

亿g www. droos.org
0;coil $F B$: Droos / دروس
o., 2 , Youtube: droos /س,

المناطقّت الكمد

$$
\begin{aligned}
& \text { óm’, aís. Jyip(1) } M=f(b)=64 \\
& {[2,4]} \\
& f(c)=27 \\
& \sigma=(2,4) \\
& m=f(a)=8 \\
& A_{1}=m * h=8 * 2=16 \\
& A_{2}=M * h=64 * 2=128 \\
& A=\frac{A_{1}+A_{2}}{2}=\frac{16+128}{2}=72
\end{aligned}
$$

$[2,4] \quad \therefore$ unñ.s. Jvio (2)
$\sigma=(2,3,4)$

$$
\begin{aligned}
& \sigma=(2,3) \text { os or Jis } \\
& A_{1}=8 * 1=8 \\
& A_{2}=27 * 1=27 \\
& \sigma^{\prime}=(3,4) \text { هُ } \\
& A_{1}=27 * 1=27 \\
& A_{2}=64 * 1=64 \\
& A=\frac{8+27}{2}+\frac{27+64}{2}=17.5+45.5 \\
& =64
\end{aligned}
$$

A árinl ãoll

$$
\begin{aligned}
A_{1} & =m * h \\
& =2 * 1=2 \\
A_{2} & =M * h=5=f(2)=5 \\
& =5 * 1=5 \quad m=f(1)=2 \\
A & =\frac{A_{1}+A_{2}}{2} \\
& =\frac{5+2}{2} \\
& =3 \frac{1}{2}
\end{aligned}
$$

$1 / d x$

$$
A=\left\{(x, y): 2 \leqslant x \leqslant 5, y=x^{2}+1\right\}
$$

(a)

$$
\begin{aligned}
& \sigma_{1}=(2,3,5) \\
& {[2,3] \&[3,5] \quad M=f(5)=26} \\
& \\
&
\end{aligned} \quad \begin{aligned}
m & =f(3)=10 \\
m & =f(2)=5
\end{aligned}
$$

$[a, b]$	h	$m=f(a)$	$M=f(b)$	$h * m$	$h * M$
$[2,3]$	1	5	10	5	10
$[3,5]$	2	10	26	20	52
$\sum h * m=25$	$\sum h * M=62$				

$$
\therefore A=\frac{\sum h * m+\sum h * M}{2}=\frac{25+62}{2}=43.5 \text { unit }^{2}
$$

(b) $\sigma_{2}=(2,3,4,5)$

$$
[2,3],[3,4] \&[4,5]: \text { ©'sंşúl }
$$

$\left.\begin{array}{l|c|c|c|c|c}f(a) & f(b) \\ {[a, b]} & h & m & M & m * h & M * h \\ {[2,3]} & 1 & 5 & 10 & 5 & 10 \\ {[3,4]} & 1 & 10 & 17 & 10 & 17 \\ {[4,5]} & 1 & 17 & 26 & 17 & 26 \\ \hline 2 m * h= & \sum M * h= \\ 32 & 53\end{array}\right]$

$$
A=\frac{\sum_{m * h}+\sum M * h}{2}=\frac{32+53}{2}=42.5 \text { unit }^{2}
$$

$L(\sigma, f)=\Delta \dot{s e n}!=\sigma$, orres $U(\sigma, f)$ ofrarouectiven $\}$

$$
\begin{aligned}
& A=\frac{\sum m * h+\sum M_{* h}}{2} \\
& A=\frac{L(\sigma, f)+U(\sigma, f)}{2}
\end{aligned}
$$

$$
(f:[0,4] \rightarrow R) \rightarrow H^{2}\left(f(x)=3 x-x^{2}\right)
$$

$$
\begin{aligned}
& h=\frac{b-a}{n=4}=\frac{4-0}{4}=1 \\
& \sigma^{\prime}=(0,1,2,3,4) \\
& {[0,1],[1,2],[2,3] \&[3,4]} \\
& f^{\prime}(x)=3-2 x
\end{aligned}
$$

when $f^{\prime}(x)=0 \quad \Rightarrow 3-2 x=0 \quad \Rightarrow \quad x=\frac{3}{2}$

