient for the small number

of streams in matmul. This is because L1 software prefetches with large prefetch distances help

in increasing the prefetch distance of the hardware prefetcher that is essential for the small loops

in matmul. The L1 hardware prefetcher on SandyBridge prefetches only the next cache line, and

thus cannot sufficiently increase the prefetch distance of the L2 hardware prefetcher. It is for this

reason that we observe (using the Vtune performance monitoring tool (53)) that a significantly

more number of loads that miss the L1 cache hit the LFB, in case of matmul that uses the

hardware prefetcher against the one which uses our 2-stage coordinated software prefetching.

The higher number for the former suggests pending prefetch requests at the L2 cache because

of insufficient prefetch distance. On Xeon Phi, the Intel compiler performs worse than even

the hardware prefetcher in matmul, because of inserting redundant prefetch instructions for the

array reference (reference C[i][j] in Figure 4.2) that has temporal locality in an inner loop.

In swim, the Intel compiler performs poorly as it does not prefetch data for all references. In

addition, the data is prefetched only to the L2 cache and not to the L1 cache. In bwaves, the Intel

compiler performs worse than coordinated prefetching because of issuing redundant prefetches

for references that have temporal locality in the innermost loop, while leaving out references

that have spatial locality in the innermost loop. We believe that it makes a wrong decision

because of performing loop interchange optimization. It also does not prefetch data to the L1
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cache in this case.

cactus. In cactus, bulk of the computation and memory references happen in a very large

loop nest. Each iteration of the loop nest provides sufficient cycles to hide the memory latency.

Since the loop nest involves significant computation, even requests to prefetch the data directly

to the L1 cache are finished without much stalls. As a result, all software prefetching strategies

perform similarly. The multi-stage prefetching achieves slightly better performance as com-

pared to the L1 or L2 prefetching because of achieving better performance in other smaller loop

nests that also involve streaming accesses. On Xeon Phi, the Intel compiler performs slightly

worse because of inserting all prefetch instructions at the end of the loop instead of interleav-

ing them with the computation. This leads to stalls due to contention at L1 cache that hurts

performance. An important observation here is that the baseline hardware prefetcher on Xeon

Phi performs significantly worse than the other strategies. This is because, the large loop nest

contains streams (81 data streams) that are much larger than that can be handled by the hard-

ware prefetcher (16, in case of Intel Xeon Phi). The performance difference is much less on

SandyBridge for 2 reasons, (1) the hardware prefetcher can prefetch data for 32 streams instead

of 16, and (2) the out-of-order execution tolerates most of the stalls since there is significant

computation interspersing memory requests in the large loop nest in cactus.

hmmer. In hmmer, a subroutine called P7Viterbi is most computationally intensive and con-

tains small loops. All the data referenced in the subroutine fits the L2 cache. Thus, although

2-stage prefetching that brings the data to the L1 cache wins over other strategies, the perfor-

mance difference is small. On Xeon Phi, the Intel compiler also prefetches to both the L1 and

L2 cache, but uses a much larger prefetch distance which proves costly, given the small loops.

bt. In bt, four subroutines, compute rhs, x solve, y solve and z solve contribute almost

entirely to the execution time. These subroutines contain both streaming as well as strided

accesses, and the working set is large. Thus, although a likely candidate for significant per-

formance gains from 2-stage prefetching as in swim, the performance gains are small. This is

because, the loop nests in bt, particularly some of the time-consuming nests in x solve, y solve

and z solve, are dominated by computation than by memory references. The performance im-

provement achieved by coordinated prefetching on SandyBridge is smaller than that achieved on

Xeon Phi because higher computation in loop nests allows for tolerance of stalls due to out-of-

order execution. Most of the performance improvement achieved by 2-stage prefetching stems

from prefetching for strided accesses. These strided accesses are missed by even the strided
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Figure 4.6: An example loop nest with prefetching instructions to L1 and L2 cache in the
libquantum benchmark.

hardware prefetcher in SandyBridge (that can detect strides upto 2K bytes) since the strides are

long, given loops with large trip count. On Xeon Phi, the Intel compiler does not yield much

improvement over the baseline because of not adequately prefetching for strided accesses.

2. Programs with array of structures (and pointers). In libquantum, the computationally

intensive loop-nests contain an array of structures, that is responsible for bulk of the memory

accesses. One such loop-nest is shown in Figure 4.6, and the memory reference reg → node

is an array of structures, that has state as one of its fields. In such cases, our multi-stage

prefetching algorithm determines the size of the structure and prefetches the entire structure on

the assumption that majority of the fields of the structure will be referenced - this may lead to

prefetching more than a single cache line. However, in libquantum, the structure has only 2

fields and a size of 16 bytes, so we prefetch just one cache line. Our multi-stage prefetching

wins over the hardware-based prefetching, as the hardware prefetcher cannot run sufficiently

ahead of the program counter for timely prefetching, given the small computation in the loop-

nests and larger size of the data structure. It is for this reason that on SandyBridge, coordinated

hw-sw prefetching where L1 software prefetches train and thus help in increasing the prefetch

distance of the hardware prefetcher outperforms all other strategies. The performance improve-

ment of coordinated sw prefetching over the baseline hardware prefetcher on Xeon Phi is more

significant since there is no hardware prefetcher at L1 in Xeon Phi to prefetch to the L1 cache.

On Xeon Phi, the Intel compiler does not prefetch array of structures and thus performs as well

as the hardware prefetcher.

3. Programs with indirect array indexes. An example program with indirect array in-

dexes is sparse matrix-vector multiplication as shown in Figure 4.7, where the array reference
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Figure 4.7: Sparse matrix-vector multiplication with prefetching instructions to L1 and L2
cache.

B[colIdx[j]] is indirectly indexed. In such cases, we prefetch data for the directly indexed ref-

erence, colIdx, that is used to reference the indirectly indexed reference B. We also prefetch

the array reference values, but not reference C that has temporal locality in the innermost loop

j. On Xeon Phi, we get considerable performance improvement over the baseline hardware

prefetcher due to prefetching to L1 cache. On SandyBridge, however, the hardware prefetcher

performs slightly better than the 2-stage coordinated hw-sw prefetching as even the hardware

prefetcher at L1 cache is successful in bringing the data to the L1 cache given few memory ref-

erences in the loop nest. The slight better performance of the hardware prefetcher is due to no

instruction overhead of prefetching. It is important to note that the loop iteration time in spmv

is not as small as in matmul due to an indirectly indexed array reference that hurts efficient vec-

torization, and thus the benefit from increasing the prefetch distance of the hardware prefetcher

through software prefetches is not significant. On Xeon Phi, the Intel compiler performs similar

to the coordinated sw prefetching since it also prefetches to both the L1 and L2 cache using

different distances. Although it uses a much larger distance that needed for the L1 prefetches,

the performance is not hurt due to very long data streams.

4. Programs with loop sizes that are fractions of the problem size. This category of pro-

grams include both the tiled codes and various scientific codes that compute in parts such as the

gemsfdtd and mgrid benchmarks from SPEC suite. In such codes, our multi-stage prefetching

algorithm prefetches data in the following array rows instead of prefetching a few cache lines

ahead as shown earlier in Figure 4.3(c). This helps to not only avoid prefetching useless data

but also allows to timely prefetch useful data. On Xeon Phi, coordinated software prefetching

wins over the hardware prefetcher and other software prefetching strategies primarily due to

prefetching the data to L1 cache and also eliminating redundant prefetches. On SandyBridge,
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hardware-based prefetching and coordinated hw-sw prefetching win over others due to employ-

ing an efficient hardware prefetcher (with no resource contention) to prefetch data to the L2

cache. Other details regarding performance results for the 3 benchmarks in this category are

discussed as follows.

gemsfdtd. On SandyBridge, the coordinated hardware-software prefetching performs slightly

worse than the hardware prefetcher because although this benchmark computes in 2 parts, most

of the execution belongs to one of those 2 parts. As a result, aggressive prefetching by hardware

enables timely prefetching for the 2 parts although at the cost of some useless prefetches. The

overhead due to both the useless prefetches and not prefetching the data to the L1 cache are

tolerated by the out-of-order execution since the loops nests are not highly memory-intensive

and involve considerable computation. On Xeon Phi, the Intel compiler does not achieve im-

provement over the hardware prefetcher due to insertion of useless prefetches by prefetching

using large prefetch distances.

mgrid. On SandyBridge, the improvement achieved by coordinated hw-sw prefetching over

the hardware prefetcher is small because this benchmark is highly memory intensive, and thus

we observe significant pipeline stalls due to filled up load buffer, when prefetch requests are

inserted. Using Vtune, we observe that the stalls due to filled up load buffer in a code with L1

software prefetch instructions increase by a factor of 3 over a code that contains no prefetch

instructions. On Xeon Phi, however, there are no additional stalls due to prefetching and thus

significant improvement is obtained over the hardware prefetcher. The Intel compiler in this

case inserts prefetches for both the L1 and L2 caches using different distances. The L1 prefetch

distance is again larger than needed but does not hurt performance since this benchmark is less

sensitive to prefetch distance.

matmul-tiled. We tile matmul using the same tile size as chosen by icc, i.e. 128. As a result

of using a tile size of 128, the working is reduced such that it exceeds the L1 cache size, but is

well within the L2 cache size. Thus, a single tile always fits the L2 cache, and once fetched, the

data needs to only be prefetched from the L2 cache in subsequent executions of the tile. This

gives interesting performance results on Xeon Phi - all prefetching strategies that prefetch the

data to the L1 cache perform as well as the coordinated sw prefetching. However, icc performs

slightly worse because of inserting redundant prefetches for references with locality in the inner

loops as in matmul. On SandyBridge, the L1 hardware prefetcher effectively prefetches data to

the L1 cache, given few references involved, and thus performs slightly better than coordinated



73

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

gemsfdtd

bwaves

cactus
bt mgrid

swim
matmul

geomean

sp
ee

d
u
p

L1-SW
L2-SW
2-stage-SW
2-stage-HW-SW
HW


 0

 0.4

 0.8

 1.2

 1.6

 2

gemsfdtd

bwaves

cactus
bt mgrid

swim
matmul

geomean

sp
ee

d
u
p

L1-SW
L2-SW
2-stage-SW
2-stage-HW-SW
ICC


Figure 4.8: Performance speedup of different prefetching strategies using CMP technique in
(a) SandyBridge (results normalized wrt baseline pref.) (b) Xeon Phi (results normalized wrt
hardware pref.)

hw-sw prefetching. The other strategies only perform slightly worse since the working set

occupies the L2 cache, and part of the L2-L1 latency can be tolerated through out-of-order

execution.

4.5.3 Results for Multi-stage Prefetching in multithreaded environment

Figure 4.8 shows the performance results of our coordinated prefetching strategies for Sandy-

Bridge and Xeon Phi on 8 and 32 cores, respectively, in CMP environment. On SandyBridge,

as discussed in Section 4.3.4, the performance improvements achieved by coordinated hw-sw

prefetching using single thread diminish for benchmarks that are highly memory-intensive due

to increased stalls from resource contention. The benchmarks in this list are swim, gemsfdtd,

bwaves and mgrid. Other less memory intensive benchmarks such as bt and cactus continue

to show improvement. Matmul, although memory intensive, shows significant improvement

owing to the increase in hardware prefetch distance achieved through software prefetching. On

Xeon Phi, the benchmarks behave similar in both the CMP and single thread environment since

prefetching does not cause additional stalls in the CMP environment as in SandyBridge.

As discussed in Section 4.3.4, memory intensive benchmarks with many references in the

loop nest benefit from loop distribution optimization on Xeon Phi on account of reduced con-

tention. Figure 4.9 shows the performance gains of loop distribution (followed by multi-stage

prefetching) in 3 memory-intensive parallel benchmarks, swim, gemsfdtd and cactus. Using

the recommended 2-way SMT on Xeon Phi, loop distribution achieves another 13% average
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Figure 4.9: Performance speedup with loop distribution in Xeon Phi (results normalized wrt
hardware pref.)

speedup over multi-stage prefetching on the 3 benchmarks.

4.6 Related Work
In the past, there has been significant research on tuning the prefetch distance and reducing

overhead due to software prefetching (54; 55; 56; 50). Mowry et al. (50) defined prefetch

distance in terms of the prefetch latency and loop iteration time. Mowry et al. also proposed

prefetch predicates to eliminate redundant prefetches. Badawy et al. in (54) proposed to insert

prefetch instructions in the epilogue and prologue. Recently, Lee et al. (49) have proposed

to calculate the loop iteration time using the average IPC of the application obtained through

program profiling. Such an adjustment to prefetch distance is necessary for modern multi-cores

that execute out-of-order. In our work, however, since we only use software to prefetch to the

L1 cache in multi-cores, we show that using a large prefetch distance such that it does not cause

evictions in the L1 cache is a better choice for several reasons. This has the advantage of being

loop-based and not program-based, and is calculated statically.

In recent past, coordinated prefetching was proposed and implemented in IBM’s Power6

microarchitecture (45). On Power6 (and its follow-ons), the L2 hardware prefetcher that can

hold 32 outstanding prefetch requests, prefetches data from memory using a larger distance (at

most 24 lines) and the L1 hardware prefetcher that can hold 8 prefetch requests, prefetches

data from L1 using a smaller distance (at most 2 lines). In this work, we use a similar idea to
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achieve coordination, but through software prefetching. On SandyBridge, software prefetch-

ing at L1 coordinates with the L2 hardware prefetcher that allows us to significantly increase

the prefetch distance (without polluting the cache - Section 4.3.3) and overcome the limita-

tions of the hardware prefetcher as mentioned in Section 4.1. On Xeon Phi, the coordination

is achieved entirely through software prefetching. Lee et al. (49) have considered coordina-

tion between hardware and software prefetching on existing multi-cores. They manually insert

software prefetch instructions and identify benchmarks for their positive, neutral or negative

interaction with the existing hardware prefetchers (primarily through simulation). Their work is

thus focused on studying the interaction between hardware and software prefetching, but does

not propose any particular prefetching strategy. In their tests, they use cooperative hardware-

software prefetching where both software and hardware prefetching co-exist; ours is a coordi-

nated hardware-software prefetching technique, where the software prefetches actively train the

hardware prefetcher to achieve coordination.

In the past, Santhanam et al. (57) and Caragea et al. (58) have also proposed reduction

of prefetch distance due to limited resources in the form of number of outstanding prefetch

requests that can be handled by the hardware. However, these works consider HP PA-8000 and

a many-core research machine, XMT, respectively, both of which employ single-level cache.

Thus, unlike our work, they do not employ the facility to prefetch to multiple levels of cache as

in existing architectures, to tackle the problem of resource contention. A recent work from Intel

(59) talks about prefetching the data to both the L1 and L2 cache - a technique implemented

in the existing version of the Intel compiler for Xeon Phi. However, they do not describe any

strategy to prefetch the data to the L1 and L2 cache such that a coordination is achieved. We

observe in our results that the Intel compiler for Xeon Phi does not always insert prefetch

requests for L1 and L2 cache, and generally uses a larger prefetch distance at L1 than needed.

As a result, it cannot match the performance of our coordinated prefetching on Xeon Phi.

Among other works in software-based prefetching are those that employ helper threads to

predict future load addresses (60; 61; 62). The authors in (60; 61) use an idle thread as the

helper thread to prefetch data for another compute thread, whereas Son et al. (62) extend the

helper-thread prefetching to work with multiple cores by assigning a customized helper thread

to a group of compute threads. These works, however, have not evaluated the impact of resource

contention due to aggressive prefetching by the helper-thread. In our experiments, we find the

impact of resource contention to be important, particularly on many-cores that have blocking
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caches, and thus implement a simple and low-overhead software prefetching strategy that is

different from helper-thread based prefetching.

4.7 Conclusion
In this work, we study software prefetching in light of various architectural features that support

prefetching in existing processors. Based on our study of those features, we implement a coor-

dinated multi-stage prefetching strategy for two widely different state-of-the-art processors, the

multi-core SandyBridge and the many-core Xeon Phi. However, the means of achieving this

coordination is different on either - in SandyBridge, it is achieved through the MLC hardware

prefetcher prefetching data to the L2 cache and L1 software prefetches further bringing it to

L1 cache; in Xeon Phi, the coordination is achieved through carefully tuned software prefetch-

ing at different levels of cache. Results establish the efficacy of these strategies on respective

platforms and also the importance of an awareness of the influence of different architectural

features on prefetching as studied in this work. The performance results achieved using the

7 different prefetching strategies are discussed for each benchmark considered. Further, the

performance of these strategies in multithreaded environment is also presented and discussed.

Since our multi-stage coordinated prefetching is a simple, static prefetching technique, and does

not require any special hardware, it can be readily incorporated in production-quality compilers

for existing architectures.



Chapter 5

Loop Fusion and Real Applications -
Part 1

5.1 Introduction
With the increase in the number of cores on chip (or, processors in a node) and the consequent

accentuation of the existing problems of memory and bandwidth wall, there is a renewed focus

on the optimization capabilities of a parallelizing compiler. A parallelizing compiler should

not only help to exploit the available parallelism in the host hardware, but also alleviate the

problems of memory and bandwidth wall by performing memory optimizations such as loop

tiling, data prefetching, loop fusion and other supporting optimizations such as loop shifting

and loop interchange. While these important responsibilities of a parallelizing compiler are

well recognized, it is also well known that compilers often fall way short in capitalizing on the

optimization opportunities provided by a target application.

One key reason for this shortfall is that most existing production compilers built upon tra-

ditional wisdom, often limit themselves to optimizing only small scopes in the entire program

(63; 64; 65; 66) or kernels (6; 67; 68; 69). Even in some recent work, such as (70), the au-

thors only analyze individual hot loops in target applications to mark those loops as parallel

or determine legality of loop distribution. However, our experiments with several scientific

applications from the SPEC benchmark Suite reveal that there are many opportunities for im-

provement in memory (and parallel) performance of those benchmarks through global program

optimizations (or transformations) such as applying loop fusion across a sequence of such hot

77
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loops. Such loop fusion across multiple loop nests saves the cost of fork-join synchronization

between loops, and more importantly, significantly improves temporal locality and thus saves

costly off-chip memory accesses. Both these benefits are of increasing importance in the era of

multi-/many-cores.

In the past, there has been work on loop fusion (71; 72; 73; 65), but the existing production

compilers still prove insufficient in fusing multiple loop nests. We find that, in addition to some

of the other limitations such as non-conformable loop bounds or loop orders in different nests,

and existence of imperfect nests, it is the existence of (extra-)stringent memory dependences

on temporary variables (scalars or low-dimensional arrays as shown in Figure 5.1a) in different

nests that is the key factor behind the dismal performance of existing compilers with regards to

global program optimization. Such memory dependences severely limit the degrees of freedom

for loop transformations such as loop fusion and loop interchange. It is important to note that

we cannot simply get rid of these dependences to enable loop fusion, because fusion merges

multiple definitions and uses in the fused loop’s body that can potentially violate program cor-

rectness. Such dependences thus require specific treatment. In this work, we make the following

contributions,

1. We analyze an important cause of the incapability of the existing compilers in achiev-

ing global program transformations - the (extra-)stringent data dependences caused by

temporary variables that appear in different loop nests and have the same variable-name.