$\left[\begin{array}{c|c|c|c|c|c|}\hline[a, b] & h & m & M & m * h & M * h \\ \hline[0,1] & 1 & 0 & 2 & 0 & 2 \\ \hline[1,2] & 1 & 2 & \frac{9}{4} & 2 & \frac{9}{4} \\ \hline[2,3] & 1 & 0 & 2 & 0 & 2 \\ \hline[3,4] & 1 & -4 & 0 & -4 & 0 \\ \hline\end{array}\right.$

$$
\begin{aligned}
& f(1)=2 \\
& f(2)=2 \\
& f\left(\frac{3}{2}\right)=\frac{18}{4 \frac{9}{2}}-\frac{9}{4}=\frac{9}{4}=2 \frac{1}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \sum m * h=L(\sigma, f)=-2 \\
& \sum M_{* h}=U(\sigma, f)=6 \frac{1}{4}
\end{aligned}
$$

\therefore Şík dos U (σ, f) \& $L(\sigma, f)$

$$
\text { (1) } f:[-2,1] \longrightarrow R, f(x)=3-x
$$

(a) $\sigma^{\sigma}=(-2,0,1)$

$$
f^{\prime}(x)=-1 \Rightarrow f^{\prime}(x) \neq 0
$$

$[a, b]$	h	m	M	$m * h$	$M * h$
$[-2,0]$	2	3	5	6	10
$[0,1]$	1	2	3	2	3
		$\sum m * h=$	$\sum M * h=$		
8	13				

$$
\begin{aligned}
\therefore \quad L(\sigma, f) & =8 \\
U(\sigma, f) & =13
\end{aligned}
$$

$$
\begin{aligned}
& h=\frac{1-(-2)}{3}=1 \\
& \sigma=(-2,-1,0,1) \\
& {[-2,-1],[-1,0] \&[0,1]}
\end{aligned}
$$

$[a, b]$	h	m	M	$m * h$	$M * h$
$r .$,	,	,.	-	,	σ

$$
f(-2)=5
$$

\cdots		\cdots	\cdots	$\cdots m \cdot$	
$[-2,-1]$	1	4	5	4	5
$[-1,0]$	1	3	4	3	4
$[0,1]$	1	2	3	2	3

$$
\begin{aligned}
& f(-2)=5 \\
& f(-1)=4 \\
& f(0)=3 \\
& f(1)=2
\end{aligned}
$$

$$
\begin{aligned}
\therefore L(\sigma, f) & =9 \\
u(\sigma, f) & =12
\end{aligned}
$$

(2) $f:[0,4] \rightarrow R, \quad f(x)=4 x-x^{2}$

$$
\sigma=(0,1,2,3,4) \quad \text { iob } 1,!
$$

$$
\begin{aligned}
& f^{\prime}(x)=4-2 x \\
& 0=4-2 x \Rightarrow \begin{array}{l}
x=2 \\
2 \cdot 2=3
\end{array} \\
& 4, i l
\end{aligned}
$$

$[a, b]$	h	m	M	$m * h$	$M_{* h}$
$[0,1]$	1	0	3	0	3
$[1,2]$	1	3	4	3	4
$[2,3]$	1	3	4	3	4
$[3,4]$	1	0	3	0	3
Em*h $=$	$\sum M_{* h}=$				
6	14				

$$
\begin{aligned}
\therefore \quad L(\sigma, f) & =6 \\
U(\sigma, f) & =14
\end{aligned}
$$

$$
f(x)=4 x-x^{2}
$$

(3) $f:[1,4] \longrightarrow R, f(x)=3 x^{2}+2 x$

$$
\begin{aligned}
& \text { (a) } \sigma^{\prime}=(1,2,4) \\
& f^{\prime}(x)=6 x+2 \\
& \text { when } f(x)=0 \Rightarrow 6 x+2=0 \Rightarrow x=-\frac{1}{3} \notin[1,4]
\end{aligned}
$$

$[a, 6]$	h	m	M	$m * h$	M*h
$[1,2]$	1	5	16	5	16
$[2,4]$	2	16	56	32	112
	Mm*h $=$ 37	M*h $=$ 128			

$$
\begin{aligned}
\therefore L(\sigma, f) & =37 \\
U(\sigma, f) & =128
\end{aligned}
$$

$$
\begin{aligned}
& \quad h=\frac{b-a}{n}=\frac{4-1}{3}=1 \\
& \therefore \sigma=(1,2,3,4) \\
& {[1,2],[2,3] \&[3,4]}
\end{aligned} \quad f(x)=3 x^{2}+2 x,
$$

$[a, b]$	h	m	M	$m * h$	$M * h$
$[1,2]$	1	5	16	5	16
$[2,3]$	1	16	33	16	33
-		\ldots	\ldots	\ldots	\ldots,

$$
\begin{array}{l|c|c|c|c|c|}
{[\varepsilon, 3]} & 1 & 16 & 33 & 16 & 33 \\
{[3,4]} & 1 & 33 & 56 & 33 & 56 \\
\hline & \text { Em*h }= & \sum M * h= \\
54 & 105 \\
\hline & L(\sigma, f)=54 \\
U(\sigma, f)=105
\end{array}
$$

Un

$$
\begin{aligned}
& u(\sigma, f) \\
& L(\sigma, f)
\end{aligned}
$$

$$
L(\sigma, f) \leqslant K \leqslant U(\sigma, f)
$$

$$
\int_{a}^{b} \underline{f(x)} d x=\frac{L(\sigma, f)+U(\sigma, f)}{2}
$$

($f(x)=x^{2}$ ©

$$
\because f^{\prime}(x)=2 x
$$

when $f(x)=0 \Rightarrow 2 x=0 \Rightarrow x=0 \notin[1,3]$

$$
h=\frac{b-a}{n}=\frac{3-1}{2}=1
$$

$[a, b]$	h	m	M	$h * m$	$h \propto M$
$[1,2]$	1	1	4	1	4
$[2,3]$	1	4	9	4	9
$m * h=$	$\sum M * h=$ 5	13			

$$
\begin{aligned}
& L(\sigma, f)=5 \\
& U(\sigma, f)=13 \\
& =\int_{1}^{3} x^{2} d x=\frac{5+13}{2}=9
\end{aligned}
$$

// Uiio

Page 15 تعر يض النكامل
(4.2) ن ن un
 $\sigma=(1,2,3)$

$$
\begin{aligned}
\because f(x) & =\frac{3}{x} \\
f^{\prime}(x) & =-\frac{3}{x^{2}} \neq 0
\end{aligned}
$$

$$
\cdots \subset B
$$

when $x^{2}=0 \Rightarrow x=0 \notin[1,3]$

$[a, b]$	h	m	M	$m * h$	$M * h$
$[1,2]$	1	$\frac{3}{2}$	3	$\frac{3}{2}$	3
$[2,3]$	1	1	$\frac{3}{2}$	1	$\frac{3}{2}$
				$\sum m+h=$ 2.5	$\sum .5$ 4.5

$$
\begin{aligned}
& L(\sigma, f)=2.5 \\
& U(\sigma, f)=4.5 \\
& =\int_{1}^{3} \frac{3}{x} d x \simeq \frac{2.5+4.5}{2} \simeq 3.5
\end{aligned}
$$