2. We propose variable liberalization1, a technique that strategically relaxes (or liberalizes)

dependences on temporary variables in different nests so as to release the degrees of

freedom needed to express effective loop transformations such as loop fusion and loop

interchange while preserving program correctness. Variable liberalization is different

from variable privatization because it relaxes dependences on multiple outer loops across

loop-nests instead of just the outer loop in a single nest, and it is performed to also al-

low fusion in addition to just parallelization. Liberalization is different from expansion

because there is no real expansion of variable dimensions that takes place. It can thus be

seen as a combination of both privatization and expansion, drawing the benefits of both.
1Liberalization literally means relaxing previously existing rules to, for example, allow freer interaction between

2 parties. Variable liberalization similarly relaxes the extra-stringent data dependences caused by temporary vari-
ables in 2 loop-nests to allow global optimizations such as loop fusion between them.
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3. We implement our work in the state-of-the-art PLuTo polyhedral compiler and evaluate

the improvement obtained in terms of parallel performance on 8 hot regions in 5 sub-

routines of 4 real scientific applications from the SPEC and NAS Parallel Benchmark

Suites that have not been effectively optimized by current production compilers even

though they contain significant opportunity. In addition, as a result of pruning/relaxing

dependences to achieve variable liberalization, we significantly reduce the memory re-

quirement and the compile time of large application programs as compared to state-of-the

art polyhedral compilers, thus addressing the scalability problem within such compilers

to some extent.

The rest of the chapter is organized as follows. Section 5.2 reinforces the motivation for

this work through a simple example program that exposes the limitation of existing compil-

ers in global program transformation, and shows the potential benefits from overcoming that

limitation. Section 5.3 provides a background on dependence analysis with focus on tempo-

rary variables, and also introduces key concepts for the understanding of our proposed variable

liberalization optimization. This is followed by a detailed discussion of our approach, and its

application in the different cases seen in real applications in Section 5.4. Section 5.5 puts all

previous discussion together in the form of an algorithm that implements liberalization. In Sec-

tion 5.6, we evaluate our approach against state-of-the-art compilers and discuss results in each

case. The related work is presented in Section 5.7. Finally, Section 5.8 concludes our work.

5.2 Motivation
Figure 5.1a shows an example program that assumes some of the features, characteristic of real

scientific applications. These features include, extensive use of temporary variables such as

the scalar variable a and the array variable tmp, excellent opportunities for data reuse across

loop nests such as that in arrays rho, x and z, and imperfectly nested loops. Figure 5.1b

shows a transformed program where the two loop nests in the original program (Figure 5.1a)

are fused into a single nest and the outermost loop has been marked parallel (after marking

variables a and tmp as private to each thread) . Clearly, the transformed program is equivalent

to the original program since all memory dependences are satisfied. Figure 5.1c shows the

transformed program as generated by PLuTo using its most effective fusion heuristic, smartfuse.

Table 5.1 shows the sequential and parallel performance of the two transformed programs

normalized with respect to the performance achieved by the Intel Compiler (ICC with ‘-O3
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for(i1=0;i1<Nx;i1++) {
 for(j1=0;j1<Ny;j1++) {

  for(k1=0;k1<Nz;k1++) {
   S1: a = rho[i1][j1][k1];
   S2: tmp[k1] = a*b + c;
   S3: x[i1][j1][k1] = x[i1][j1][k1] + a*c; }

  for(k1=1;k1<Nz-1;k1++) {
   S4: z[i1][j1][k1] = x[i1][j1][k1] + tmp[k1+1] - tmp[k1-1]; }

} }

for(i2=0;i2<Nx;i2++) {
 for(j2=0;j2<Ny;j2++) {

  for(k2=0;k2<Nz;k2++) {
   S5: a = rho[i2][j2][k2];
   S6: tmp[k2] = a*c + b;
   S7: x[i2][j2][k2] = x[i2][j2][k2] + a*b; }

  for(k2=1;k2<Nz-1;k2++) {
   S8: z[i2][j2][k2] = x[i2][j2][k2] + tmp[k2+1] - tmp[k2-1]; }

} }
(a)

parfor(i=0;i<Nx;i++) {  // fused loop
 for(j=0;j<Ny;j++) {  // fused loop

  for(k1=0;k1<Nz;k1++) {
   a = rho[i][j][k1];
   tmp[k1] = a*b + c;
   x[i][j][k1] = x[i][j][k1] + a*c; }

  for(k1=1;k1<Nz-1;k1++) {
   z[i][j][k1] = x[i][j][k1] + tmp[k1+1] - tmp[k1-1]; }

  for(k2=0;k2<Nz;k2++) {
   a = rho[i][j][k2];
   tmp[k2] = a*c + b;
   x[i][j][k2] = x[i][j][k2] + a*b; }

  for(k2=1;k2<Nz-1;k2++) {
   z[i][j][k2] = x[i][j][k2] + tmp[k2+1] - tmp[k2-1]; }

} }
(b)

for(i1=0;i1<Nx;i1++) {
 for(j1=0;j1<Ny;j1++) {

  for(k1=0;k1<2;k1++) {
   a = rho[i1][j1][k1];
   tmp[k1] = a*b + c;
   x[i1][j1][k1] = x[i1][j1][k1] + a*c; }

  for(k1=2;k1<Nz;k1++) { // fused loop
   a = rho[i1][j1][k1];
   tmp[k1] = a*b + c;
   x[i1][j1][k1] = x[i1][j1][k1] + a*c; 
   z[i1][j1][k1-1] = x[i1][j1][k1-1] + tmp[k1] - tmp[k1-2]; }

} }

for(i2=0;i2<Nx;i2++) {
 for(j2=0;j2<Ny;j2++) {

  for(k2=0;k2<2;k2++) {
   a = rho[i2][j2][k2];
   tmp[k2] = a*b + c;
   x[i2][j2][k2] = x[i2][j2][k2] + a*c; }

  for(k2=2;k2<Nz;k2++) {  // fused loop
   a = rho[i2][j2][k2];
   tmp[k2] = a*b + c;
   x[i2][j2][k2] = x[i2][j2][k2] + a*c; 
   z[i2][j2][k2-1] = x[i2][j2][k2-1] + tmp[k2] - tmp[k2-2]; }

} }
(c)

Figure 5.1: (a) Original code, (b) Optimized (or transformed) code, and (c) Transformed program
generated by PLuTo

-parallel’; O3 enables fusion) on original program, on an 8-core Intel Xeon processor. Perfor-

mance results indicate the following,

1. Neither ICC (on the original program) nor PLuTo were able to either achieve loop fusion

even though there is reuse, or mark the outermost loop as parallel for coarse-grained

parallelization.

2. The transformed program in Figure 5.1b fuses both the loop nests, and thus achieves a se-

quential performance improvement of 1.19x over ICC. This demonstrates the efficacy of

exploiting the data reuse across loop nests. PLuTo achieves fusion at the innermost loop

within the same nest after some loop peeling and shifting. While this improves data reuse

to some extent, it leads to non-vectorizable innermost loop due to the introduction of a

forward dependence upon fusion. This explains PLuTo’s worse performance as compared

to ICC.

3. The transformed program in Figure 5.1b achieves a parallel performance improvement

of 4.47x over ICC when running 8 threads in parallel, clearly revealing the optimization

potential. Even after the two loop nests in Figure 5.1a are explicitly marked parallel (and

variables a and tmp privatized), parallel performance improvement of the transformed

program in Figure 5.1b is still 1.48x over ICC. This is because of the combined savings
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of off-chip memory accesses and fork-join synchronization through loop fusion.

1 thread 8 threads
Transformed code 1.19x 4.47x

PLuTo 0.48x 0.48x

Table 5.1: Performance speedup of transformed program in Fig 5.1b and PLuTo generated code (Fig
5.1c) wrt original code in Fig 5.1a

The key reason for the poor performance of ICC and PLuTo is that the use of same tempo-

rary variables in the two loop nests introduces dependences that are loop-carried on the outer

loops of these nests. These dependences are not false since their removal will allow a perfect

fusion of the two nests as far as the temporary variables are concerned, and this can potentially

violate program correctness due to incorrect definitions reaching certain uses. The following

section (Section 5.3), however, shows that these dependences as they exist are more stringent

than needed, and artificially lead to an reduced degree of freedom for transformations such as

fusion and parallelization. Further, Section 5.3 introduces concepts that lead us to variable

liberalization, the technique that relaxes dependences to generate the transformed code as in

Figure 5.1b.

5.2.1 Why not scalar and array expansion (perhaps, followed by contraction)?

Scalar or array expansion involves transforming the scalar or low-dimension array variables

(such as a and tmp[] in our motivating example) into full-dimension arrays (such as a[][][] and

tmp[][][]). Expansion essentially creates a new memory location for the temporary variable for

each iteration of the loop-nest. It thus removes loop-carried dependences between different ref-

erences of the variable, leading to effective loop transformations. However, this technique (1)

increases the memory footprint significantly and thus degrades temporal locality both in cache

(74) and registers (75), and (2) requires declaration of new data structures and corresponding

changes in the source code. The authors in (76; 77; 78) propose to perform array contraction

to reduce the memory footprint after an initial expansion step. Their rationale is that expan-

sion will enable aggressive optimizations, and array contraction will help to recover the loss in

temporal locality at a later stage. But, the intermediate optimizations (such as loop distribu-

tion that can potentially distribute the definitions and their uses) hamper opportunities for such

recovery through array contraction. The authors in (79; 74) attempt to control the expansion
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phase by constraining the aggressiveness of transformations so as to later effectively optimize

the memory footprint. But, this often results in loss of optimization opportunities due to added

constraints.

5.2.2 Why not scalar and array renaming across loop nests?

Renaming scalar and array variables in different loop nests could also result in disappearance of

the transformation-limiting loop-carried dependences across loop nests, and will facilitate loop

fusion and parallelization. But, there are three disadvantages of such a strategy which preclude

us from implementing it.

1. The key limiting factor is that, after fusion of loop nests with (multiple) renamed tempo-

rary variables, the opportunity for reuse of data (accessed by temporary variables) in the

higher levels of the memory hierarchy is lost. In addition, the working set in those higher

(and smaller) levels of the memory hierarchy expands by a factor of the number of tem-

porary variables and the number of merged nests. This degrades program performance

especially in the presence of temporary array variables. For example, the transformed

zeusmp benchmark application program from the SPEC Suite (containing 24 temporary

arrays in a loop nest) runs 7% slower when loop fusion is performed after renaming, as

compared to that performed without renaming (i.e. through variable liberalization). The

performance degradation may be even larger for certain other scientific applications that

use even more temporary variables.

2. As a result of this substantial increase in the number of temporary variables, the number

of hardware prefetch streams also increase in the same proportion as each temporary

array triggers one of those prefetch streams. Since every processor has a limited number

of these streams, the transformed program can easily fall short of the needed prefetch

streams, leading to performance degradation.

3. Another drawback is that renaming will require generation of new variable declarations

and also modification of all references to the temporary variable in all loop nests.

Our framework, on the other hand, does not require any of those changes to the original

source code, and more importantly, does not cause any unnecessary increase in the number

of variables in the program. This promotes efficient data reuse in higher levels of cache and

effective prefetching by the hardware.
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5.3 Background
Instancewise dependence analysis (80) employed in state-of-the-art polyhedral compilers pre-

cisely tells which iterations of the involved statements are in a dependence, and is thus more ef-

fective is reasoning the feasibility of loop transformations. In this section, we use instancewise

dependence analysis to show how dependences between temporary variables artificially sup-

press fusion of multiple loop nests. Since fusion and other supporting transformations (such as

loop interchange and loop shifting) are simultaneously composed within the polyhedral frame-

work, we consider them in conjunction when applicable. Therefore, we first show how loop

interchange is hampered by dependences on temporary variables within the same loop nest.
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Figure 5.2: Instancewise (RAW) dependence between statements (a) S1 and S2, and (b) S2 and S8; the
dashed arrows in the figure indicate a backward (RAW) dependence

Figure 5.2 shows the dependences between specific statement instances involving temporary

variables to demonstrate the transformation limiting nature of such dependences. Since the same

memory locations are accessed in multiple iterations of the loop nest, there are introduced loop-

carried dependences in multiple loops of the loop nest. For example, consider the read to the

temporary scalar variable a in Statement S2 in Figure 5.1a at the instance (j1=1, k1=1); it is

the sink of a Read After Write (RAW) dependence from not just the instances (j1=1, k1=0) and

(j1=1, k1=1) but also from instances (j1=0, k1=0 .. N-1) as shown in Figure 5.2a. Thus, it leads
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to loop-carried dependence in not just loop k but also loop j.

It is important to note that the dependence distance for the dependence involving the scalar

a whose source instance is (j=0, 1<k<N), is negative along loop k (i.e. they are backward de-

pendences), and such dependences are thus marked by dashed arrows in Figure 5.2 for empha-

sis. Since loop interchange requires all dependences to be either loop independent or forward-

directed on the involved loops, interchanging loops j and k is rendered infeasible in this case

in the presence of above-mentioned loop carried dependences. In this example, no loop-carried

dependences on scalar a on the outermost loop i are shown because the scalar is privatizable

at the outermost loop and thus, those dependences are ignored by the dependence analyzer to

enable outer-loop or coarse-grained parallelization. This also enables loop interchange in loops

i and j as after privatization, the dependences involving scalars become loop-independent in the

outermost loop and are forward-directed in the loop j.

We next show how dependences on temporary variables in different loop nests precludes

fusion of the involved loop nests. Figure 5.2b shows the instancewise dependence between

statements S2 and S8 on the temporary array variable, tmp. Since S2 and S8 are in different

nests, for a given k = k1 = k2, every write to tmp[k1] in S2 will be visible to the read tmp[k2]

in S8 since the same memory location is involved each time. Thus, there is a RAW dependence

from the definition in the first loop nest to the use in the second for every instance of loops i and

j. This is depicted in Figure 5.2b for the instance (i=1, j=1) in the second loop nest, which be-

comes the sink for RAW dependences whose sources (0≤i≤N-1, 0≤j≤N-1) lie in the first loop

nest. We call this an all-to-all dependence in loops i and j, since it exists from all iterations of

these loops in the source-nest to all iterations of the corresponding loop in the destination-nest.

Similarly, we can see that there is an all-to-all dependence in loop k involving the scalar a as

shown in Figure 5.2a. Thus, if loop i or loop j were fused for both nests, then this would lead

to a backward (negative distance) dependence on loop i or loop j. Such a fusion will be illegal,

and the compiler restricts itself from performing it.

Similarly, the presence of temporary scalar variables in different nests leads to all-to-all depen-

dences on all loops in the loop nest, which proves to be similarly fusion-restricting.

5.3.1 Some key concepts and definitions

We next describe some key concepts and definitions to aid the understanding of our approach

to loop fusion by relaxing (or liberalizing) the dependences on temporary variables.
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Live Ranges

In the context of polyhedral compilers, a live range is appropriately defined in terms of precise

statement instances instead of static statements in the program as studied in earlier literature

(81). We thus define a live range to be the range of statement instances from the definition

instance of a value to its last use instance. For example, the live range for the scalar a defined

in the first loop nest of the example program in Figure 5.1a is:

[S1(i, j, k)→ S3(i, j, k)], s.t. 0≤i<Nx, 0≤j<Ny, 0≤k<Nz

The above notation implies there is a live range that begins at the write in statement S1 in

every iteration of the loop-nest (comprising of loops i, j and k) and lasts until statement S3 in

the very same iteration.

Iteration-private Live Ranges

For the above live range, we note that the live range begins and ends in the same iteration of

the innermost loop k of the loop nest. We call such a live range as iteration-private in loop

k. Intuitively, the same live range is also iteration private in the outer loops, i and j. Past

work (82) has shown that if all live ranges are iteration private in a loop, then that loop can be

marked as privatizable. For example, the live range for the scalar a in our example program is

iteration private in all 3 loops, and hence, the outermost loop is marked privatizable as noted in

Section 4.1. The other loops are, however, not marked as privatizable because the focus there

is just coarse-grained parallelization. We use this concept of iteration-private live ranges in our

proposed variable liberalization optimization.

Live Ranges and Loop Fusion

As a result of loop fusion (after a possible relaxation of dependences on temporary variables),

loop bodies of the fused nests merge. Consequently, multiple definitions and uses of temporaries

with the same name end up in the same loop. Thus, to ensure legality of fusion, each use

must see the same definition as in the original program, or in other words, fusion of loop nests

should preserve non-interference of live ranges. For example, the program in Figure 5.3a

shows two live ranges for the scalar variable a in the two loop nests. Figure 5.3b shows a

fused nest where the two live ranges interfere with each other as shown, and the first use of

the scalar a doesn’t see the same definition as in the original program; it is thus an incorrectly
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transformed program. Figure 5.3c preserves the non-interference of live ranges and is thus a

correctly transformed program. Therefore, any relaxation of dependences must preserve this

property to ensure correctness. This (1) non-interference of live ranges, combined with (2)

satisfaction of true (RAW) dependences form a criteria for legality of program transformation as

proved in previous work (83; 84). We use this criteria to reason correctness of the transformed

program in the wake of our proposed relaxation of dependences involving (just) temporary

variables.

for(i1=0;i1<N;i1++) {
    S1: a = x[i1];

    S2: y[i1] = y[i1] + a; }

for(i2=0;i2<N;i2++) {
    S3: a = z[i2];

    S4: y[i2] = y[i2] + a; }
(a)

LR
1
 (a)

LR
2
 (a)

for(i=0;i<N;i++) { // fused
    S1: a = x[i];

    S3: a = z[i];

    S2: y[i] = y[i] + a; 

    S4: y[i] = y[i] + a; }
(b)

for(i=0;i<N;i++) { // fused
    S1: a = x[i];

    S2: y[i] = y[i] + a; 

    S3: a = z[i];

    S4: y[i] = y[i] + a; }
                (c)

Figure 5.3: Live range interference

5.4 Our Approach
Our approach of achieving a legal fusion by relaxing the extra-stringent dependences on tem-

porary variables is based on the following key insight:

5.4.1 Key Insight

The temporary variables by dint of their functionality of storing partial results temporarily in a

program, are mostly defined in one of the inner loops of loop-nests and are used in the same

for(i1=0;i1<Nx;i1++) {
 for(j1=0;j1<Ny;j1++) {

  for(k1=0;k1<Nz;k1++) {

   S1: a0 = a[i1][j1][k1];

   S2: am1 = a[i1][j1][k1-1];

   S3: x[i1][j1][k1] = a0 + am1; }

} }

for(i2=0;i2<Nx;i2++) {
 for(j2=0;j2<Ny;j2++) {

  for(k2=0;k2<Nz-1;k2++) {

   S4: a0 = a[i2][j2][k2];

   S5: rho[i2][j2][k2] = a0 + (x[i2][j2][k2+1] - x[i2][j2][k2]); }

} }
                 (a)

for(i=0;i<Nx;i++) { // fused
 for(j=0;j<Ny;j++) { //  fused

  for(k=1;k<Nz;k++) { // fused

   S1: a0 = a[i][j][k];  // a0[i][j][k]

   S2: am1 = a[i][j][k-1]; // am1[i][j][k]

   S4: a0 = a[i][j][k-1]; // a0[i][j][k-1]

   S3: x[i][j][k] = a0 + am1; // a0[i][j][k], am1[i][j][k] 

   S5: rho[i][j][k-1] = a0 + (x[i][j][k] - x[i][j][k-1]); // a0[i][j][k-1]

} } }
           (b)

for(i=0;i<Nx;i++) { // fused
 for(j=0;j<Ny;j++) { //  fused

  for(k1=1;k1<Nz;k1++) { 

   S1: a0 = a[i][j][k1];

   S2: am1 = a[i][j][k1-1];

   S3: x[i][j][k1] = a0 + am1; }

  for(k2=1;k2<Nz;k2++) {  

   S4: a0 = a[i][j][k2-1];

   S5: rho[i][j][k2-1] = a0 + (x[i][j][k2] - x[i][j][k2-1]); 

} } }
           (c)

Figure 5.4: (a) Example program, (b) (Incorrectly) Transformed program after dependence relaxation,
and (c) Correctly transformed program
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loop. In other words, they are iteration private in one of the inner loops, and consequently, in

all outer loops. For example, in the example program in Figure 5.1a that has a 3-level loop nest,

the temporary scalar a is iteration private in the innermost loop k. The temporary 1D array,

tmp, is iteration-private in the next-to-innermost loop j. If there was a temporary 2D array, it

would be iteration-private in the outermost loop i.