$f:[1,4] \longrightarrow R \quad, \quad f(x)=3 x-3$ cies / 2M

 ${ }_{1} \mathrm{cb}_{1}$

$[a, b]$	h	m	M	$m * h$	$M+h$
$[1,2]$	1	0	3	0	3
$[2,3]$	1	3	6	3	6
$[3,4]$	1	6	9	6	9
$\sum m+h=$	$\sum M+h=$				
9	18				

$$
\begin{aligned}
& L(\sigma, f)=9 \\
& U(\sigma, f)=18 \\
& \therefore \int_{1}^{4}(3 x-3) d x=\frac{9+18}{2}=13.5
\end{aligned}
$$

$$
\begin{aligned}
\therefore f(x)= & 3 x-3 \\
\text { (a) } y=0: & 3 x-3=0 \\
= & x=1
\end{aligned}
$$

$$
\begin{aligned}
& f(4)=3(4)-3=9 \\
& A=\frac{1}{2}(x)(y)
\end{aligned}
$$

$$
\begin{aligned}
A & =\frac{1}{2}(x)(y) \\
& =\frac{1}{2}(3)(9)=13.5 \text { unit }^{2}
\end{aligned}
$$

ais.

$$
\sigma=(2,3,4)
$$

$$
\begin{aligned}
& \because f(x)=3 x^{2}-3 \\
& \therefore f^{\prime}(x)=6 x
\end{aligned}
$$

when $f^{\prime}(x)=0 \Rightarrow 6 x=0 \Rightarrow x=0 \notin[2,4]$

$[a, b]$	h	m	M	$m * h$	$M * h$
$[2,3]$	1	9	24	9	24
$[3,4]$	1	24	45	24	45
				m*h 33	$\sum M_{*} h=$ 69

$$
\begin{aligned}
& f(2)=9 \\
& f(3)=24 \\
& f(4)=45
\end{aligned}
$$

$$
\begin{aligned}
& L(\sigma, f)=33 \\
& U(\sigma, f)=69 \\
& =\int_{2}^{4}\left(3 x^{2}-3\right) d x \approx \frac{33+69}{2} \approx 51
\end{aligned}
$$

$$
f(x)=-4 \text { ex } \int_{-3}^{2} f(x) d x \text { de } b^{\prime} y_{1} \text { ão us, } \uparrow \text { " } 4 \text { h/ }
$$

$[a, b]$	h	m	M	$m * h$	$M * h$
$[-3,2]$	5	-4	-4	-20	-20
m*h -20	$\sum M_{* h}$				

$$
\begin{aligned}
\therefore L(\sigma, f) & =-20 \\
U(\sigma, f) & =-20 \\
\therefore \int_{-3}^{2}-4 d x & =\frac{-20+(-20)}{2}=-20
\end{aligned}
$$

$$
\begin{aligned}
\therefore f(x) & =x^{3} \\
f(x) & =3 x^{2}
\end{aligned}
$$

when $f(x)=0 \Rightarrow 3 x^{2}=0 \Rightarrow x=0 \notin[1,5]$

$$
\begin{aligned}
& h=\frac{b-a}{n}=\frac{5-1}{4}=1 \\
\therefore \quad & {[1,2],[2,3],[3,4] \&[4,5] }
\end{aligned}
$$

$[a, b]$	h	m	M	$m+h$	$M+h$
$[1,2]$	1	1	8	1	8
$[2,3]$	1	8	27	8	27
$[3,4]$	1	27	64	27	64
$[4,5]$	1	64	125	64	125
	Em+h	$\sum M+h$			
100	224				

$$
\begin{aligned}
& f(1)=1 \\
& f(2)=8 \\
& f(3)=27 \\
& f(4)=64 \\
& f(5)=125
\end{aligned}
$$

$$
\begin{aligned}
\therefore L(\sigma, f) & =100 \\
U(\sigma, f) & =224 \\
\therefore \int_{1}^{5} x^{3} d x & \simeq \frac{100+224}{2} \approx 162
\end{aligned}
$$

(1)
(2)
$=2$
<a, b $\longrightarrow F(x)$

$$
\text { (3) } F^{\prime}(x)=f(x)
$$

$$
\int_{a}^{b} f(x) d x=F(b)-F(a) \quad 0 \cdot 0 y_{1} y_{1} ; x^{6}
$$

$$
\int_{1}^{2} 2 x d x \quad \text { dots }
$$

$$
\int_{1}^{2} 2 x d x=F(2)-F(1)=2^{2}-1^{2}=3
$$

$$
F_{(x)=\frac{2}{2}}
$$

$F:[1,3] \rightarrow R, F(x)=x^{3}+2 \quad \quad$ نib $1 ;$;

$$
f(x)=3 x^{2} \quad \text { at }
$$

rcsi

$$
\begin{equation*}
F^{\prime}(x)=f(x) \tag{3}
\end{equation*}
$$

$$
F^{\prime}(x)=3 x=f(x)
$$

$[1,3]$ iñ $13 f(x) \perp$ dien ans os $F(x) \therefore$

$$
\begin{array}{r}
\vec{F}^{\prime}(x)=\frac{1}{2}(\cos 2 x)(2)=\cos 2 x=f(x) \tag{3}\\
F^{\prime}(x)=f(x)
\end{array}
$$

R Jis f ans alcéaiss F ös :-

$$
\begin{aligned}
\therefore \int_{0}^{\frac{\pi}{4}} \cos 2 x d x & =F\left(\frac{\pi}{4}\right)-F(0) \\
& =\frac{1}{2} \sin 2\left(\frac{\pi}{4}\right)-\frac{1}{2} \sin 2(0) \\
& , 0
\end{aligned}
$$

$$
\begin{aligned}
& =2 \operatorname{un}-\left(\frac{\pi}{4}-\frac{1}{2} \sin z(0)\right. \\
& =\frac{1}{2} \sin \frac{\pi}{2}-\frac{1}{2} \sin 0^{0}=\frac{1}{2}(1)-0 \\
& =\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \sin x=-\cos x \\
& \sin 2 x=-\frac{1}{2} \cos 2 x
\end{aligned}
$$

(1)

$$
\begin{aligned}
& \int_{0}^{\pi / 4} \sec ^{2}(x) \\
& 2=\left.\tan (x)\right|_{0} ^{\pi / 4}-: 01216 \text {, } 1 / 1 \\
&=\tan \left(\frac{\pi}{4}\right)-\tan (0)=1-0=1
\end{aligned}
$$

(2)

$$
\begin{aligned}
\int_{\frac{\pi}{4}}^{\pi / 2} \csc ^{2}(x) d x & =-\left.\cot x\right|_{\frac{\pi}{4}} ^{\frac{\pi}{2}} \\
& =-\cot \left(\frac{\pi}{2}\right)+\cot \left(\frac{\pi}{4}\right)=0+1=1
\end{aligned}
$$

(3) $\int_{0}^{\pi / 3} \sec (x) \cdot \tan (x) d x=\left.\sec x\right|_{0} ^{\pi / 3}$

$$
\begin{aligned}
\int_{1}^{3} x^{3} d x & =\left.\frac{x^{4}}{4}\right|_{1} ^{3} \\
& =\left(\frac{3^{4}}{4}\right)-\left(\frac{1^{4}}{4}\right)=\frac{81}{4}-\frac{1}{4}=\frac{80}{4}=20
\end{aligned}
$$

(4)
(1)

$$
\begin{aligned}
& \underline{f(x)} \geqslant 0 \rightarrow[a, b] \\
& \int_{a}^{b} f(x) d x \geqslant 0 \\
& f(x)=x+1 \quad,[0,2] \\
& \therefore \int_{0}^{2}(x+1) d x \geqslant 0 \\
& \text { if } f(x) \leqslant 0 \quad[a, b] \\
& \int_{a}^{b} f(x) d x \leqslant 0 \\
& \text { * } f(x)=x-1 \quad,[-2,0] \\
& \int_{-2}^{0}(x-1) d x \leqslant 0
\end{aligned}
$$