In the event of fusion of loop nests containing temporary variables with the same name,

violation of both the criteria for legality with regards to temporary variables, i.e. (1) non-

interference of live-ranges, and (2) satisfaction of RAW dependences, is only possible at loops

within and including the innermost loop with iteration-private live ranges. Thus, the depen-

dences on the outer loops can be relaxed to allow fusion of outer loops including the in-

nermost loop with iteration-private live ranges. The ‘relaxation’ of dependences implies that

the transformation-restricting all-to-all dependences on outer loops are converted into loop-

independent dependences. This releases the necessary degrees of freedom for loop transfor-

mations. Thus, the RAW dependences on the temporary variables in the innermost loop with

iteration-private live ranges are preserved just by the presence of a loop-independent depen-

dence. Also, this relaxation is sufficient to preserve non-interference of live ranges and hence

correctness of the transformed program subject to the following criterion:

Relaxation Criterion - While dependences on temporary variables in different loop nests

are relaxed, the resultant loop fusion should not be accomplished as a consequence of loop

shifting in any of the fused loops.

The rationale behind this relaxation criterion is that preservation of the live-range non-

interference property cannot be guaranteed if loop shifting is performed as an enabling trans-

formation for loop fusion. The following example clarifies the idea. Figure 5.4b shows a trans-

formed program with fused nests, for the original program in Figure 5.4a. In this example, loop

fusion is made possible after relaxing cross-nest all-to-all dependences on the scalar a0 to be-

come loop-independent as discussed above. Thus, effectively, the scalar variables are expanded

to become 3D arrays like other arrays such as x in the loop-nest. This is shown in the comments

at the end of each statement.

In addition to loop fusion, the statements in the second nest are shifted by 1 iteration in

the innermost loop (k) to prevent backward dependences on array x in loop k. In the trans-

formed program, the (possible) backward dependence on array x is converted into a forward

dependence through loop shifting to allow fusion. Thus, we see that there is a forward WAR
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dependence between statements S3 and S4 on the scalar a0 in loop k (i.e. a0[i][j][k] written

in statement S3 is read in the next iteration of the k-loop in statement S2) and a forward RAW

dependence between statements S1 and S5 on the same scalar a0 in loop k (i.e. a0[i][j][k] writ-

ten in statement S1 is read in the next iteration of the k-loop in statement S5). As a result, the

schedule of statements within the fused nest as shown in Figure 5.4b is completely legal from

the point-of-view of data dependences (some of which have been purposely relaxed). However,

the transformed program in Figure 5.4b is incorrect because the non-interference of live-ranges

property is violated - the live ranges for the 2 def-use pairs involving the scalar a0 interfere with

each other as shown. This happened precisely because the above-mentioned relaxation criterion

is violated (due to shifting) in the innermost loop of the fused nest, loop k. The same is possible

for the other loops in the nest, which justifies the constraint in its entirety.

In such cases when the relaxation criterion is violated for the last fused loop, the transfor-

mation for that loop is recomputed after enforcing an all-to-all dependence at that loop-level

for the temporary variables in different loop nests. This causes loop distribution at that level to

generate correct code as shown in Figure 5.4c. It is worth noting here that our relaxation (or

legality) criterion requires knowledge of whether loop shifting was performed to enable fusion

at each loop-level, to reason correctness of transformation in the wake of proposed dependence

relaxation. The precise implementation of this in our framework is discussed in detail in Section

5.5.1.

It is also important to note that we use the criterion of non-interference of live ranges to rea-

son about program correctness in the wake of relaxed data dependences on temporary variables.

However, if the presence of certain other loop-carried data dependences on regular array refer-

ences were to lead to a backward loop-carried dependence upon fusion of any two loops, then

fusion of the concerned loops will not be performed as per the traditional criteria of performing

fusion since such dependences are not modified (relaxed) by our framework.

Figure 5.4 demonstrated how the relaxation of dependences on outer loops would lead to

a legal program transformation in the presence of temporary scalar variables in different loop

nests that have the same loop order (provided the fusion does not violate our relaxation cri-

terion). In the following subsection, we demonstrate how we similarly handle fusion of loop

nests with temporary array variables. Then, we consider liberalization of dependences when the

involved nests have different loop order and show that loop-order determines depth of fusion of

loop nests.
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5.4.2 Fusion of loop nests with same loop-order in the presence of temporary
array variables

We use our original example program (Figure 5.1a) to illustrate liberalization in the presence of

temporary array variables. As discussed in Section 5.3, fusion of the 2 loop nests in Figure 5.1a

is prevented by all-to-all dependences on the temporary 1D array, tmp, in all but the innermost

loop in the nest. Similar to the case of scalar variables, we allow for loop fusion in this case

by relaxing the all-to-all dependences to become loop-independent in all loops (i.e. loops i

and j) including the innermost loop with iteration-private live ranges. In order to preserve

live-range non-interference in loop j, we force an all-to-all dependence on the inner loop k

that ensures that the two loop bodies will be distributed at the innermost loop-level as shown

in Figure 5.1b. Thus, the net effect is that the WAR dependence between S2 and S8 and the

RAW dependence between S4 and S6 is relaxed from being all-to-all in loops i and j to just

being all-to-all in the innermost loop k, or in other words, the dependence has been shifted to

the innermost loop where absolutely needed. Since no shifting was performed to enable loop

fusion, the transformed program under the relaxed dependences is correct.

5.4.3 Fusion of loop nests with different loop-orders

for(i1=0;i1<Nx;i1++) {
 for(j1=0;j1<Ny;j1++) {

  for(k1=0;k1<Nz;k1++) {
   tmp[k1] = a*b + c; }

  for(k1=1;k1<Nz-1;k1++) {
   x[i1][j1][k1] = tmp[k1+1] - tmp[k1-1]; }

} }

for(j2=0;j2<Ny;j2++) {
 for(i2=0;i2<Nx;i2++) {

  for(k2=0;k2<Nz;k2++) {
   tmp[k2] = a*c + b; }

  for(k2=1;k2<Nz-1;k2++) {
   y[i2][j2][k2] = tmp[k2+1] - tmp[k2-1]; }

} }
(a)

for(i=0;i<Nx;i++) { // fused loop
 for(j=0;j<Ny;j++) { // fused loop

  for(k1=0;k1<Nz;k1++) {
   tmp[k1] = a*b + c; }

  for(k1=1;k1<Nz-1;k1++) {
   x[i][j][k1] = tmp[k1+1] - tmp[k1-1]; }

  for(k2=0;k2<Nz;k2++) {
   tmp[k2] = a*c + b; }

  for(k2=1;k2<Nz-1;k2++) {
   y[i][j][k2] = tmp[k2+1] - tmp[k2-1]; }

} }
(b)

Figure 5.5: (a) Loop nests with different loop-orders, (b) Loop fusion after interchange and liberaliza-
tion
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In an application program, loop nests may contain different loop-orders as shown in Figure

5.5a. Loop fusion in such cases is more involved. However, there may still be an opportunity

for partially fusing the candidate loop nests, either because of common outer loops or through

loop interchange in one of the nests. Thus, considering loop fusion in conjunction with loop

interchange becomes particularly relevant.

In case of temporary 1D arrays, loop nests are imperfectly fused at the innermost loop level

as shown in Figure 5.5a, and thus interchanging the innermost two loops in infeasible. However,

the outer loops can still be interchanged after array privatization in the outermost loop, which

is similar to the way scalar privatization allows interchange as discussed in Section 5.3. In

case of scalars, we extend scalar privatization to the inner loops also in order to allow for loop

interchange in all loops of the loop-nest. Once loop interchange is made feasible, the process

of relaxation of dependences on temporary variables in different nests is similar - the all-to-all

dependences on all outer loops upto and including the innermost loop with iteration-private live

ranges are relaxed, and an all-to-all dependence on remaining inner loops, if any, is introduced

to preserve the non-interference of live-ranges property. For temporary 1D arrays as in our

example program in Figure 5.5a, the all-to-all dependences on loops i and j in the first nest

to loops j and i, respectively, in the second nest, are relaxed, and an all-to-all dependence is

introduced in the inner loop k to achieve the transformed program in Figure 5.5b. It is important

to note that fusion of all loops with iteration-private live ranges was possible since such loops

were common (i.e. loops i and j in the first nest and loops j and i in the second) in this case.

When trying all possible combinations of loop-orders in the two nests, we find that we are

able to fuse the nests at least up to the depth of 1 loop-level in all cases, since the two loops with

iteration-private live ranges will always have at least 1 loop in common, and loop interchange

ensures that the common loop can be the outermost loop in the fused nest. Loop fusion even at

the outermost loop, ensures data reuse in the last level cache in most cases, and is thus valuable

in various scientific benchmarks where different loop orders in loop nests is common.

5.4.4 Cases in which dependence relaxation is not feasible

In this section, we mention two examples where dependences on temporary variables in dif-

ferent loop nests cannot be relaxed because the conditions for such relaxation are not satisfied.

Figure 5.6a shows the first example that contains a temporary array tmp in the two loop nests.

Relaxing dependences on the outer loops i and j would result in fusion of the two nests, but
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for(i1=0;i1<Nx;i1++) {
 for(j1=0;j1<Ny;j1++) {

  for(k1=0;k1<Nz;k1++) {
   tmp[k1] = tmp[k1] + a[i1][j1][k1]; }

} }

for(i2=0;i2<Nx;i2++) {
 for(j2=0;j2<Ny;j2++) {

  for(k2=0;k2<Nz;k2++) {
   tmp[k2] = tmp[k2] + b[i2][j2][k2]; }

} }
                         (a)

for(i=0;i<Nx;i++) {
 for(j=0;j<Ny;j++) {

  a[i] += b[i][j] + c[i][j];

} }

             (b)

Figure 5.6: Example programs where dependence relaxation is infeasible

such a fusion will clearly be illegal and our framework desists from performing it. The reason

is that the live range involving tmp is not iteration private in the outer loops of the loop-nest,

i.e. a value written in tmp[k] in each iteration of loop j is read in the next iteration of loop j.

The same holds true for the outermost loop i as well. The net result is that tmp is live-in in the

second nest, which clearly indicates the infeasibility of loop fusion in this case.

Figure 5.6b shows the second example. The subscript of the temporary array a is the outer-

most loop variable i as opposed to the previous examples where temporary array’s subscript is

an innermost loop variable. Clearly, the live-range of a is not iteration-private in any loop in the

loop-nest, which also indicates its use later in the program. It is therefore not marked for liber-

alization. Also, in such a case, liberalization is not needed to allow fusion (and parallelism) of

the outer loop since there is no all-to-all dependence on the outer loop.

5.5 Implementation: putting it all together
This section describes the algorithm used to implement variable liberalization, as discussed in

the preceding sections. The algorithm comprises two steps. Step 1 essentially performs vari-

able privatization in all outer loops of a loop-nest that have iteration-private live-ranges for all

references in the loop body. We perform privatization in multiple outer loops instead of just the

outermost loop. It allows loop interchange which creates opportunities for loop fusion. This

is effected by removal of the all-to-all dependences (identified by Line 6 in the algorithm) on
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temporary variables in the iteration-private loops of the loop-nest containing the source state-

ment (Line 5). Step 1 is performed only for those dependences whose sink (or destination)

statement is live for its source statement (Line 4). This condition holds for temporary variables

being defined and used in the same loop-nest, and thus program correctness can be preserved

by only retaining a loop-independent dependence between the source and sink in the innermost

loop with iteration-private live ranges after pruning the all-to-all dependences.

ALGORITHM 2: Variable privatization
1: INPUT:
deps : Copy of the list of dependences

2: STEP 1:
3: begin
4: for each dependence d ∈ deps s.t. IsLive(d.src stmt,d.dest stmt) = true do
5: for each loop l ∈ LoopNest(d.src stmt) s.t. IsIterPriv(l,d.src stmt) = true do
6: if IsAllToAll(d,l) then
7: Remove d from the list of dependences, deps
8: end
9: STEP 2:

10: begin
11: for each dependence d ∈ deps s.t. IsLive(d.src stmt,d.dest stmt) = false do
12: for each loop l ∈ LoopNest(d.src stmt) do
13: if IsIterPriv(l,d.src stmt) = true then
14: Make d loop-independent at loop-level l
15: else
16: Make d all-to-all at loop-level l
17: end
18: OUTPUT: Relaxed set of dependences, deps

It is important to note here that the condition in Line 4 does not hold for those dependences

whose source and sink lie in different loop nests, or even when they lie in the same loop nest in

case of multiple definitions of the temporary variable in the same nest. It is such dependences

that restrict loop fusion and require more careful treatment. Therefore they are handled sepa-

rately in Step 2 to preserve the non-interference of live-ranges property. This involves forcing

an all-to-all dependence on the loops inner to the innermost iteration-private loop (Line 16) that

strictly precludes fusion of the two nests beyond the innermost iteration-private loop, whereas

dependences on the other outer loops are relaxed to become loop-independent (Line 14). This
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ensures program correctness, provided the relaxation criterion is not violated.

5.5.1 Validation of relaxation criteria

In polyhedral compilation, violated dependence analysis (80) is becoming increasingly popular.

Using violated dependence analysis, the polyhedral compiler can reason the correctness of the

proposed transformation in the wake of either relaxed legality checks (85) or relaxed depen-

dences (84; 86). In such an approach, one has to wait until a transformation is performed and

re-iterate the process possibly several times in the case of an incorrect transformation, or take

a corrective action. In this work, we introduce violated transformation analysis, where we can

reason about the correctness of the computed transformation during the process of finding trans-

formation itself, and the recovery is executed immediately to yield a correct (although weaker)

transformation.

As discussed in Section 5.4, we can reason about the validity of dependence relaxation using

our relaxation criterion which amounts to determining the absence of loop shifting transforma-

tion in the fused loops. In our framework, we determine this for each step of the transformation

process that involves determining what statements can be fused in the same nest at a given

loop-level, starting from the outermost loop2. If the transformation computed for the statements

from different nests indicates that loop shifting has occurred in the last (fused) loop, then the

last loop found is discarded. In such a case, an all-to-all dependence is introduced at that loop

to ensure that the 2 loop nests are distributed at that loop-level to guarantee correctness. Thus,

the correctness is guaranteed during the transformation process itself and there is no need to

re-iterate the process.

For example, for the program in Figure 5.6a, when trying all possible combinations of loop

orders in the two nests, we find that for certain combinations such as (i-j-k) and (k-i-j), the

framework initially finds two common loops and the common loop i with iteration-private live

ranges becomes the outermost loop. However, for the second loop found, there is loop shifting

in S4 by 1 with respect to other statements, and thus the second loop is discarded. The final

transformed program contains just 1-deep fused nest. Thus, we find violated transformation

analysis to be extremely useful in this case, and we believe that this technique can become

useful to find or reason about correctness of other transformations as well.
2More detail on the process of computing transformations using a polyhedral compiler can be found in (6)
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5.6 Experimental Evaluation

Fusion Model Description
gfortran GNU Fortran Compiler (baseline); flags = ‘-O3 -ftree-loop-parallelize=n’

ifort The Intel Fortran Compiler; flags = ‘-O3 -parallel’

smartfuse
The default fusion model in PLuTo.

It uses heuristics to determine a good fusion schedule
explicit Explicit parallelization or parallelization by hand
var-lib Variable liberation in PLuTo (our work)

Table 5.2: Summary of fusion models in different compilers

5.6.1 Setup

The test programs were compiled and run on an Intel Xeon processor (E5-2650) with 8 Sandy

Bridge-EP cores, operating at 2.0GHz. The processor has private L1 (32KB per core) and L2

(256KB per core) caches and a 20MB shared L3 cache, and 16GB memory. Since we implement

the variable liberalization optimization in the PLuTo polyhedral compiler, we compare our

performance results with the fusion model within PLuTo, in addition to the popular production

compilers, the GNU and the Intel compilers. A summary of the different fusion models used

for comparison is given in Table 5.2. It is important to note that PLuTo itself cannot parse

Fortan code (and the applications we use for experiments are written in Fortran). We thus use

PolyOpt/Fortran (87), a tool that uses ROSE compiler (88) frontend to parse Fortran code and

relies on PLuTo (version 0.5.4) for loop optimizations. The transformed source code generated

is then compiled using the Intel compiler v14 (ifort) as the backend compiler. The compile time

options used with the Intel compiler are ‘-O3’ and ‘-parallel’.

5.6.2 Benchmarks

The benchmarks used in the experiments include 4 real application programs used in the sci-

entific community, and in other published research. A brief description of these benchmarks is

given in Table 5.3. In these 4 applications, we identify 8 hot regions spanning 5 subroutines.

Each identified hot region constitutes a Static Control Part (SCoP), or the maximal syntactic

program segment that contains sequences of loop nests with constant strides and affine bounds.

As a result, all chosen hot regions are amenable for optimizations by a polyhedral compiler. It is
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Figure 5.7: Performance results using (a) single thread (b) 8 threads (cores)

important to note that each of these 8 SCoPs contain multiple large loop-nests with the number

of statements in each SCoP ranging from 48 to 121. Such large sequences of statements are

known to be hard for the compilers to optimize.

Benchmark Benchmark Suite Category Problem Size
applu NPB/OMP2012 Computational Fluid Dynamics (CFD) N=102; CLASS B

bt NPB/OMP2012 ” ”
sp NPB ” ”

zeusmp CPU2006 Simulation of astrophysical phenomena Reference Input

Table 5.3: Summary of the benchmarks

5.6.3 Results and Discussion

Figure 5.7 shows the performance results for the 8 SCoPs using different compilers for com-

parison. Figure 5.7a shows results for sequential performance, while 5.7b shows parallel per-

formance. Among the 4 benchmarks, the entire rhs subroutine in bt, sp and lu benchmarks

forms a single SCoP, the hsmoc subroutine within zeusmp benchmark consists of 3 SCoPs each

separated by a procedure call (with possible side-effects and thus recognized as a non-affine

component) whereas the lorentz subroutine consists of a single SCoP, but divided into 2 in or-

der to limit the memory requirement for optimizing it using polyhedral compilation. Each of

the chosen benchmarks contains multiple loop nests and thus offers considerable opportunities

for loop optimizations - a characteristic of most scientific application codes.

In particular, each of the chosen benchmarks contain loop-nests with different loop-orders,

and thus are more challenging from the point of view of the loop fusion optimization. From the

figure, we can find that var-lib, i.e. the compiler optimization proposed in this work outperforms

the other compilers in almost all cases. The sequential performance of var-lib outperforms
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ifort by as much as 1.2x, and the performance improvement is significantly larger for parallel

versions of the benchmarks with var-lib outperforming ifort by as much as 6.8x in lu. Even

against the explicitly parallelized versions, var-lib performs considerably better as shown in

Figure 5.7b. We next discuss the performance results for each compiler in more detail.

gfortran and ifort

gfortran or the GNU Fortran compiler was chosen as the baseline in our experiments. In ad-

dition, we also show results with the Intel Fortan compiler. In all cases, gfortran proved to be

worse than ifort due to the latter being much more effective at vectorization. However, both

these production compilers are equally poor in performing loop fusion. As a result, neither of

them fused any large loop-nests for any of the SCoPs listed in the figure. gfortran performed

the worst of all compilers because it could not recognize parallel loops in any benchmark. ifort

could recognize parallel loops in bt.rhs, sp.rhs, zeusmp.hsmoc, and in zeusmp.lorentz.1.

From these results (and other experiments using our test kernels), we find that ifort is ca-

pable of parallelizing the loop-nest in the presence of temporary scalar variables, but not in

the presence of temporary array variables. It is for this reason that ifort could not parallelize

lu. Although, temporary array variables exist in hsmoc as well, we believe that ifort relies on

recognizing certain specific patterns in this case to achieve parallelization because the inability

to recognize temporary array variables in a less computationally intensive subroutine, lorentz,

in the same benchmark hurts parallelization opportunity. In any case, we can conclude that

existing production compilers are limited in their capability of detecting parallelism in scien-

tific application codes that contain temporary variables, and much more so in performing the

important loop fusion optimization.

PLuTo’s smartfuse

PLuTo is a state-of-the-art polyhedral compiler that has shown significant promise in achieving

automatic loop parallelization (89). PLuTo uses three different heuristics for fusion, min-, max-

and smartfuse. maxfuse and smartfuse are practically equivalent for SCoPs with many state-

ments, and minfuse performs maximal distribution and almost always performs sub-optimally.

Thus we only choose to compare with smartfuse. PLuTo is also capable of performing scalar

privatization that empowers it to perform coarse-grained parallelization in the presence of scalar

temporary variables. It cannot, however, privatize temporary array variables. As a results,

smartfuse can identify parallel loops in bt and sp, but not in any of the other SCoPs. Also, since
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PLuTo does not relax dependence on such temporary variables across loop-nests or, in other

words, perform variable liberalization, it is deprived of the opportunity to perform loop fusion.

This amounts to reduced performance as compared to var-lib even for the benchmarks where it

could achieve parallelization.

Variable Liberalization (var-lib)

When using a single thread to run benchmarks, var-lib outperforms all other compilers on ac-

count of fusing multiple loop-nests. The improvement is proportional to the fusion opportunity

available in the benchmarks. For example, both the large nests in zeusmp.hsmoc.2 are fused

to enable data reuse, whereas in the other cases such as lu, only 2 of the 3 large nests could

be fused together. This is because the common outer loop of the first two nests in lu is the

innermost loop of the third nest, and the innermost loop cannot participate in loop interchange

because of the presence of temporary arrays and imperfect nesting.

1 2 4 8
0.8

1

1.2

1.4

1.6
Speed-up of var-lib over explicit parallelization

hsmoc.2

lu.rhs

Number of threads

Figure 5.8: Parallel performance comparison of var-lib and explicit parallelization for rhs sub-
routine in lu

Interestingly, the performance improvement for all benchmarks surges upon parallelization

even for benchmarks that are successfully parallelized by other compilers (including explicitly

or manually parallelized code) such as bt, sp and zeusmp.hsmoc. This is due to two reasons

- (1) reduction of fork-join synchronization points, and more importantly, (2) saving of off-

chip memory accesses and thus the bandwidth, which is a source of contention among parallel

threads in such memory-intensive applications. Both of these benefits are direct consequences

of effective loop fusion achieved as a result of variable privatization. In addition, var-lib sig-

nificantly outperforms all other compilers when they cannot identify outer-parallel loops due to
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the presence of temporary array variables and imperfect nests as in lu and zeusmp.lorentz.

Hardware Event
explicit-varLib

explicit ∗ 100 %

lu zeusmp
Load latency gt 512 24.03 12.88
Resource stalls.any 7.68 13.8

Uops dispatched.stall cycles 8.8 19.94

Table 5.4: Performance counters indicating reduced pipeline stalls and effective memory latency
through var-lib

Figure 5.8 shows the speed-ups achieved by var-lib over explicitly parallelized code for two

of the eight SCoPs, lu.rhs and zeusmp.hsmoc.2 when using different number of threads. The

speed-up achieved in case of zeusmp.hsmoc.2 is larger than that in lu.rhs. This is because of

a greater opportunity of fusion in the former case, as explained earlier. Further, the speed-up

achieved increases with the increase in the number of threads. This is explained with the help of

performance counters shown in Table 5.4 as obtained from Intel’s VTune Performance Profiler

(53). Both benchmarks witness a considerable reduction (24.03% and 12.88%, respectively)

in the number of memory loads whose latency is greater than 512 cycles after variable liber-

alization. Since the memory latency on the test processor (SandyBridge microarchitecture) is

roughly 200 cycles, such high latency corroborates bandwidth contention. Thus, clearly, lower

number of such high latency loads confirms the efficacy of effective loop fusion performed by

var-lib. These high latency loads result in increase in the number of stall cycles due to resource

Benchmark Subroutine # statements # deps % Ex. time
Compile time (s)/Memory req. (MB)

S = Ex. Timeifort
Ex. Timevar-libifort smartfuse var-lib

bt rhs 48 1419 16.8 4/116 303/703 180/281 1.06x
sp rhs 50 1428 33.7 4/116 360/766 213/301 1.08x
lu rhs 106 3033 63.1 1.9/71.7 11302/5542 3247/1551 2.17x

zeusmp

hsmoc.1 121 2660
24.1

5/141 10700/10780 162/4060

1.36x
hsmoc.2 118 2493 5.9/151 9067/9693 246/6361
hsmoc.3 120 2296 5.7/143 7739/9014 280/5759
lorentz.1 98 2227

27.3
3.1/95.2 6027.5/10053 165/3222

lorentz.2 92 2149 2.49/86 5833/8275 1114/5152

Table 5.5: Compile time, memory requirement of different compilers and overall (application)
speedup (S) achieved by var-lib over ifort
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contention (measured by the counter Resource stalls.any that includes stalls due to fully occu-

pied load Buffer, Store Buffer, Reorder Buffer, and Reservation Stations) and also due to reser-

vation stations waiting on operands (measured by the counter Uops dispatched.stall cycles).

The reduction in loads with high latency are larger for lu than zeusmp since the optimized sub-

routine, rhs, in lu is its most memory-intensive part and thus benefits more from loop fusion.

However, reduction in stalls is more significant in case of zeusmp since the optimized subrou-

tines, hsmoc and lorentz together contribute more than 50% of the execution time in zeusmp,

as compared to rhs that contributes only 20% of the total execution time in the explicitly paral-

lelized version of the lu benchmark.

Table 5.5 compares the compile time and memory requirement of the different compilers

in each category. For example, ifort is the representative of the existing production compil-

ers, smartfuse is the representative of existing polyhedral compilers, and var-lib is our work.

Clearly, the time and memory needed by ifort for compilation is much less than any of the poly-

hedral compilers. This is because, existing production compilers consider a very limited scope

for analysis such as a single loop-nest or consecutive loop nests that have the same bounds and

same loop order. In other words, they trade performance for the time and memory spent in

analysis to reason transformations.

The polyhedral compilers, on the other hand, consider all possible dependences in a given

SCoP to reason transformations. They thus trade time and memory for performance. In some

cases, such as for lu benchmark, the compile time (and memory requirement) can be extremely

large because of their multiple imperfectly nested loops. Since variable liberalization relies

on pruning dependences within a loop-nest (to enable loop interchange) and relaxing depen-

dences across loop-nests, it is also effective in significantly reducing both the compile time and

memory requirement, while achieving superior transformed code with effective fusion and par-

allelization. On average, var-lib achieves a reduction of 22x and 2.4x in terms of compile time

and memory requirement, respectively. Lastly, Table 5.5 also shows that var-lib achieves an

overall (application) performance improvement ranging from 1.06x in bt where the optimized

subroutine rhs only contributes 16.8% to the overall execution time of the benchmark, to 2.17x

in lu where the optimized subroutine contributes 63.1% to the overall execution time.
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5.7 Related Work
Past work has well recognized the importance of enabling important optimizations through vari-

able privatization and expansion. Variable privatization (90; 82; 91) involves creating multiple

copies of a temporary variable (scalar or a low dimension array) that is defined and used in one

of inner loops of a loop nest (i.e. has iteration-private live-ranges in that loop). Consequently,

each thread is assigned a private copy of the variable, thus eliminating races between threads

and allowing coarse-grained parallelism at an outer-loop. From a data dependence analysis per-

spective, privatization involves pruning loop-carried dependences on the temporary variables, at

the outermost loop. However, privatization only affects a single loop-nest; the data dependences

between temporary variables in different nests continue to be stringent and thus, transformation-

restricting.

While privatization is a supporting optimization for parallelism, expansion (92) is another

enabling optimization for many other transformations such as loop fusion, shifting and distri-

bution. However, it has a known drawback of significantly increasing the memory footprint. To

counteract this, the authors in (76; 77; 78) propose to perform a maximal expansion to enable

important optimizations, and then attempt to contract the expanded variables as much as possi-

ble. However, this contraction of the optimized program is not only difficult, but is sometimes

not possible in the wake of transformations such as distribution that can potentially distribute

the definition and use of expanded variables to different loops. In our work, we propose variable

liberalization that is a combination of privatization and expansion in that it achieves the benefits

of both. In liberalization, we relax dependences on temporary variables in different nests as in

privatization, thus effectively expanding those variables, but not through an actual expansion in

their dimensions.

In the past, there has also been considerable work on loop fusion using different algorithms

to find the best loops to fuse with the objective of maximizing data reuse (72; 71), minimizing

synchronization (71), reducing register pressure (73), and saving off-chip bandwidth (65). Inter-

estingly, none of these techniques have been used in existing production compilers for various

pragmatic reasons in addition to the increased compile time. These pragmatic reasons include

loops with different bounds, orders, or those that are imperfectly nested and are hard for the

compiler to optimize in real application codes. However, we show in this work that even if

these limitations were removed (most of which are non-existent in polyhedral compilers due to
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exact dependence analysis), effective fusion and consequent parallelization could still be pro-

hibited due to the occurrence of transformation-restricting dependences on temporary variables

in different nests. Thus, this work proposes variable liberalization to fill this gap.

Recently, the authors in (80) have proposed violated dependence analysis which has made

it possible to reason the correctness of an applied transformation by polyhedral compilers even

when such a transformation is built upon a relaxed set of dependences. Vasilache et al. (85) pro-

pose a framework for correcting violations to a desired transformation through other enabling

transformations such as loop shifting, index-set splitting and code motion. However, it is un-

clear that the framework will always successfully correct the transformation performed. In the

event of a failure, a different (new) transformation is applied and correction of it is attempted

iteratively, resulting in possibly multiple passes.

The authors in (84; 86) propose lazy expansion where they ignore WAW and WAR de-

pendences when finding transformations and then reason correctness using an extension to the

violated dependence analysis, called live range violation analysis. In the event of a violation,

variables are expanded as needed (lazily) to ensure correctness. Since they do not violate true

(RAW) dependences, they guarantee transformation correctness, albeit at the cost of higher

memory footprint. However, these works do not focus on loop fusion, which is crucial for per-

formance in large SCoPs. In fact, since there also exist RAW dependences across loop-nests

which are fusion-restricting, considering them for transformations without relaxation will dis-

allow fusion in the first place in the presence of temporary variables in different nests. It is

also important to note that even partial expansion and renaming can significantly (potentially

double with the fusion of just two nests) the working set in the higher levels of the memory

hierarchy by increasing the amount of data accessed in the inner loops of the nest, and thus hurt

performance. In this work, we extend the violated dependence analysis to our proposed vio-

lated transformation analysis where we can reason if the transformation has gone wrong during

the time it is being found, and immediately take corrective measures by imposing stricter con-

straints. This thus prevents subsequent passes to find a correct transformation, and does not

require any renaming or expansion.
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5.8 Conclusion
In this work, we propose variable liberalization, a compiler technique that strategically relaxes

dependences on temporary variables that impede useful optimizations such as fusion of loop-

nests. Unlike variable expansion, variable liberalization does not cause an actual expansion

of variables while enabling fusion, thus further improving the memory performance of trans-

formed programs. In our framework, we guarantee correctness through violated transformation

analysis, a technique that validates the relaxation of dependences for the purpose of the fu-

sion optimization without requiring an iterative process in achieving a correct transformation.

Experimental results demonstrate its effectiveness to achieve fusion of nests (and subsequent

parallelization of the fused nest). It can thus substantially increase data reuse in real application

programs leading to improved performance.



Chapter 6

Loop Fusion and Real Applications -
Part 2

6.1 Introduction and Motivation
In the last chapter, we identified 2 key challenges faced by the compiler when attempting to per-

form global program transformations. Also, we presented a solution to meet the first challenge,

namely, existence of transformation-limiting dependences on temporary variables across loop-

nests. In this chapter, we address the second important challenge, i.e. deciding on a cost model

to find achieve effective fusion structures that achieve best performance on current processors.

This complements the work presented in the last chapter, so as to present a complete solution to

enable effective global program transformations by the compiler.

Since we implement our solution to global program transformation in a polyhedral compiler,

we first discuss some of the limitations in traditonal compilers that are overcome by polyhedral

compilers. This justifies our choice of the latter class of compilers when attempting global pro-

gram transformations. Past work (93; 94; 95) on loop fusion using traditional compilers did

not consider loop fusion in the context of other transformations. This misses some of the bet-

ter solutions in various cases. For example, in the gemver benchmark shown in Figure 6.1(a),

traditional compilers first identify outer parallel loops and then consider loops for fusion such

that outer-loop or coarse-grained parallelism is not hurt. This approach cannot achieve fusion

of statements S1 and S2 because of unsatisfied dependences (as shown in Figure 6.1(b), and

103
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Figure 6.1: (a) the gemver kernel; (b) illegal fusion; (c) legal fusion after loop interchange in
the first loop-nest;

thus data reuse opportunity is lost. However, if loop fusion was considered in a manner cou-

pled with outer-loop parallelism and loop interchange, legal fusion could be accomplished after

interchanging loops i and j in the first loop nest as shown in Figure 6.1(c). As a result, the

transformed program now achieves both data reuse and outer-level parallelism.

In addition, in the traditional compilers, the granularity of loop fusion is an entire loop

nest. This again misses good solutions. For example, in the swim benchmark shown in Figure

6.2, the two loop nests cannot be entirely fused because of dependences between some of the

intermediate statements (S4-S12) and statements S13, S14 of the second loop nest. However,

if the granularity of loop fusion was individual statements, statements S15 and S18 that are

not dependent on any of the intermediate statements could be fused with statements S1-S3 in

the first loop nest, as shown later in Figure 6.4(b). In addition, the state-of-the-art production

compilers only consider consecutive loops for fusion in a pair-wise fusion (96), which clearly

limits their capability of achieving global reuse in the program.

The polyhedral compiler framework is markedly different from its traditional counterparts

in that, it takes a statement centric view of the entire program as against a loop-nest centric

view. This shift in the intermediate representation allows to simultaneously compose multiple

high-level loop transformations and also to reduce the granularity of fusion from loop nests to

individual statements. This enables finding effective fusion partitions that exploit data reuse in a

global program context, those that are missed by the traditional compilers as shown in the above

two examples. However, this statement centric view also results in a very large search space

of the possible fusion partitionings. The size of the search space varies exponentially with the
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Figure 6.2: the swim benchmark

number of statements, or more precisely, with the number of Strongly Connected Components

(SCCs). For example, for just the 3 statements S1-S3 in the first loop nest of swim that have no

dependences between them, there can be 3! (=6) different ways in which they can be ordered.

Further, for a particular ordering of statements (e.g., S2-S3-S1), there can be 23−1 (=4) differ-

ent partitionings1, i.e. (S2|S3,S1), (S2,S3|S1), (S2|S3|S1), (S2,S3,S1), where ‘|’ represents a

fusion partition or, in other words, it implies that statements on either side belong to different

loop nests. Thus, a total of 24 different fusion partitionings are possible for only 3 statements

considered. Similarly, if statements S13-S18 in the second loop nest are considered, there are

90 possible orderings of statements2, and for each ordering, there are 32 different fusion par-

titionings, resulting in a total of 2880 possible fusion partitionings. If all the 36 statements of

the swim benchmark are considered, the search space of possible fusion partitionings becomes

unmanageable.
1For any two consecutive statements, there exist 2 possibilities - they can either belong to the same loop nest

or not. Since, there are a total of (n-1) pairs of consecutive statements for a total of n statements, there exist 2n−1

possible fusion partitionings.
2The number of orderings of statements is not 6! (=720) because there are dependences among statement pairs

S13-S16, S14-S17 and S15-S18, respectively. As a result, some among the 720 total orderings are not legal.
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This necessitates the need for an effective cost model to find a good fusion partitioning

among all legal partitionings. However, incorporating useful optimization criteria within the

polyhedral framework for this purpose is hard as the algorithms involved are computationally

intensive (97), and the complexity increases exponentially with the number of statements. Our

experiments show that the fusion model employed in the state-of-the-art polyhedral compiler

frameworks (98; 99; 87; 100; 101) gives good performance only for kernel programs with few

statements, but performs sub-optimally for larger programs such as those in SPEC benchmark

suite. We also find that the iterative compilation framework leveraging the polyhedral model

(102; 103; 97) cannot construct the search space of legal fusion partitionings for such large

programs, as the algorithms employed are not scalable with the number of statements. In this

part of the thesis, we propose a new cost model to tackle this important problem that has eluded

the polyhedral compiler framework from effectively optimizing large programs.

The cost model employed by our fusion algorithm has 2 objective functions, (1) maximize

data reuse in the fused loop nest, and (2) preserve coarse-grained parallelism, inherent in the

source code. In our fusion algorithm, we achieve data reuse through the use of heuristics in a

pre-fusion step that absolves the polyhedral framework from the responsibility of providing an

objective function to guide loop fusion, and keeps the large programs tractable. This pre-fusion

step blends effectively with the polyhedral framework and as a result, subsequent benefits of

composing multiple loop optimizations can still be achieved. This pre-fusion step also helps

us to consider input dependences while evaluating data reuse and not just the true dependences

that constitute real edges in the Data Dependence Graph.

The objective of maximizing data reuse, however, conflicts with preserving coarse-grained

parallelism that is originally present in the source code. This is because merging multiple

statements into the same loop nest may result in a dependence carried by the outer-loop, leading

to a loss of outer-loop or coarse-grained parallelism. Thus, in our fusion algorithm, we detect

the occurrence of such a dependence between two SCCs and distribute them into separate loop

nests such that loss of data reuse is minimized and coarse-grained parallelism is preserved.