(2)

$$
\begin{aligned}
\int_{a}^{b} c \cdot f(x) d x & =c \cdot \int_{a}^{b} f(x) d x \\
\int_{2}^{4} 3\left(x^{2}+1\right) d x & =3 \cdot \int_{2}^{4}\left(x^{2}+1\right) d x
\end{aligned}
$$

(3)

$$
\begin{gathered}
\int_{a}^{b} f(x) \pm g(x)=\int_{a}^{b} f(x) \pm \int_{a}^{b} x^{2} g(x) \\
\int_{3}^{a}+x^{3}=\int_{3}^{a} x^{2}+\int_{3}^{9} x^{3}
\end{gathered}
$$

(4)

$$
\int_{a}^{b} f(x), c \in[a, b]
$$

$\int_{-3}^{4} f(x) d x \quad \because, \tilde{i} 6 \quad f(x)=|x|$ ú́r \quad Juno

$$
\begin{aligned}
& f(x)=\left[\begin{array}{l}
x \\
f
\end{array}\right] \quad x \geqslant 0 \\
& \because-x, x<0 \\
& \because \in[-3,4]
\end{aligned} \begin{aligned}
& \therefore \int_{-3}^{4} f(x) d x=\int_{-3}^{0} f(x) d x+\int_{0}^{4} f(x) d x \\
&=\int_{-3}^{0}-x d x+\int_{0}^{4} x d x \\
&=\left.\frac{-x^{2}}{2}\right|_{-3} ^{0}+\left.\frac{x^{2}}{2}\right|_{0} ^{4} \\
&=\left(0-\frac{-9}{2}\right)+\left(\frac{16}{2}-0\right) \\
& \therefore \frac{9}{2}+\frac{16}{2}=\sqrt{25}
\end{aligned}
$$

N
(1) $f(1)=2(1)+1=3$ a
(2) $f(x)\left[\begin{array}{l}\lim _{x \rightarrow 1} 2 x+1=3 \\ \lim _{x \rightarrow-1} 3=3\end{array}\right.$

$$
\because L_{+}=L_{-}
$$

(3)

$$
\begin{aligned}
& \operatorname{Lim} f(x)=f(1) \\
& 3=3 \\
& {[0,5] \text { oip of (f) - 小N, : }} \\
& =\int_{0}^{5} f(x) d x=\int_{0}^{1} f(x) d x+\int_{1}^{5} f(x) d x \\
& =\int_{0}^{1} 3 d x+\int_{1}^{5}(2 x+1) d x \\
& =\left.3 x\right|_{0} ^{1}+\left.\left(x^{2}+x\right)\right|_{1} ^{5} \\
& =(3-0)+[30-2]=31
\end{aligned}
$$

(5)

$$
\begin{aligned}
\int_{a}^{a} f(x) d x & =0 \\
\int_{3}^{3} x d x & =\left.\frac{x^{2}}{2}\right|_{3} ^{3} \\
& =\frac{9}{2}-\frac{9}{2}=0 \\
\int_{a}^{b} f(x) d x & =-\int_{b}^{a} f(x) d x \\
\int_{3}^{2} 3 x^{2} d x & =-\int_{2}^{3} 3 x^{2} d x \\
\left.x^{3}\right|_{3} ^{2} & =-\left.x^{3}\right|_{2} ^{3} \\
8-27 & =-[27-8] \\
-19 & =-19
\end{aligned}
$$