Our fusion algorithm is implemented within a source-to-source polyhedral compiler frame-

work, PLuTo. We tested our fusion algorithm, called wisefuse, using 10 benchmarks from 3 dif-

ferent benchmark suites, with the large programs from SPEC and NAS Parallel (NP) benchmark

suites and the small kernel programs from the Polybench (36) suite. Using our fusion algorithm

within the polyhedral framework, we achieve a performance improvement ranging from 1.7X
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to 7.2X for these large benchmarks over state-of-the-art fusion algorithms leveraging the poly-

hedral model. We achieve an improvement of 5% to 18% over the Intel compiler for the same

benchmarks. Results also demonstrate that our algorithm matches the performance achieved by

existing polyhedral frameworks for the kernel programs from Polybench, and in some cases we

achieve an improvement of as much as 2.1X due to coarse-grained parallelization.

The rest of the chapter proceeds as follows. Section 6.2 discusses specific background

related to loop fusion within the polyhedral framework. Section 6.3 formulates the loop fu-

sion problem and describes the legality constraints for fusion, in the context of the polyhedral

framework. Section 6.4 describes our loop fusion algorithm and discusses the heuristics used to

achieve the aforementioned objectives. Section 6.5 compares and discusses the performance re-

sults of our fusion algorithm and other state-of-the-art algorithms. The related work is presented

in Section 6.6 and we conclude in Section 6.7.

6.2 Loop fusion and the polyhedral framework
The polyhedral framework finds legal statement-wise loop hyperplanes one loop-level at a time

using an Integer Linear Programming (ILP) solver. If the ILP solver cannot find a solution at

the current loop level because of unsatisfied dependences, a cut must be issued, represented

by a scalar dimension. A cut between two SCCs essentially distributes them into different

loop nests, thus satisfying certain dependences. The most important criteria in cutting SCCs

is based on the dimensionality (depth of the enclosing loop nest) of the SCC, i.e. any two

consecutive SCCs with different dimensionalities are cut first as they are least likely to aid data

reuse. Thus, the initial ordering of the SCCs (we call, the pre-fusion schedule3) decides which

SCCs remain fused and which ones are distributed in the transformed code, and is therefore

critical in achieving a good fusion partitioning with effective data reuse.

Loop fusion within the polyhedral framework thus involves three steps

1. finding the Strongly Connected Components (SCCs) in the Data Dependence Graph,

2. determining a legal (and good) pre-fusion schedule, and

3. finding legal statement-wise loop hyperplanes one loop level at a time. This involves
3Pre-fusion schedule is called so, because this schedule or ordering of SCCs serves as a guideline for the fu-

sion partitioning obtained in the final transformed program. A fusion partitioning is the partitioning of program
statements into clusters of statements called fusion partitions, where each fusion partition represents a single loop
nest.
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issuing cuts (represented by scalar dimensions in the affine transform) between SCCs,

whose relative ordering is determined in step 2.

SCCs that do not require to be cut to satisfy dependences end up in the same fusion partition

after the above 3 steps. Thus, loop fusion is implicitly performed with the finding of the legal

loop hyperplanes, in composition with other transformations.

6.2.1 Existing fusion models in the polyhedral framework

The state-of-the-art polyhedral frameworks (PLuTo (98), PoCC (99), PolyOpt (87), LLVM’s

Polly (104)) employ an effective cost function to find statement-wise loop hyperplanes that

minimize communication volume among processors (or, reuse distance in sequential execu-

tion). However, there does not exist a useful cost function to find a good pre-fusion schedule

that eventually guides loop fusion as explained above. The existing frameworks combine steps

1 and 2, i.e. they use a depth-first traversal of the DDG to find the SCCs and the resultant order

also yields a legal (but not necessarily good) pre-fusion schedule. Existing frameworks do not

also employ an optimization criteria for data reuse in step 3 as this would require incorpora-

tion of additional constraints in the ILP formulation for finding legal hyperplanes. This may

render large programs intractable as these constraints increase exponentially with the number

of statements. The pre-fusion schedule obtained from a depth-first traversal of the DDG has 2

drawbacks.

1. It does not attempt to order statements with the same dimensionality consecutively. This

leads to sub-optimal fusion. For example, in the swim benchmark shown in Figure 6.2, the

intermediate statements S4-S12 have a dimensionality of 1, and if any of these statements

is ordered (in the pre-fusion schedule) between statements from the first loop nest and

statements S13-S18, then a cut to find legal loop hyperplanes would prevent any possible

fusion of these statements.

2. It does not order statements with an input dependence between them consecutively, or

in other words, it does not consider data reuse through the input or the Read-After-Read

(RAR) dependences. This is because the DDG (traversed to find SCCs) does not contain

edges corresponding to the input dependences as such edges restrict parallelism. The

input dependences are, nonetheless, crucial to achieve effective data reuse. For example,

in the swim benchmark, if the input dependences between statements S1, S2 and S3 are
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not considered, they would not be ordered consecutively in the pre-fusion schedule. As a

result, they would be distributed into different loop nests, leading to a loss of data reuse.

Thus, for effective loop fusion, steps 1 and 2 must be treated independently and there must be

an effective cost model to determine a good pre-fusion schedule. Lack of a powerful cost model

is a serious limitation in the existing polyhedral frameworks as a poorly chosen pre-fusion

schedule impacts all the other transformations performed. The performance impact becomes

more significant as the number of statements within a SCoP, and consequently, the number of

possible pre-fusion schedules becomes larger.

6.3 Problem Formulation
Prior to formulating the problem, we identify the different scenarios that result from fusing two

statements, each enclosed in separate loop nests. Here, we consider statements instead of loops,

because of the statement-centric view held by the polyhedral compiler. Before fusion, there is

either no dependence or a loop-independent dependence between any two statements. Fusion is

clearly legal in the former case. In the latter case, however, fusing two statements (Si and Sj)

with a loop-independent dependence can lead to 3 different scenarios.

1. The dependence remains loop independent. In the polyhedral framework, this is repre-

sented by the condition,

φSj (~t)− φSi(~s) = 0, 〈~s,~t〉 ∈ P
eSi→Sj (6.1)

Clearly, this does not violate the constraint in Equation (2.4) presented in Chapter 2, and

thus fusing statements Si and Sj is legal. Such a dependence allows the loop to be a

parallel loop and is called a precedence or a fusion-permitting dependence.

2. The dependence can become a backward loop-carried dependence. This is represented

by the condition,

φSj (~t)− φSi(~s) < 0, 〈~s,~t〉 ∈ P
eSi→Sj (6.2)

This dependence violates the constraint in Equation (2.4), i.e. there is at least one instance

or loop iteration that does not preserve the direction of the dependence, and thus fusing

the two statements is illegal. Such a dependence is called a fusion-preventing dependence.
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3. the dependence can become a forward loop-carried dependence. This is represented by

the condition,

φSj (~t)− φSi(~s) > 0, 〈~s,~t〉 ∈ P
eSi→Sj (6.3)

This dependence satisfies the constraint in Equation (2.4), i.e. it preserves the direction

of the dependence, and thus leads to a legal fusion. However, it leads to a forward de-

pendence or non-parallel loop. Although we call it a precedence dependence (following

previous works), this dependence may also be considered as a fusion-preventing depen-

dence if the goal is to preserve parallelism.

With this background on the different types of dependences, we next formulate the loop

fusion problem.

In the past, the loop fusion problem has been formulated as a graph partitioning problem

(105; 93), where the goal was to partition all loops into disjoint clusters, each cluster represent-

ing a set of loops to be fused. However, in the context of the polyhedral compiler framework

that takes a statement-centric view, this formulation needs an adjustment in that each vertex of

the graph corresponds to a statement instead of a loop. The relations between statements are

represented by a directed graph G = (V,E = F ∪ F̄ ), where each statement corresponds to a

vertex v ∈ V of the graph. Edges in E are classified into fusion-permitting edges (edges in F )

and fusion-preventing edges (edges in F̄ ). The problem is thus formulated as one of finding a

fusion partitioning, i.e partitioning V into clusters of statements that can be legally fused. The

partitioning V is legal, subject to the following legality constraints. These constraints together

ensure that all dependences are lexicographically positive.

1. Statements in the same SCC belong to the same fusion partition.

2. Precedence constraint - The ordering of SCCs in the partitioned graph (that corresponds

to the fused program) must respect all dependences between statements.

3. Fusion-preventing constraint - The fusion partitioning should not result in any loop-

carried backward dependence, i.e. statements connected by an edge in F̄ must belong to

different fusion partitions.

To ensure the satisfaction of the first constraint, the first step in the fusion algorithm (listed

in Section 6.2) involves determining SCCs in the source program. Satisfaction of this constraint
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Figure 6.3: (a) Original source code for advect; (b) Fully fused advect without shifting (incor-
rect code); (c) Fully fused advect with shifting (correct code)

is ensured by ordering SCCs instead of statements in the further steps that achieve some opti-

mization criteria. The ordering of SCCs must satisfy the precedence constraint to ensure that

a legal partitioning exists that leads to correct execution. Thus, the pre-fusion schedule that

decides the initial ordering of SCCs (step 2 in the fusion algorithm) must satisfy the precedence

constraint. However, a pre-fusion schedule that satisfies the precedence constraint may still lead

to a partitioning where there is a loop carried backward dependence between two statement in-

stances in a partition. Such a partitioning is not legal. For example, fusing all four statements of

the advect benchmark as shown in Figure 6.3(b), leads to a loop-carried backward dependence,

although the precedence constraint is satisfied.

In such a scenario, the polyhedral framework would either apply the loop shifting transfor-

mation to remove the backward dependence or issue a cut between statements to satisfy the de-

pendence. In other words, if the pre-fusion schedule satisfies the precedence constraint, then the

polyhedral framework guarantees legal fusion partitioning that satisfies the fusion-preventing

constraint.

In case of the advect benchmark, legality is ensured through shifting S4 by 1 iteration and

thus removing the backward dependence as shown in Figure 6.3(c). As a result of applying



112

the shifting transformation, the backward dependence from S4 to statements S1-S3 turns into

a forward dependence from statements S1-S3 to S4. This renders the outer loops i and j as

forward dependence loops, or in other words, coarse-grain parallelism is lost as shown in Figure

6.3(c).

Thus, the problem of loop fusion within the polyhedral framework can be formulated as one

of finding a pre-fusion schedule that satisfies the precedence constraint. In addition to legality,

the criteria for deciding good partitions is two-fold, maximizing data reuse and parallelism.

In the following section, we propose a fusion algorithm that achieves precisely these two key

objectives in the polyhedral framework.

6.4 Our Fusion Algorithm
As explained in previous sections, a pre-fusion schedule or the initial ordering of the SCCs has

a significant bearing on the fusion partitioning achieved in the transformed program. In this

section, we first describe our algorithm (Algorithm 3) for finding a good pre-fusion schedule

and the heuristics underlying the algorithm. We use the same example of the swim benchmark

shown in Figure 6.2 to elucidate our algorithm. We next describe Algorithm 4, which is used to

achieve the second objective of preserving coarse-grained parallelism in the transformed code.

We use the example of the advect benchmark introduced in Section 6.3 for the purpose of

explanation.

6.4.1 Algorithm 3: Finding a good pre-fusion schedule

A good pre-fusion schedule is one that orders the SCCs so that, SCCs with significant reuse

between them are merged in the same loop nest in the transformed code. In order to achieve a

good pre-fusion schedule, the ordering of SCCs is done based on the following criteria:

• Constraint: The ordering must respect the precedence constraint among the SCCs

• Heuristic 1: SCCs that allow data reuse and have the same dimensionality are ordered

consecutively

• Heuristic 2: SCCs are considered for re-ordering in the original program order

The above criteria does not necessarily lead to a fusion partitioning that maximizes data

reuse, but it does lead to one that has significant data reuse.

Rationale for the chosen heuristics. As explained in Section 6.3, even with the satisfaction

of the precedence constraint, there may be fusion preventing dependences between statements

and hence some SCCs will need to be cut to satisfy those dependences. The heuristics chosen
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Figure 6.4: Our fusion model: (a) Partial DDG for swim and pre-fusion schedule from Algo-
rithm 3; (b) Fused code corresponding to (a); (c) Pre-fusion schedule chosen by PLuTo; (d)
Fused code corresponding to (c)

are such that they aim to minimize loss of reuse through these inevitable cuts. Since the first and

the most important criteria of issuing a cut is based on the dimensionality of the SCCs, heuristic

1 ensures that SCCs that have reuse remain immune to a cut with high probability. Also, since

data reuse through input dependences is considered, we achieve better overall data reuse. This

is possible mainly because we decouple the pre-fusion scheduling from the step where the DDG

(with only true dependences) is traversed to find the SCCs. Heuristic 2 allows more SCCs to be

fused together into a single loop nest. The reason is that, if SCCs close to each other in original

program order are fused, then it increases the probability of following SCCs to become legally

fusable because the precedence constraint is satisfied. Also, SCCs that are close to each other

tend to have higher reuse through reads to the same data items.
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ALGORITHM 3: Finding a good pre-fusion schedule
1: INPUT:

List of statements in the program: S(1, ..., n)
Adjacency matrix representing true dependences: adj(1,..,n)(1,..,n)
Adjacency matrix representing input dependences: RARadj(1,..,n)(1,..,n)
List of statements belonging to an SCC that contains statement s: SCCs

2: begin
3: Initialize id to 0
4: for each statement s ∈ S do
5: visited(s) = 0
6: for each statement s ∈ S do
7: if visited(s) = 0 then
8: fusable = ∅ {/* where fusable is the list of statements, fusable with statement s */}
9: for each statement t ∈ SCCs do

10: visited(t) = 1
11: sccId(t) = id
12: Add t to fusable
13: Increment id by 1

{/* Lines 16, 17, 18 check for dimensionality, reuse and precedence constraint resp.
*/}

14: for each statement t ∈ S s.t. visited(t) = 0 ∧ dimension(s) = dimension(t) do
15: if ∃ i ∈ fusable, s.t. adj(i, j) = 1 ∨RARadj(i, j) = 1, ∀ j ∈ SCCt then
16: if @ s′ ∈ S, s.t. adj(s′,t′) 6= 0, ∀ t′ ∈ SCCt then
17: for each statement t′ ∈ SCCt do
18: visited(t′) = 1
19: sccId(t′) = id
20: Add t′ to fusable
21: Increment id by 1
22: end
23: OUTPUT: Pre-fusion Schedule
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Explanation of the algorithm. In order to find a pre-fusion schedule, it is essential that

the Strongly Connected Components are first extracted from the Data Dependence Graph. This

is done using the Kosaraju’s algorithm (106) as in existing polyhedral compiler frameworks.

But, our fusion algorithm determines the pre-fusion schedule in a separate step. The choice of

the pre-fusion schedule is made to meet the above-mentioned three criteria. For this purpose,

Algorithm 3 begins a traversal of the DDG in program order. For a statement s thus ‘visited’,

Algorithm 1 finds an ‘unvisited’ statement t (i.e. visited(t) = 0) with the same dimension

and that also has data reuse with statements already marked as fusable with statement s. The

algorithm further checks to see whether t satisfies the precedence constraint. The precedence

constraint is satisfied if no statement t′ belonging to the SCC that contains t (SCCt) depends

on an ‘unvisited’ statement node s′, i.e. adj(s′,t′) 6= 0. If the precedence constraint is thus

satisfied, all statements belonging to SCCt are marked visited, assigned the next higher id than

SCCs and put into the set, fusable. This ensures that the reordering of SCCs achieved satisfies

all 3 criteria. The heuristics used can be seen in play for the swim benchmark in Figure 6.4.

Figure 6.4 compares the pre-fusion schedule obtained from Algorithm 3 with that achieved

by the state-of-the-art pre-fusion scheduling algorithm used in PLuTo. The other existing poly-

hedral compilers such as PoCC (99), PolyOpt (87), LLVM’s Polly (104) all use the fusion

algorithm described by Bondhugula et al. in their paper (107) and implemented in their tool,

PLuTo. The fusion algorithm employed in PLuTO uses a depth-first traversal to find and order

the SCCs. Figures 6.4(a) and (c) show the partial DDG for the same code excerpt of the swim

benchmark shown earlier in Figure 6.2. The values in square brackets are the SCC id for the 36

statements of the swim benchmark, and are representative of the pre-fusion schedules chosen by

Algorithm 3 and PLuTo, respectively. Since Algorithm 3 also considers reuse through the input

dependences, the DDG in (a) also shows input dependences marked with dashed lines. Figures

6.4(b) and (d) show the transformed codes for swim generated from the pre-fusion schedules

given by Algorithm 3 and PLuTo, respectively. From the figures, following observations can be

made about the pre-fusion schedule obtained from Algorithm 3.

1. Statement S18 is scheduled immediately after statement S15 as there is an opportunity for

reuse and the precedence constraint is satisfied. Since both S15 and S18 have the same

dimensionality, they remain fused in the transformed code shown in Figure 6.4(b). This

opportunity for reuse is missed by the fusion model used in PLuTo since statement S27

(SCCid=3) with a different dimensionality is scheduled immediately after S15 (SCCid=2),
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as shown in Figure 6.4(c).

2. Reuse through input dependences is considered. As a result, statements S1, S2 and S3

that have reuse through input dependences and the same dimensionality are ordered next

to each other as shown in (a). This allows them to be fused in the transformed code as

shown in (b). Again, this opportunity for significant data reuse is missed by PLuTo. It

schedules these 3 statements separately because they are disconnected in the DDG as

shown in (c).

3. Ordering SCCs that are close to each other in program order consecutively, allows more

statements to be fused together in the same loop nest because of satisfaction of precedence

constraint. For example, statements S1, S2 and S3 were considered in program order.

Since S3 was already scheduled, it created the opportunity for statements S15 and S18 to

also be fused in the same loop nest because the precedence constraint was satisfied. As

a result, 5 statements could be fused together in the same loop nest as shown in (b), thus

allowing significant data reuse. In contrast, a maximum of 2 statements are fused in a

loop nest using the fusion model in PLuTo as shown in (d).

4. Statements S13, S16 and statements S14, S17 could not be fused with the other statements

in the first loop nest, as these statements depend on the intermediate statements (S4-S12,

that update the variables at grid boundary). In other words, scheduling these statements

with the other statements violates the precedence constraint and thus are distributed into

a different loop nest.

6.4.2 Algorithm 4: Enabling Outer-level Parallelism

As explained in Section 6.2, in the polyhedral framework, legal statement-wise hyperplanes

are found one loop-level at a time using an ILP solver. The cost function used aims to find

a loop hyperplane that minimizes the communication traffic among processors. As a result, it

first aims to find a hyperplane that involves no communication, i.e. an outer-parallel loop. If

no communication-free hyperplane can be found, a pipelined-parallel (or, forward dependence)

hyperplane with constant communication cost is found. This was seen in the case of advect

benchmark as shown in Figure 6.3(c).

The pre-fusion schedule obtained from Algorithm 3 leads to a partitioning that is legal and

achieves good reuse. However, this may deprive the transformed code of outer-loop parallelism
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because of the introduction of a forward dependence at the outermost loop, between two of the

fused statements. Although, with the outermost loop becoming a forward-dependence loop,

pipelined parallelism can still be achieved (for example, in the advect benchmark), but the

performance can be far from optimal because of increased communication costs. Algorithm 4

thus aims to preserve parallelism in the outermost loop to enable a coarse-grained parallel code,

although at a cost of some loss of data reuse.