(a)

$$
\begin{aligned}
& \int_{-2}^{2}(3 x-2) d x \\
& 3 \frac{x^{2}}{2}-\left.2 x\right|_{-2} ^{2}=\left(3 \frac{(2)^{2}}{2}-2(2)\right)-\left(3 \frac{(-2)^{2}}{2}-2(-2)\right) \\
&=(6-4)-(6+4)=-8
\end{aligned}
$$

$$
\begin{aligned}
\text { (b) } & \int_{1}^{2}\left(x^{-2}+2 x+1\right) d x \\
& \left.\left(\frac{x^{-1}}{-1}+2 \frac{x^{2}}{2}+x\right)\right|_{1} ^{2}=-x^{-1}+x^{2}+\left.x\right|_{1} ^{2} \\
= & \left(-(2)^{-1}+2^{2}+2\right)-\left(-(1)^{-1}+1^{2}+1\right) \\
= & \left(-\frac{1}{2}+6\right)-1=-\frac{1}{2}+5=\frac{9}{2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \int_{1}^{3}\left(x^{4}+4 x\right) d x \\
& \frac{x^{5}}{5}+\left.2 x^{2}\right|_{1} ^{3}=\left(\frac{3^{5}}{5}+18\right)-\left(\frac{1}{5}+2\right) \\
&=\left(\frac{243}{5}+\frac{90}{5}\right)-\left(\frac{1}{5}+\frac{10}{5}\right)
\end{aligned}
$$

$$
\frac{333}{5}-\frac{11}{5}=\frac{322}{5}
$$

Page 32 تиاربن
(d)

$$
\begin{aligned}
& \int_{0}^{2}|x-1| d x \\
& f(x)=\left[\begin{array}{cc}
x-1, \forall x \geqslant 1 \\
-(x-1), \forall x<1
\end{array}\right. \\
& \begin{aligned}
\int_{0}^{2} f(x) d x & =\int_{0}^{1} f(x) d x+\int_{0}^{2} f(x) d x \\
& =\int_{0}^{1}(-x+1) d x+\int_{1}^{2}(x-1) d x \\
& =\left.\left(-\frac{x^{2}}{2}+x\right)\right|_{0} ^{2}+\left.\left(\frac{x^{2}}{2}-x\right)\right|_{1} ^{2} \\
& =\left[\left(-\frac{1}{2}+1\right)-0\right]+\left[\left(2 f \frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{2}\right)\right]
\end{aligned} \\
&
\end{aligned}
$$

(e)

$$
\begin{aligned}
\int_{-\frac{\pi}{2}}^{0}(x+\cos x) d x & \\
\frac{x^{2}}{2}+\left.\sin x\right|_{-\frac{\pi}{2}} ^{0} & =(0+\sin 0)-\left(\frac{\frac{\pi^{2}}{4}}{2}+\sin -\frac{\pi}{2}\right) \\
& =0-\left(\frac{\pi^{2}}{8}+(-1)\right) \\
& =1-\frac{\pi^{2}}{8}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (f) } \int_{3}^{2} \frac{x^{3}-1}{x-1} d x \\
& =\int_{3}^{2} \frac{(x-1)\left(x^{2}+x+1\right)}{(x-1)} d x=\int_{3}^{2}\left(x^{2}+x+1\right) d x \\
& =\frac{x}{3}+\frac{x^{2}}{2}+\left.x\right|_{3} ^{2} \\
& =\left(\frac{8}{3}+2+2\right)-\left(9+\frac{9}{2}+3\right) \\
& \\
& =\left(\frac{8}{3}+\frac{12}{3}\right)-\left(\frac{18}{2}+\frac{9}{2}+\frac{6}{2}\right) \\
& \\
& =\frac{20}{3}-\frac{33}{2}=\frac{40-99}{6} \\
& =
\end{aligned}
$$