ALGORITHM 4: Enabling outer-level parallelism
INPUT:
List of dependences in the program: deps
begin
{For the first non-serial loop hyperplane, h, found by the ILP solver}
for each dependence, Si → Sj , ∈ deps do

if Si → Sj is not satisfied at loop-level h ∧ φhSj
(~t)− φhSi

(~s) > 0, 〈~s,~t〉 ∈ P
eSi→Sj then

Issue a cut between SCCs containing statements Si and Sj
Discard the found hyperplane, and solve for a new hyperplane with the updated DDG

end
OUTPUT: Fusion with possible outer-level parallelism

For the pre-fusion schedule determined through Algorithm 3, the ILP solver starts finding

legal loop hyperplanes. For the first non-serial4 loop hyperplane thus found, Algorithm 4 checks

for any unsatisfied forward-dependence at that loop level. A forward dependence between two

statement instances is determined through the inequality in Equation 6.3. An existence of a

forward-dependence implies a forward-dependence outermost loop. To satisfy the dependence

and thus to generate a parallel outermost loop, we issue a cut between the dependent SCCs, and

re-solve for a new hyperplane with the updated dependence information in the DDG. This may

be repeated until all dependences are satisfied and outer-loop parallelism is restored. Since we

issue the cut between SCCs carrying the actual dependence and not arbitrarily, the transformed

code is minimally distributed, or in other words, it suffers minimal loss of data reuse. This

can be seen in the transformed code for the advect benchmark generated from Algorithm 4 as

shown in Figure 6.5. Statements S1, S2 and S3 are still merged in the same loop nest and enjoy

reuse through reads, while only statement S4 is distributed into a different loop nest. Thus,

coarse-grained parallelism is achieved with a minimal loss of reuse. The existing polyhedral
4a serial loop hyperplane cannot be parallelized
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Figure 6.5: Transformed advect code generated using Algorithm 4

frameworks, on the other hand, perform maximal fusion after loop shifting leading to loss of

coarse-grained parallelism as shown in earlier in Figure 6.3(c).

6.5 Experimental Evaluation
We implemented our fusion algorithm within PLuTo. We replaced its algorithm for finding the

pre-fusion schedule with ours, and also incorporated our algorithm for preserving the coarse-

grained parallelism. However, for the purpose of finding loop hyperplanes, we rely on the same

cost function as used in PLuTo and described in (108).

6.5.1 Setup

Fusion Model Description
Intel Compiler Fusion within Intel compiler (baseline)

wisefuse Our fusion model

smartfuse
The default fusion model in PLuTo.

It uses heuristics to ‘cut’ or distribute SCCs into different loop nests

nofuse
Another fusion model implemented in PLuTo.
It separates all SCCs into different loop nests.

maxfuse
Another fusion model implemented in PLuTo.

It conservatively distributes SCCs into different loop nests

Table 6.1: Summary of the fusion models

We ran our experiments on an Intel Xeon processor (E5-2650) with 8 Sandy Bridge-EP

cores, operating at 2.0GHz. The processor has private L1 (32KB per core) and L2 (256KB per
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core) caches and a 20MB shared L3 cache. The experimental results compare the performance

between our fusion algorithm and the one used within PLuTo that employs three different fusion

heuristics. We compare against all the three heuristics used. The reason for comparing with

PLuTo, as explained before, is that various other automatic polyhedral frameworks such as

(99; 87; 104) use the same fusion algorithm as in PLuTo, and others (101; 109) use its variants.

Since PLuTo cannot parse Fortran code, we integrated our fusion model with PolyOpt/Fortran

(87), a tool that uses ROSE compiler (88) frontend to parse Fortran code and relies on PLuTo to

accomplish loop fusion. A summary of the different fusion models compared in this section is

given in Table 6.1. The transformed code generated using different fusion models was compiled

using the Intel compiler v13 (icc and ifort) as the backend compiler. The compile time options

used with the Intel compiler were ‘-O3’ and ‘-parallel’. The original source, automatically

parallelized using the Intel compiler and with all high level optimizations including loop fusion

enabled, was used as the base case for comparison.

6.5.2 Benchmarks

The benchmarks used in the experiments belong to three different benchmark suites. We chose

large programs from the SPEC and the NAS Parallel (NP) benchmark suites. The small kernel

programs were chosen mainly from Polybench and PLuTo. These are summarized in Table

6.2. In the table, the first five benchmarks correspond to the large programs, and the last five

represent small kernel programs.

Benchmark Benchmark Suite Category Problem Size
gemsfdtd SPEC 2006 Computational Electromagnetics Reference Input

swim SPEC OMP Shallow Water Modeling Reference Input
applu SPEC OMP Computational Fluid Dynamics Reference Input

bt NPB Block Tri-diagonal solver CLASS C; (162)3, dt = 0.0001
sp NPB Scalar Penta-diagonal solver CLASS C; (162)3, dt = 0.00067

advect PLuTo Weather modeling nx=ny=nz=300
lu Polybench Linear Algebra N=1500
tce Polybench Computational Chemistry Standard; (55)3

gemver Polybench Linear Algebra N=1500
wupwise SPEC OMP Quantum Chromodynamics Reference Input

Table 6.2: Summary of the benchmarks
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6.5.3 Results and Discussion

Figure 6.6 shows the normalized performance with respect to the Intel compiler achieved us-

ing different fusion models on the different benchmarks considered. Each of the codes was

run using all 8 cores on the test processor. The figure also shows the geometric mean (repre-

sented as GM in Figure 6.6) of the performance achieved by different fusion models over the 10

benchmarks - wisefuse achieves a performance improvement of 1.3X over the Intel compiler.

Figure 6.6: Results

For the purpose of discussing our experimental results, we divide the benchmarks into three

categories, (1) the large benchmark programs, (2) the programs where fusion leads to a loss of

parallelism, and (3) small kernel programs.

Large Benchmark Programs. Large programs tend to have multiple loop nests, with the

potential to serve as ideal playground for the polyhedral compilers. However, ironically, none

of the polyhedral frameworks has yet demonstrated success with large programs. As explained

earlier, a fundamental reason for this is the lack of an effective cost model for loop fusion, which

in turn hurts all other transformations.

Figure 6.6 shows that our fusion algorithm, wisefuse, achieves a performance improvement
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in the range of 1.7X to 7.2X as compared to smartfuse for the large programs, and an improve-

ment of 5-18% over the Intel Compiler. It is important to note that This performance improve-

ment is attributed to the better fusion partitioning achieved by wisefuse, with the amount of

improvement achieved being a function of the reuse opportunity available in the source pro-

gram. For large programs, only a part of the program usually provides fusion opportunity. For

example, wisefuse improves UPMLupdatee and UPMLupdateh routines in gemsfdtd benchmark

by nearly 1.5X, but the overall program by only 1.18X. Similar is the case with APPLU, SP and

BT benchmarks. The following discussion provides further insight into the results obtained.

Figure 6.7: Partitioning achieved by different fusion models for the gemsfdtd benchmark (values
in each column are spaced out for readability)

Figure 6.7 compares the fusion partitioning achieved by icc, smartfuse and wisefuse, for the

UPMLupdateh subroutine in the gemsfdtd benchmark. The UPMLupdateh and another similar
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subroutine, UPMLupdatee, together account for 45% of the total execution time in gemsfdtd.

In the figure, the second column shows the dimensionality of each SCC within UPMLupdateh,

and columns 3 through 5 show the partition number to which each SCC belongs to, in the

transformed codes obtained from different fusion strategies. The SCCs with the same partition

number in the figure are fused in the same loop nest in the transformed code. It can be seen

that wisefuse minimizes the number of partitions and thus, in effect achieves maximum reuse.

All the SCCs fused together have reuse not only through true dependences but also through

input dependences. The key to fusing more SCCs together is that wisefuse chooses a pre-fusion

schedule such that SCCs with the same dimensionality are ordered next to each other, increasing

the probability for them to be fused together into perfect loop nests. For example, all SCCs

with a dimensionality of 2 are perfectly fused in the transformed gemsfdtd code generated using

wisefuse.

Also, wisefuse employs another heuristic - it fuses SCCs close to each other in program

order as such SCCs tend to reuse more data and this also leads to effective fusion. This was

observed in applu, bt and sp benchmark applications, where wisefuse fused SCCs that belonged

to the same pass (x-, y- or z-pass) and thus enjoyed excellent reuse through the input depen-

dences. Smartfuse on the other hand, fused statements across different passes, which although

led to reuse through the true dependences, deprived it from achieving better reuse among the

SCCs close in program order. This led to overall poor reuse achieved through smartfuse in such

programs.

For all the large programs, icc largely maintains the original program order and doesn’t

accomplish any fusion. This is because icc performs a pair-wise fusion (96), where pairs of

loops are fused incrementally to prevent exponential cost of finding all fusion choices. However,

when successive loops are of different dimensionality as in the gemsfdtd benchmark, icc does

not fuse them. This is because fusing loop nests of different dimensionality does not lead to

significant reuse and the fused nest may contain conditional statements that hinders compiler

auto-vectorization. Wisefuse, instead, reorders statements such that those with (reuse and) the

same dimensionality are ordered consecutively in a pre-fusion step for them to be considered

for fusion. This allows us to achieve both global reuse (as seen in Figure 6.6) and is effectively

vectorized by the backend compiler. As compared to icc, smartfuse generally performs worse

due to lack of a cost model to determine a good pre-fusion schedule.

Programs with Conflict between Fusion and Parallelism. In the case of advect and swim
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benchmarks, a maximal fusion leads to a loss of outer-loop parallelism. In these benchmarks,

wisefuse detects the SCCs that carry a forward dependence on the outer-loop and selectively dis-

tributes them to different loop nests as was shown earlier in Figure 6.5 for the advect benchmark.

Both smartfuse and maxfuse fusion strategies apply maximal fusion in these cases resulting in

a loss of outer-loop parallelism. Although the transformed codes generated by smartfuse and

maxfuse fusion strategies are pipelined parallel, they perform worse than wisefuse because of

the constant communication costs involved after the parallel execution of each wavefront. It is

for the same reason that the transformed code generated by wisefuse scales better than smart-

fuse, and the performance gap increases with the increase in the number of processors. Wisefuse

also slightly outperforms icc (that achieves no fusion) because of the better reuse accomplished

in each case.

Small Kernel Programs. Among the various small kernel programs from the Polybench

benchmark suite, we chose lu and tce benchmarks as these two benchmarks particularly provide

an opportunity for fusion and also reveal the limitations of the current non-polyhedral compil-

ers. The lu benchmark implements the Gaussian elimination algorithm that converts a system

of linear equations to a unit upper-triangular system. Thus, the lu benchmark exhibits a non-

rectangular iteration space, or in other words, non-conformable loop bounds. As a result, icc

adopts a conservative approach and does not achieve coarse-grained parallelization. The poly-

hedral frameworks, on the other hand, armed with exact dependence information, are able to

find available parallelism even in benchmarks with non-rectangular iteration spaces such as lu.

Both smartfuse and wisefuse achieve the same fusion partitioning and consequently the same

performance, that is considerably better than icc.

The tce kernel appears in computational quantum chemistry problems. It contains 4 loop

nests with significant reuse opportunity among statements. However, since each loop nest

contains loops in different order, the non-polyhedral compilers such as icc cannot find a con-

formable pattern to accomplish loop fusion. The polyhedral compilers, on the other hand, find

common loop hyperplanes for the different statements and thus achieve loop fusion. Again,

both wisefuse and smartfuse yield similar fusion partitions. Similarly, for other benchmarks

from the Polybench benchmark suite, wisefuse achieves the same fusion partitioning as smart-

fuse, proving the effectiveness of the heuristics employed by wisefuse even for small kernel

programs.

The gemver benchmark considered earlier shows interesting behavior with different fusion
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models. Both wisefuse and smartfuse achieve identical fusion partitioning. However, they

perform worse than both the icc and nofuse fusion models for the chosen problem size. The

Intel compiler, like the nofuse fusion model does not accomplish any fusion, i.e. all 4 statements

in gemver are left unfused. Wisefuse and smartfuse fuse statements S1 and S2, but at the cost

of spatial locality in the two statements. Nofuse outperforms icc as icc fails to achieve coarse-

grained parallelism in the loop nest enclosing statement S2. It is for this reason that the fusion

partitioning accomplished by wisefuse and smartfuse is still better than that achieved by icc as

loss of coarse-grained parallelism in even one loop nest hurts scalability when the number of

processors are increased.

Among small programs, we also chose the wupwise benchmark. Although from the SPEC

OMP benchmark suite, 60% of its execution time is spent executing the zgemm subroutine,

which is nothing but complex matrix-matrix multiplication. However, within the SPEC suite,

it is written as a collection of imperfect nests (loop nests of different dimensionality) and also

involves data-dependent control flow. Although a recent work (110) has made data-dependent

control flow amenable for the polyhedral frameworks through the use of predicates, no available

implementation exists for the same. We implemented the predication strategy as proposed in

(110) and were thus able to optimize the wupwise benchmark. Since wupwise consists of im-

perfect nests, wisefuse distributes them into different perfect loop nests so as to achieve better

data reuse. This results in a serial performance improvement of 20% over icc, that avoids loop

distribution given imperfect nests. However, interestingly, the performance improvement goes

up to 40% for 8 cores. This was because, loop distribution allowed it to selectively parallelize

loop nests, as not all loops nests contain enough computation to benefit from the parallelization.

Thus, this proved to be an additional advantage of using the heuristic that favors the fusion of

SCCs with the same dimensionality.

6.6 Related Work
In this section, we present the related work on loop fusion in 2 phases - the work done prior

to the advent of the polyhedral compilers, and work done within the domain of polyhedral

compiler framework.

Loop fusion has been extensively studied in the compiler community as an effective op-

timization to improve data reuse since its advent in 1980’s. Since then, loop fusion has been

studied to achieve complementary goals of preserving parallelism, minimizing register pressure
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and minimizing synchronization. Kennedy et al. in (93) study loop fusion to preserve par-

allelism while minimizing synchronization. They also show that finding fusion partitions that

maximize data reuse is an NP-hard problem, and provide a polynomial time solution to improve

data reuse. In their formulation, Kennedy et al. represent data reuse by an edge between loops

(nodes), whereas Ding and Kennedy (96) later gave another formulation based on the hyper

graph where the computation units are represented as nodes, and each data array is represented

as a hyper edge connecting all nodes where the array is accessed. These works thus treated

the two problems of preserving parallelism and maximizing reuse independently. Singhai and

McKinley in (94) consider these two problems together and use heuristics to find solutions that

achieve good reuse and preserve parallelism. Megiddo and Sarkar in (95) target the same prob-

lem and show that optimal solutions can be found using their proposed integer programming

formulation for problem sizes that occur in practice. In both of these works, the parallel loop

nests are already identified and the problem reduces to merging loop nests such that parallelism

is not hurt. This decoupling of loop fusion and parallelism misses certain good solutions. In ad-

dition, fusion and parallelism are sometimes enabled only after other loop transformations such

as skewing, interchange, shifting, etc. are applied. This composition of high-level transforma-

tions is not facilitated within the traditional compiler frameworks, leading to the development

of the polyhedral compiler framework.

The state-of-the-art fully automatic fusion algorithm (107) within the domain of polyhedral

compilers is employed in the source-to-source compilation tool, PLuTo (98). It subsumes pre-

vious work in affine scheduling (111; 112; 113; 114) and partitioning (115; 116) and overcomes

their major limitation by incorporating an effective cost model for coarse-grained paralleliza-

tion and data locality. The fusion algorithm employed within PLuTo is also used by various

other polyhedral frameworks including PoCC, PolyOpt, LLVM’s Polly and IBM’s XL com-

piler. However, as discussed in our motivation to this work, it lacks a cost model to determine

good pre-fusion schedules leading to suboptimal fusion partitions, especially for large programs

with many statements. Recently, the fusion algorithm used in PLuTO was revised (117), that

also aims to preserve coarse-grained parallelization while allowing loop fusion. However, their

approach, in addition to relying on a suboptimal pre-fusion schedule, may lead to significant

loss of reuse in order to preserve parallelism. This is because, unlike wisefuse that precisely

distributes only the SCCs preventing parallelism to minimize loss of reuse, the proposed ap-

proach in (117) uses heuristics and may end up in excessive distribution to restore parallelism.
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In order to find the best fusion partitioning, the authors in (102; 103; 97) have proposed iter-

ative compilation framework leveraging the polyhedral model. The authors propose techniques

to build a convex space of all legal and non-redundant fusion partitions, and an optimization

algorithm to explore this space. This technique has been shown to find the optimal fusion

schedule for small benchmark programs through iterative search. However, we observed that

the iterative compilation framework fails to build the search space for even moderately sized

programs because the search space grows exponentially with the size of the program. We pro-

pose a fusion algorithm with a static cost model to achieve data reuse and preserve parallelism

and thus helps to overcome this limitation, especially for programs with many statements.

In addition, URUK/WRaP-IT (118; 119) and CHiLL (39) are other well known tools that

use the polyhedral representation to perform various high level optimizations. However, both of

these tools are semi-automatic, and require transformations to be specified manually by an ex-

pert. The authors of URUK in (118) also achieve performance improvement for some large pro-

grams from the SPEC benchmark suite. Our fusion algorithm, on the other hand, demonstrates

performance gains on such large programs through a fully automatic application of polyhedral

techniques by incorporating an effective cost model for loop fusion.

6.7 Conclusion
In this work, we presented a loop fusion algorithm, wisefuse, with 2 objective functions - max-

imizing data reuse and preserving parallelism. To achieve data reuse, wisefuse employs certain

heuristics in a pre-fusion step that work in consonance with the polyhedral framework and help

to find good fusion partitions. In addition, wisefuse ensures that coarse-grained parallelism in-

herent in the source code remains preserved as aggressive loop fusion may lead to a loop-carried

dependence on the outer-loop that prevents parallelism. Experimental results demonstrate that

wisefuse achieves good fusion partitions not only for the small kernel programs but also the

large benchmark programs. Wisefuse thus allows to overcome a major limitation in the existing

polyhedral frameworks in handling large programs.



Chapter 7

Addressing Scalability: Optimizing
Large Programs at an Easy Price

7.1 Introduction
Compiler scalability is a well known problem: precise analysis of large program scopes to rea-

son the correctness of optimizations leads to an exponential increase in the compile time and

memory requirement. As a result, production compilers choose to limit optimization to small

scopes. In other words, they trade performance for compile time (and programmer productivity

(120)). However, with the onset of the era of multiple (many) cores of chip and correspond-

ing accentuation of the memory and bandwidth wall, there is renewed focus on compiler op-

timizations for improving the memory performance. These optimizations particularly include

temporal locality enhancing optimizations such as loop fusion, and other supporting optimiza-

tions such as loop interchange and shifting. As a result, analyzing large program scopes to

exploit data reuse opportunities spanning multiple nests of loops, or in other words, performing

global program transformations, is necessitated. In fact, our experiments and previous work

confirm the immense potential for improving the memory (and hence, parallel) performance of

applications through such global program transformations.

Previous work on compiler scalability has focused upon either reducing the cost of analyz-

ing each dependence or the number of dependences to be analyzed, or both. The compilers

perform such an analysis to find the Program Dependence Graph (PDG) (121). The PDG can

then be used further to reason the application of program optimizations. However, it is this step

127
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for(i=0;i<N;i++) { 
 for(j=0;j<N;j++) { 

  for(k=0;k<N;k++) { 
   S1: c1 = 0.5 * rho[i][j][k]; 
   S2: flux1[k] = c2 * u[i][j][k]; 
   S3: flux2[k] = c1 * u[i][j][k]; } 

  for(k=1;k<N-1;k++) { 
   S4: rsd1[i][j][k] = rsd1[i][j][k] - c3 * (flux1[k+1] - flux1[k-1]); 
   S5: rsd2[i][j][k] = rsd2[i][j][k] - c4 * (flux2[k+1] - flux2[k-1]); } 

}} 

for(i=0;i<N;i++) { 
 for(k=0;k<N;k++) { 

  for(j=0;j<N;j++) { 
   S6: c5 = 0.5 * rho[i][j][k]; 
   S7: flux1[j] = c6 * u[i][j][k]; 
   S8: flux2[j] = c5 * u[i][j][k]; } 

  for(j=1;j<N-1;j++) { 
   S9: rsd1[i][j][k] = rsd1[i][j][k] - c7 * (flux1[j+1] - flux1[j-1]); 
   S10: rsd2[i][j][k] = rsd2[i][j][k] - c8 * (flux2[j+1] - flux2[j-1]); } 

} }
                  (a)

for(i=0;i<N;i++) {
 for(j=0;j<N;j++) {

  for(k=0;k<N;k++) {
   c1, flux1[k] = c1  }

  for(k=1;k<N-1;k++) {
   rsd1[i][j][k] = rsd1[i][j][k], flux1[k+1], flux1[k-1] }

}}

for(i=0;i<N;i++) {
 for(k=0;k<N;k++) {

  for(j=0;j<N;j++) {
    c5, flux[j] = c5 }

  for(j=1;j<N-1;j++) {
   rsd[i][j][k] = rsd1[i][j][k], flux1[j+1], flux1[j-1] }

}}
                       (b)

Figure 7.1: (a) Original program; (b) Representative program with condensed set of statements and
dependences

of finding optimization, especially when it involves large scopes such as in loop fusion, that is

much more time (and memory) consuming than merely analyzing dependences. For example,

optimizing the computationally-intensive subroutine, rhs (containing 106 statements within 3

large loop nests), in the applu benchmark application from the SPEC OMP2012 Suite consumes

nearly 3 hours using the PLuTo polyhedral compiler whereas the instance-wise dependence

analysis takes less than a second. Similar is observed in multiple scientific applications that

contain significant opportunity for data reuse through global program transformation. Thus, we

conclude that the real problem of finding good global program transformations in a scalable (i.e.

time- and memory-efficient) way has not been addressed by the compiler community.

Having evolved over the last two decades, polyhedral compilers, armed with exact de-

pendence analysis and seamless transformation composition, have proven adept at performing

global program transformation. This is especially useful because their traditional counterparts

(including production compilers such as gcc and icc) are plagued by some of the artificial limita-

tions such as non-conformable loop bounds, limitations of phase ordering and difficulty in com-

posing transformations. This has restricted them to optimizing individual loops, or fuse consec-

utive loops with same loop bounds and loop order. However, while the polyhedral compilers

have shown promise in effectively optimizing large scopes (89), the compile time and memory

requirement is prohibitively expensive. The unscalability in polyhedral compilers stems from

massive (fifth degree polynomial) increase in compile time with the number of statements (122).

This unscalability of the employed techniques in polyhedral compilers has thus been recognized

as a key problem in the community.
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In this work, we address the scalability problem within a polyhedral compiler1. The essen-

tial ideas of our technique can be understood by an example program, shown in Figure 7.1a.

The example program is constructed to represent some of the characteristic features in appli-

cation programs. These features include updating the value arrays such as rsd1 and rsd2, and

also frequent use of temporary variables such as flux1 and flux2 as shown in the figure.

The first important insight that leads to our proposed strategy is that statements within the

same Strongly Connected Component (SCC) at a given loop-level undergo the same transfor-

mation at that level. Hence, statements within an SCC at the innermost loop-level undergo

the exact same transformation in the transformed program at all loop-levels. For example, the

statements S2 and S4 belong to the same SCC at loop-level j of the nest, and therefore have

the same transformation until then, but differ later on. However, statements S1 and S3 belong

to the same SCC at the innermost loop-level k, and thus remain perfectly fused at the inner-

most loop also. Thus, we call an SCC at the innermost loop-level as an ‘Optimization atom

(O-atom)’ since it is smallest block of statements that becomes part of an optimization and all

statements within this block are optimized similarly. We can therefore represent an O-atom

with a single representative statement (Srep), and force all other statements in the same atom

to have the same transformation as Srep. Thus, the entire program can be seen as a collec-

tion of O-atoms instead of statements. Furthermore, this coarsened granularity can be used to

prune dependences. That is, dependences that have the same source and destination O-atoms,

and the same dependence distance are clubbed into a single class with a single representative

dependence Drep. Since many dependences have small dependence distance and are therefore

similar, there is significant opportuntity to reduce the effective number of dependences to be

considered. Those dependences whose source (or destination) statement is not Srep but another

statement in the same O-atom, are artificially assigned Srep as their source (or destination) in

their respective O-atoms. This ensures that each Srep accounts for the constraints needed for

correct transformation, while at the same time allows for the same to be achieved through fewer

program statements and dependences.

Thus, the discovery of O-atoms in a program can lead to significant reduction in compile

times and the memory requirement. However, it is not possible to find O-atoms in a given pro-

gram. This is because, finding O-atoms rests on information about SCCs at the innermost loop-

level. But, the innermost loop is unknown until the actual transformation is computed, since
1The techniques presented can, however, be implemented within traditional compilers as well
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the transformation process may well involve loop interchange resulting in a different innermost

loop than the original program. We thus propose to use ‘Optimization molecules (O-molecule)’

instead. An O-molecule is the block of statements comprising the loop body within any loop in

the program. For example, statements S1-S3, S4-S5, S6-S8, and S9-S10 in Figure 7.1a form the

O-molecules of the program. We call it an O-molecule because an O-molecule may be a collec-

tion of O-atoms because a loop body may contain multiple SCCs, just as statements S1 and S3

belong to the same SCC at the innermost loop k, while S2 is another SCC by itself at that level.

Thus, O-molecules, unlike O-atoms, are easily recognizable even before program transforma-

tion begins. Also, since these are coarser than O-atoms, it allows for more pronounced reduction

in analysis complexity. However, since all statements in an O-molecule are now forced to have

the same transformation, optimizations such as loop distribution (used to enable vectorization)

may be constrained. However, this does not hurt performance of the transformed program since

backend compilers are adept at recognizing vectorization opportunities through distribution if

needed.

This notion of ‘O-molecule’ becomes very useful in reducing the complexity of analysis.

As a result of breaking our example program into O-molecules, the effective number of state-

ments analyzed are just 4, instead of 10 in the original program as shown in Figure 7.1b. Figure

7.1b also shows that the reads and writes of all statements in an O-molecule are condensed onto

the representative statement, Srep within each O-molecule. This ensures that Srep accounts for

all the constraints needed to express a legal transformation. Moreover, the actual number of

dependences analyzed by our framework are reduced from 64 to just 18. The reduction in the

effective number of statements analyzed by our framework are more pronounced in case of real

application programs that contain many more statements in a single loop. Also, the reduction

in the number of dependences analyzed is a function of the number of different value arrays

used in the program. This is because, value arrays such as rsd1 and rsd2 used in our example

program tend to be updated in multiple loop nests in real applications that use many of them.

Since they also have short dependence distances, this creates an opportunity to club many de-

pendences into one class. For example, in the most computationally intensive subroutine, rhs, in

the lu application program from the NPB/SPEC OMP2012 Benchmark Suite that contains 106

statements, 3033 dependences, and 30 value arrays reused in 3 large loop nests, the number of

statements and dependences analyzed by our framework are reduced to 23 and 849, respectively.

As a consequence of the reduction, the compile time and memory requirement are reduced by
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factors of 734 and 60, respectively.

The rest of the chapter is organized as follows. Section 7.2 discussed the precise causes of

the unscalability of polyhedral compilers with respect to large programs. This is followed by a

detailed discussion of the implementation of our technique within the polyhedral framework in

Section 7.3. Section 7.4 demonstrates the performance of our technique with regards to compile

time and memory requirement when compared to the state-of-the-art polyhedral compilers, and

also the Intel production compiler. The related work is discussed in Section 7.5, and Section

7.6 concludes this work.

7.2 Causes of Unscalability
The bulk of the time spent in compilation through a polyhedral compiler is in 3 distinct phases.

These are, (1) constructing the set of constraints in the coefficients of the transformation matrix

(of each statement) from dependence polyhedra, (2) solving these linear constraints using an

Integer Linear Programming (ILP) solver to obtain transformation matrix for each program

statement, and (3) incorporating further constraints to ensure linear independence of the next

solution (a legal hyperplane) with the previously found solutions. In this section, we describe

how each of these phases proves to be a culprit in the unscalability of polyhedral compilers.

7.2.1 First Culprit: Phase I - Constructing legality constraints

As noted in Chapter 2, the linearized legality condition in Equation 2.6 must be satisfied for

every dependence in the SCoP. Thus, the number of constraints increase linearly in the number

of dependences, which themselves increase quadratically in the number of statements. This

leads to quadratic increase in the number of constraints in program statements. Consequently,

both the compile time and memory requirement increase significantly.

Increase in compile time. As discussed in Chapter 2, the Fourier Motzkin Elimination

(FME) method is used to eliminate the Farkas multipliers when linearizing the legality condi-

tion. Each of the multipliers are eliminated one at a time. Running an elimination step over n

inequalities results in an increase in the number of inequalities (to a maximum of n2/4 inequal-

ities (123)) for subsequent steps. The number of these steps are proportional to the number of

statements, and thus in a large program, a considerable time is spent to eliminate all Farkas

multipliers. Furthermore, this step of eliminating Farkas multipliers for linearizing legality

condition is performed for every dependence and thus the overall contribution of Phase-I to the

overall compile time is notable.
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Increase in memory requirement. Phase-I is the only memory consuming phase in the

entire compilation. The memory is used to hold the constraints contributed by each dependence

edge. These constraints are input to the ILP solver to find hyperplane solutions. Since a depen-

dence edge can enforce constraints on the transformation coefficients of any two program state-

ments, the total number of variables used to express all the constraints (from all dependences)

in a matrix (we call it the Constraint Matrix, C) equal dim.|V |, where dim denotes statement

dimensionality. Thus, the width of the Constraint Matrix, C, is dim.|V |. The height of the ma-

trix is given by k.|E| since each dependence in E contributes a fixed number of constraints that

are proportional to the sum of dimensionalities of source and dependence statements. Thanks

to elimination of all Farkas multiplieras through Fourier Motzkin Elimination, the size of k is

not very large. However still, the overall memory requirement becomes dim2.|V ||E| , or |V |3.

We find that for programs that contain around 100 statements, the overall memory requirement

is already of the order of a few gigabytes.

7.2.2 Second Culprit: Phase II - Using an ILP solver to find legal hyperplanes

As mentioned above, the number of constraints (inequalities) input to the ILP solver equal k.|E|,
and the number of variables involved are dim.|V |. We thus estimate the (time) complexity of

the ILP solver as follows. Let Z(m,n) be the complexity of ILP using the Simplex algorithm

with m constraints and n variables. Then, on a typical input, Z(m,n) = O((m+n)mn) on

average (without counting the bit-size complexity). In our ILP, this amounts to a complexity of

(|E|+|V|)|E||V|, or |E|2|V|, or |V|5, i.e. a quintic complexity in the number of statements. This

leads to large compilation times for SCoPs with many statements.

7.2.3 Third Culprit: Phase III - Finding linearly independent hyperplanes

Using an ILP solver, we find solutions to statement-wise loop hyperplanes one at a time, starting

with the hyperplane corresponding to the outermost loop. However, it is required that we find

as many independent hyperplanes as the dimensionality of the polytope (i.e the maximum depth

of any statement within the SCoP). Thus, before a hyperplane for the next loop-level is found,

it is essential to augment the ILP formulation with additional constraints that ensure that the

next hyperplane found is linearly independent to those previously found. For this purpose, a

sub-space (H⊥S ) orthogonal toHS (whereHS represents the hyperplane solutions found so far),

is constructed as follows:
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H⊥S = I −HT
S (HSH

T
S )−1 HS (7.1)

Clearly, H⊥S .HS = I . For linear independence of the next hyperplane h’ with all hyper-

planes in HS , the following must hold:

H⊥S .h’ 6= 0 (7.2)

Furthermore, these additional constraints need to be constructed in such a way that when

combined with the existing legality constraints, a solution of the coefficients of the next hy-

perplane is still possible. This involves computing the intersection of the integer sets given by

Equation 7.2 and the constraints in the coefficients of hyperplanes obtained by eliminating all

Farkas multipliers in Equation 2.6. This set intersection computed using the Integer Set Library

(ISL) (124) further involves simplication of the constraints over many steps until the actual in-

tersection is computed. The number of these simplification steps are proportional to the number

of dependences, |E|. Further, each step has a complexity of O(|E|). Since the hyerplanes found

are statement-wise, the linear independence constraints are also statement-wise, and thus, the

complexity of this step becomes, O(|E|2.|V |), or O(|V |5), i.e. also quintic in the number of

statements as for Phase II. However, unlike Phase II, the quintic complexity of Phase III is more

realistic, and we actually find this step to be most time consuming for large programs.

Thus, we find that among all three culprits, the common motive behind the unscalability

problem is the large number of statements within a single SCoP, which also amounts to large

number of dependences. One solution to the problem could be to break a single large SCoP into

multiple smaller SCoPs, but that breaks the very purpose of achieving global program transfor-

mations such as fusing multiple loop nests for reuse. Thus, we propose our solution that solves

unscalability without loosing any global optimization opportunities. We attack the problem at

the root, i.e. we effectively cut down the number of statements, and also the number of de-

pendences in a program through our Statement Condensation and Dependence Condensation

algorithms. The program is then represented with a smaller set of representative statements

and dependences, which still allows to correctly reason about the application of any particular

transformation. This cut in the number of statements (and dependences) serves as a one-shot
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solution to all the above causes of unscalability, and allows to compile SCoPs with many state-

ments in affordable time and memory budget. The following section details the algorithm used

to implement our solution.

7.3 Implementation
As discussed in Section 7.1, O-molecules form our smallest participating units in the optimiza-

tion process within polyhedral framework. That is, the granularity of polyhedral transformations

is coarsened from individual statements. It was also discussed that this coarsened granularity

opens up avenues for reducing the number of dependences and statements to be analyzed for

transformation. Algorithm 5 details the algorithm that clubs dependences belonging to the same

source and destination O-molecules and with the same dependence distance. A single depen-

dence from each club (Drep) is then sufficient to contribute to the dependence-wise legality

constraints given by Equation 2.6.

Since the polyhedral framework computes statement-wise loop hyperplane, each legality

constraint (pertaining to a dependence) is a linear function of the coefficients of the hyperplanes

of both the source and destination statements of the dependence. And, it is quite likely that

a Drep has a different source or destination than a chosen Srep in its source or destination O-

molecule. For example, in the example program shown in Figure 7.2a, suppose Statements

S1 and S5 are chosen to be the 2 representative statements for the 2 loops. Further, consider

the dependences belonging to the club denoting a dependence distance of +1 in loop k - the

dependences between statements S3 and S6 on flux1, and statements S4 and S7 on flux2,

both belong to this club. Clearly, neither of their source or destination statements is Srep in

the respective O-molecules. In such a scenario, Srep cannot factually represent the O-molecule

because none of the dependences that actually emanate from Srep have a dependence distance

of +1. Failing to account for the constraints that arise from dependences belonging to the club

with distance +1 such as that between statements S3 and S6 leads to incorrectly transformed

code shown in Figure 7.2b - the code does not respect the dependences between statements S3

and S6, and also statements S4 and S7.

In order for Srep to factually become the representative statement for an O-molecule, the

constraints on its hyperplane coefficients should reflect the constraints on the hyperplane co-

efficients imposed by those Dreps whose source or destination O-molecule is the same as that

of the Srep in concern. This ensures that the transformation effected by the hyperplane found
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ALGORITHM 5: Dependence condensation
1: INPUT:
deps : Copy of the list of dependences
dist[][] : Array that stores the list of information such as dependence distances for each
Drep with a given source and destination O-molecule

2: begin
3: for each dependence d ∈ deps do
4: head = dist[d.src mol][d.dst mol]
5: if head = ∅ then
6: Allocate space at head
7: head.info ≡ d.info
8: head.next = ∅
9: else

10: tmp = head
11: while tmp.next 6= ∅ do
12: if d.info ≡ tmp.info then
13: Break out of while loop
14: tmp = tmp.next
15: if tmp = ∅ then
16: Allocate space at tmp
17: tmp.info ≡ d.info
18: tmp.next = ∅
19: end
20: OUTPUT: dist[][] containing info about Dreps

(using an ILP solver) for Srep is such that it satisfies all important dependences incurred by all

statements in the O-molecule. In other words, if a dependence such as that between statements

S3 and S6 precludes fusion of the loops (which would have been otherwise legal when only

considering the dependences involving Srep), then such a fusion will not be performed because

the constraints imposed by that dependence have been transferred onto Srep. As a result, Srep

factually becomes a representative statement, and all other statements in the O-molecule can

then safely assume the same transformation as that of Srep.

Our framework achieves this reduction in effective number of program statements by first

choosing any one statement from each O-molecule as Srep. We particularly choose that state-

ment in any O-molecule that becomes the source of first such dependence found in a straight-

forward traversal of the list of Dreps. Algorithm 6 shows the matrix, cst that accumulates the
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for(i=0;i<N;i++) {
 for(j=0;j<N;j++) {

  for(k=0;k<N;k++) {
   S1: rsd3[i][j][k] = c2 * rho[i][j][k];
   S2: c1 = 0.5 * rho[i][j][k];
   S3: flux1[k] = c2 * u[i][j][k];
   S4: flux2[k] = c1 * u[i][j][k]; }

  for(k=1;k<N-1;k++) {
   S5: rsd3[i][j][k] = c3 * c4 * rsd3[i][j][k];  
   S6: rsd1[i][j][k] = rsd1[i][j][k] - c3 * 

                (flux1[k+1] - flux1[k-1]);
   S7: rsd2[i][j][k] = rsd2[i][j][k] - c4 *
                      (flux2[k+1] - flux2[k-1]); }

}}
                    (a)

    for (i=0;i<=N-1;i++) {
     for (j=0;j<=N-1;j++) {

      c1=0.5*rho[i][j][0];
      flux1[0]=c2*u[i][j][0];
      flux2[0]=c1*u[i][j][0];
      rsd3[i][j][0]=c2*rho[i][j][0];

      for (k=1;k<=N-2;k++) {
       c1=0.5*rho[i][j][k];
       flux1[k]=c2*u[i][j][k];
       flux2[k]=c1*u[i][j][k];
       rsd3[i][j][k]=c2*rho[i][j][k];
       rsd3[i][j][k]=c3*c4*rsd3[i][j][k];
       rsd1[i][j][k]=rsd1[i][j][k] - c3 *
                     (flux1[k+1]-flux1[k-1]);
       rsd2[i][j][k]=rsd2[i][j][k] - c4 * 
                     (flux2[k+1]-flux2[k-1]); }

      c1=0.5*rho[i][j][N-1];
      flux1[N-1]=c2*u[i][j][N-1];
      flux2[N-1]=c1*u[i][j][N-1];
      rsd3[i][j][N-1]=c2*rho[i][j][N-1];

    }}

                     (b)

for (i=0;i<=N-1;i++) {
 for (j=0;j<=N-1;j++) {

  for (k=0;k<=1;k++) {
   c1=0.5*rho[i][j][k];
   flux1[k]=c2*u[i][j][k];
   flux2[k]=c1*u[i][j][k];
   rsd3[i][j][k]=c2*rho[i][j][k]; }   

  for (k=2;k<=N-1;k++) {
   c1=0.5*rho[i][j][k];
   flux1[k]=c2*u[i][j][k];
   flux2[k]=c1*u[i][j][k];
   rsd3[i][j][k]=c2*rho[i][j][k];
   rsd3[i][j][k-1]=c3*c4*rsd3[i][j][k-1];
   rsd1[i][j][k-1]=rsd1[i][j][k-1] - c3 *
                   (flux1[k]-flux1[k-2]);
   rsd2[i][j][k-1]=rsd2[i][j][k-1] - c4 *
                   (flux2[k]-flux2[k-2]); }   

}}
                (c)

Figure 7.2: (a) Original program; (b) Incorrectly transformed (fused) program; (c) Correctly Trans-
formed program (with shifting in S5-S7)

dependence-wise legality constraints. Columns of cst correspond to the input variables of the

ILP, i.e. the coefficients of the hyperplane of each statement in the program. Originally, each

dependence would add constraints in cst. Using Algorithm 5, we cut down those dependences

to the set Drep. Now, further, each dependence in Drep adds constraints to only the variables

representing coefficients of Srep as shown in Algorithm 6. This reduces the number of variables

that are input to the ILP solver from being a function of the statements in the program, to the

number of O-molecules, which is a significant factor of reduction.

7.4 Experimental Evaluation

7.4.1 Setup

The test programs were compiled (and run) on an Intel Xeon processor (E5-2650) with 8 Sandy

Bridge-EP cores, operating at 2.0GHz. The processor has private L1 (32KB per core) and L2

(256KB per core) caches and a 20MB shared L3 cache, and 8GB memory. In this section,

we compare the time and memory consumed for compilation by the state-of-the-art PLuTo

polyhedral compiler and our work on statement and dependence condensation, as presented in

this chapter. In addition, we also show the time and memory consumed for compilation by the

state-of-the-art Intel production compiler. The Intel compiler, although very efficient in terms of

time and memory consumption for compilation, is very conservative in analyzing large scopes

for global program transformation. The reader is therefore referred back to the performance

results in Chapter 5 when using our framework, versus the Intel compiler.



137

ALGORITHM 6: Statement condensation
1: INPUT:
Drep : Set of representative dependences constructed from dist[][]

2: Step 1: Finding set of representative statements, Srep
3: begin
4: for each O-molecule m in the program do
5: for each dependence d ∈ Drep do
6: if d.src mol = m then
7: Srep[m] = d.src stmt
8: end
9: Step 2: Using Srep[] to reduce the number of variables

10: begin
{/* This step only shows program segments where Srep[] constructed in Step 1 becomes
useful */}
{/* src offset = f(d.src stmt)
dest offset = f(d.dest stmt) */}

11: src offset = f(Srep[d.src mol])
12: dest offset = f(Srep[d.dest mol])
13: for each coefficient v in the source and destination statement’s hyperplane do
14: ...
15: cst[f(d)][src offset+v] = ...
16: cst[f(d)][dest offset+v] = ...
17: ...

7.4.2 Benchmarks

The benchmarks used in these experiments are the same as used to show the results of our

proposed variable liberalization optimization in Chapter 5. The benchmarks are listed in Table

7.1.

Benchmark Benchmark Suite Category Problem Size
applu NPB/OMP2012 Computational Fluid Dynamics (CFD) N=102; CLASS B

bt NPB/OMP2012 ” ”
sp NPB ” ”

zeusmp CPU2006 Simulation of astrophysical phenomena Reference Input

Table 7.1: Summary of the benchmarks
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7.4.3 Results and Discussion

Table 7.2 compares the time and memory consumed for compilation by different compilers.

It is important to note that the maximum memory required for any benchmark is around 6GB

while the memory on the test processor is 8GB. This ensures that the compile times shown in

our results are not influenced by frequent page faults that result when the memory used reaches

the memory limit on the host. The table also shows the number of statements and the number

of dependences for each of the 8 SCoPs chosen for our experiments. As mentioned in Chap-

ter 5, performance results on such large SCoPs have not been shown using existing polyhedral

compilers. In that chapter, we show that our framework that implements variable liberaliza-

tion achieves an average (geometric average) speedup of 2.1x and 5.16x over the Intel Fortran

compiler and the PLuTo polyhedral compiler, respectively. We also recognized in that chapter

that the compile time and memory requirement of the polyhedral compilers is still prohibitively

large for them to be employed for compilation in the real world - the benchmarks with around

100 statements take more than 3 hours to compile. Through our proposed technique of State-

ment Condensation and Dependence condensation, we are able to reduce the compilation time

very significantly, with the largest compile time being merely 18 seconds for the rhs subroutine

in the lu benchmark. We refer to our work (in the form of the 2 algorithms presented in this

chapter to achieve scalability) as scalefuse, which is implemented as another compiler option

within the PLuTo compiler. On average (geometric average), scalefuse receives an improve-

ment of 395x and 28x in compile time and memory requirement, respectively, over the PLuTo

compiler. Also, the compile time of scalefuse is now comparable and the memory requirement

is even less than the Intel compiler. These results clearly present a strong case for the practical

use of a polyhedral compiler for optimizing application programs, in addition to kernels.

The last two columns in Table 7.2 show the number of representative statements and depen-

dences actually analyzed by scalefuse. On average, the number of statements and dependences

analyzed reduce by factors 4.8x and 7x, respectively. Since the time and memory complexity

of the three key phases of compilation is polynomial with a large power in the number of state-

ments, the gains from our proposed statement condensation (and dependence condensation) are

large. In particular, the improvement in compile time in more pronounced since the compile

time varies as |V |5 while the memory requirement varies as |V |3. Another interesting point to

note is that the number of representative dependences (Dreps) are larger in case of bt, sp, and

lu benchmarks than the others because these benchmarks involve a lot more variables, while
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Benchmark Subroutine # statements # deps dim
Compile time (s)/Memory req. (MB)

# Srep # Drepicc smartfuse scalefuse
bt rhs 48 1419 4 4/116 303/703 4.11/61.88 15 391
sp rhs 50 1428 4 4/116 360/766 4.132/77.93 15 391
lu rhs 106 3033 4 1.9/71.7 11302/5542 15.39/92.22 23 849

zeusmp

hsmoc.1 121 2660 3 5/141 4903.72/1207.8 11.76/40.12 21 217
hsmoc.2 118 2493 3 5.9/151 6784.99/1256.26 11.74/41.28 18 198
hsmoc.3 120 2296 3 5.7/143 8121.38/1643.15 13.87/55.59 18 234
lorentz.1 98 2227 3 3.1/95.2 6550.48/2548.09 6.51/62.44 21 256
lorentz.2 92 2149 3 2.49/86 7759.11/3389.42 8.7/67.61 18 247

Table 7.2: Compile time, memory requirement of different compilers

Benchmark Subroutine
Compile time (s)

Phase - I Phase - II Phase - III
smartfuse scalefuse smartfuse scalefuse smartfuse scalefuse

bt rhs 8.45 2.32 285.82 1.142 3.96 0.152
sp rhs 9.22 2.334 340.32 1.144 4.58 0.157
lu rhs 265.7 5.102 10822.91 8.316 111.83 0.577

zeusmp

hsmoc.1 213.7 8.317 4603.32 0.443 81.72 0.118
hsmoc.2 182.5 6.69 6522.88 2.169 73.86 0.082
hsmoc.3 160.58 8.41 7878.65 2.46 76.09 0.133
lorentz.1 625.63 3.047 5780.06 1.226 141.6 0.177
lorentz.2 904.10 4.26 6523.33 1.83 326.68 0.41

Table 7.3: Compile times for the three time consuming phases in polyhedral compilation

the subroutines in the zeusmp benchmark use a lot of temporary variables with the same name,

revealing more opportunity for dependence condensation.

Table 7.32 shows the time taken by each of the three phases that we identify as culprits

for long compile times in Section 7.2. Clearly, scalefuse outperforms PLuTo considerably in

all three phases. As discussed in Section 7.2, Phase II is the most time consuming step in

compilation. Consequently, the most notable reduction through scalefuse is also for Phase II, i.e.

the phase where PLuTo adds constraints to guarantee linear independence of future hyperplanes

with those already found.

7.5 Related Work
The problem of unscalability of compilers has been well recognized in the literature. Much

of the past work has been devoted to speeding up either the dependence testing through newer
2The compile times and memory req. numbers shown in this table are different from those shown in Chapter 5

because we use the most recent version of the PLuTo compiler for this study, which enforces stricter constraints to
obtain a feasible solution
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(faster, and less conservative) dependence tests, or the construction of the Program Dependence

Graph (PDG) to be used later in program optimization. However, these works have not trans-

lated into practical implementations in existing production compilers due to their weakness in

both, (1) performing exact dependence analysis, and (2) composing effective program transfor-

mations. As a result, current production compilers fare poorly with regards to global program

optimizations due to limiting themselves to small scopes. It is only more recently in the context

of the more powerful optimizing compilers using the polytope model that the problem of scal-

ability when applying global program optimizations to large program scopes, has come to the

fore.

Dependence Testing. Dependence testing answers the question whether two statements (or

statement instances) refer to the same memory location across iterations. Most dependence

tests are approximate, yet conservative, i.e if a dependence exists, it is reported; however, false

dependences may also be reported leading to (unnecessarily) constrained optimization. These

include the fast GCD-test (125), the Banerjee test (126), the Power test (127), etc. There are also

exact tests that give an exact solution, but at a higher computational cost, such as the Omega-test

(128), and the PIP-test (129). Instance-wise dependence analysis (80) subsumes previous work

in dependence testing for it precisely tells which instances of the involved statements are in de-

pendence. Thus, this instance-wise analysis is the most powerful dependence abstraction than

its less precise counterparts used in previously proposed testing algorithms, such as (1) depen-

dence levels (130) that tells which loops in the loop-nest carry a dependence, and (2) distance

vectors (131; 132) that shows the difference of the loop counters of dependent instances. As a

result, it aids the application of finer program transformations such as those in the polyhedral

compilers.

Scalable PDG construction. In order to speed up the construction of PDG while not sacri-

ficing precision, Maydan et al. (133) propose to use a collection of different dependence tests.

They show that faster tests such as the GCD-test suffice for most dependences, while expensive

tests can be used for remaining dependences. They also use memoization to avoid initiating

a test on those dependences which are similar to those seen already. Recently, (70) propose

a method to enable fast and precise construction of the Directed Acyclic Graph of Strongly

Connected Components (DAGSCC , also called condensation of the PDG). The authors recog-

nize the use of the DAGSCC in program optimization rather than the PDG, and thus propose

to directly compute the former by analyzing fewer dependences. This approach, although more
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closely tied to program transformation, still does not address the real problem of speeding (scal-

ing) up the step of finding global program transformations from the computed DAGSCC . This,

as discussed in Section 7.1 is the most time consuming step in compilation. In addition, the au-

thors analyze individual hot loops, and do not take advantage of global program transformations

within the polyhedral framework.

Scalability within Polytope model. The problem of unscalability of polyhedral techniques

(the simplex algorithm for solving the linear programs for scheduling) when applied to large

scopes was first recognized by Feautrier in (134). He also proposed to avert the problem by

calling the simplex algorithm on smaller scopes or modules that are comparable to functions.

Each of these modules could be optimized in much less time than all of them together. How-

ever, this approach misses the essential global optimizations such as fusing those modules and

then parallelizing the fused structure. Upadrasta and Cohen (122) have identified this prob-

lem and have proposed a sub-polyhedral technique using (Unit-)Two-Variable-Per-Inequality or

(U)TVPI Polyhedra. Their technique is an under-approximation of a general polyhedron, and

thus does not guarantee to find best solutions. If the under-approximation results in an empty

polyhedra (or a non-solution), the authors propose to distribute loops to achieve a solution. This

will again introduce sub-optimal solutions. However, the authors show the scalability of their

technique over the simplex algorithm used in PLuTo for highly unrolled matmul kernel. The

matmul kernel although unrolled to introduce dependences on the order of thousands, still takes

less than 5 seconds to compile using PLuTo, given the very simple nature of dependences. We

believe that achieving a feasible solution by such an approach may be a challenge when using

real application programs that contain imperfectly nested loops in multiple nests with different

loop order. Our work in this chapter does not use any under-approximations, and uses knowl-

edge of program semantics to cut-down the size of input (in terms of variables and constraints)

to the simplex algorithm. We also demonstrate its scalability on real-world applications.

7.6 Conclusion
In this work, we address a key problem in the polyhedral (parallelizing) compilers: unscalability

of the employed algorithms. We identify that the root cause of this problem is the large number

of program statements (and program dependences) in the hot regions within real application

programs. We therefore propose a one-shot solution to the problem of unscalability of the em-

ployed algorithms - represent the entire hot region with a much fewer semantically equivalent
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set of representative statements and dependences. Our algorithms for the purpose are based

on the notion of ‘O-molecules’, i.e. a sequence of statements within innermost loops in the

program, all of which are forced to undergo the same program transformation. This allows to

achieve the needed statement (and dependence) condensation, and does not constrain program

transformation significantly. As a result of our proposed statement condensation and depen-

dence condensation, we can significantly reduce the compile time and memory requirement

with respect to the state-of-the-art polyhedral compilers, and match those of the Intel compiler,

while achieving an average execution performance improvement of 2.1x over the Intel com-

piler for the same 8 hot regions. Thus, the strengths of program analysis and transformation

offered by a polyhedral compiler can now be effectively and practically employed to optimize

real application programs in addition to kernels.



Chapter 8

Conclusion and Discussion

In this dissertation, we identify 3 key challenges faced by parallelizing compilers, particularly

in applying optimizations to improve the critical memory performance of existing multi- and

many-core processors. This is important because the hardware can assist in improving mem-

ory performance to a certain extent such as by providing caches, better prefetchers, etc, but it

is extremely difficult for the hardware to excavate opportunities from the application code to

make efficient use of these resources even if it is possible. It is certainly unrealistic to pass this

responsibility to the programmer, because the host platforms tend to be so different and evolv-

ing, and NOT all programmers like to be ‘close to the silicon’ or feel comfortable at reasoning

an optimization for long sequences of loop nests at their disposal. It is therefore, the most

important responsibility of the compiler along with extracting parallelism to improve memory

performance for achieving effective parallel performance.

8.1 Summary of important findings and directions for future re-
search

In order to address the impact of important microarchitectural changes over the last decade

on important memory optimizations such as loop tiling (for locality enhancement) and data

prefetching (for latency hiding), we first of all study the nature of the interaction between hard-

ware and compiler in such cases. Then, an algorithm is presented for each of these two opti-

mizations in Chapters 3 and 4, respectively, that builds up on an understanding of the precise

influence of hardware on these optimizations, and vice-versa. In particular, we find that loop

143
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tiling closely interacts with multi-level caches, their set-associativities, multithreading, vector-

ization, and hardware prefetching. Data prefetching, on the other hand, depends upon the hard-

ware supporting prefetching in each host hardware and the type of interaction between hardware

prefetching and compiler prefetching allowed by the host. In addition, prefetching also closely

interacts with multithreading and vectorization. We find that incorporating these algorithms in

the compiler gives significant performance improvement in both kernels and real applications,

over state-of-the-art production compilers that largely ignore this important interaction between

the compiler and host hardware. Also, since these algorithms are designed to take informa-

tion about hardware’s parameters as input, they can be deployed in a general-purpose compiler

running on different hosts with their own specific parameters.

For future research, our initial findings indicate that many applications can benefit when

loop tiling is performed with a precise understanding of the nature of hardware prefetching

functional at multiple levels of cache in the modern hardware. For example, in an experiment,

we found that the best tiled code was that where the tile size was simply chosen to fit the last

level cache. Although, it was expected to not perform better than the tile size that fits the L1

cache, the reason for better performance stems from the fact that the hardware prefetcher itself

brings the data to the L1 cache for faster accesses. Meanwhile, having larger tiles that better

benefit from prefetching is more useful. This approach may also remove the high dependency

on knowing the problem size of the code to implement the most effective tiling. Also, we believe

that with an improvement in the memory system’s performance through effective memory opti-

mizations (such as loop tiling and prefetching), the memory hierarchies of modern multi-cores

can be redesigned for better power efficiency. Particularly, we find that in some applications, it

is not necessary to have 3-level cache hierarchy and 2-level caches are sufficient since prefetch-

ing can effectively bring the data to the L1 cache. With a closer study of the different range

of target applications, a generic solution suitable for all applications can be found with a less

power-consuming memory system.

In our research, we also focus on the loop fusion optimization, which is of particular rele-

vance for achieving parallel performance in multi- and many-core processors. Ironically, state-

of-the-art compilers are particularly ineffective in applying loop fusion. We identify the princi-

pal reason for this shortcoming to be their focus on optimizing small scopes such as individual

loop nests. We address this problem by (1) proposing variable liberalization, an optimization

that facilitates fusion of loop nests in the presence of transformation-restricting dependences on
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temporary variables, and (2) further, giving a heauristic-based cost model that wisely decides

on the statements to be fused to achieve good reuse in the final transformed program without

paying the expense of lost parallelism. We believe that the combination of these contributions

presented, respectively, in Chapters 5 and 6, will allow production compilers to effectively fuse

loop nests in real application programs, that have been shown to exhibit significant opportunity

of temporal reuse through loop fusion.

Finally, Chapter 7 addresses the issue of compiler scalability, which is a longstanding issue

that has kept the compilers from attempting major optimizations on large sequences of loop-

nests as found in real applications. The compilers chose to avoid these attempts to contain

the compile time and memory requirement for such compilation, as a programmer who has to

wait for long to compile his code will shift to a different compiler. We introduce the notion

of Optimization-molecule as the smallest grain of statement-block for which all dependences

incurred can be subsumed in a single representative statement. This leads to a very significant

reduction in constraints to be analyzed for reasoning transformations, and hence also compile

times and memory requirement. This work, therefore, perfectly complements our work on loop

fusion for large programs, and makes it an implementable solution for production compilers. We

believe that this will also open up avenues for further research on global program optimizations,

and is therefore an interesting direction for future research. Also, for the benefits of this work

to become available to a larget set of applications, an extension to the polyhedral framework for

non-affine codes will be extremely useful.

8.2 Final words
This thesis revisits important compiler optimizations for improving memory performance. These

optimizations will find ever-increasing importance in future architectures, that are expected to

face the challenges of the memory wall and bandwidth wall with increasing intensity. We be-

lieve that the most important general finding of this work is that the best solutions emerge when

the hardware and software work in consonance for any given application. Since our work lies

at the junction of architecture, compilers, and applications, it contains directions to guide the

design of future architectures and their compilers - architectures and compilers built with an

understanding of the capabilities and limitations of each other, and knowledge of the target ap-

plications, will achieve the best performance. We hope to use our experience and knowledge

obtained from this research in the design of such architectures and compilers in the future.
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