$$
\text { (9) } \begin{aligned}
& \int_{1}^{3} \frac{2 x^{3}-4 x^{2}+5}{x^{2}} d x \\
= & \int_{1}^{3}\left(2 x^{3}-4 x^{2}+5\right)\left(x^{-2}\right)=\int_{1}^{3} 2 x-4+5 x^{-2} \\
= & \frac{2 x^{2}}{2}-4 x+\left.5 \frac{\left(x^{-1}\right)}{-1}\right|_{1} ^{3}=x^{2}-4 x-\left.5 x^{-1}\right|_{1} ^{3} \\
= & \left(9-4(3)-5\left(3^{-1}\right)\right)-\left(1-4-5\left(1^{-1}\right)\right) \\
= & \left(9-12-\frac{5}{3}\right)-(-3-5)=\left(\frac{27}{3}-\frac{36}{3}-\frac{5}{3}\right)-(-8)
\end{aligned}
$$

$$
=\frac{-14}{3}+\frac{24}{3}=\frac{10}{3}
$$

$$
\begin{aligned}
& F(x)=\sin x+x \\
& F:\left[0, \frac{\pi}{6}\right] \rightarrow R \\
& f(x)=1+\cos x \\
& f:\left[0, \frac{\pi}{6}\right] \longrightarrow R \\
& \int_{0}^{\frac{\pi}{6}} f(x) d x u f^{i} \\
& \because \mathrm{H}_{1} \\
& {\left[0, \frac{\pi}{6}\right] \text { Jyie }}
\end{aligned}
$$

$\left(0, \frac{\pi}{6}\right)$ यis íten N ab \quad, "(2)

$$
\begin{equation*}
F^{\prime}(x)=f(x) \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& F(x)=\sin x+x \\
& F^{\prime}(x)=\cos x+1=f(x)
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{6}}(\cos x+1) d x & =\sin x+\left.x\right|_{0} ^{\pi / 6} \\
& =\left(\sin \frac{\pi}{6}+\frac{\pi}{6}\right)-(\sin 6+0) \\
& =\frac{1}{2}+\frac{\pi}{6}=\frac{3+\pi}{6}
\end{aligned}
$$

(a) $\int_{1}^{4}(x-2)(x+1)^{2} d x$

Sol:-

$$
\begin{aligned}
& \int_{1}^{4}(x-2)\left(x^{2}+2 x+1\right) \\
&= \int_{1}^{4} x^{3}+2 x^{2}+x-2 x^{x^{2}}-4 x-2 \\
&=\int_{1}^{4} x^{3}-3 x-2=\frac{x^{4}}{4}-\frac{3 x^{2}}{2}-\left.2 x\right|_{1} ^{4} \\
&=\left(\frac{256}{4}-\frac{48}{2}-8\right)-\left(\frac{1}{4}-\frac{3}{2}-2\right) \\
&=(64-24-8)-\left(\frac{1}{4}-\frac{6}{4}-\frac{8}{4}\right) \\
&=32+\frac{13}{4}=\frac{128}{4}+\frac{13}{4}=\frac{141}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } \int_{-1}^{1}|x+1| d x \\
& f(x)=\left[\begin{array}{l}
x+1, \forall x \geqslant-1 \\
-(x+1), \forall x<-1 \\
\int_{-1}^{1}|x+1| d x
\end{array}=\int_{-1}^{-1}-(x+1) d x+\int_{-1}^{1}(x+1) d x\right. \\
& =\frac{x^{2}}{2}+\left.x\right|_{-1} ^{1}=\left(\frac{1}{2}+1\right)-\left(\frac{1}{2}-1\right)
\end{aligned}
$$

$$
=2
$$

Page 38 سَاربن r.r
(c) $\int_{2}^{3} \frac{x^{4}-1}{x-1} d x$

Sol:- $\int_{2}^{3} \frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x-1}=\int_{2}^{3} \frac{(x-1)(x+1)\left(x^{2}+1\right)}{x-1}$

$$
\begin{aligned}
& =\int_{2}^{3}(x+1)\left(x^{2}+1\right)=\int_{2}^{3} x^{3}+x+x^{2}+1 \\
& =\frac{x^{2}}{4}+\frac{x^{3}}{3}+\frac{x^{2}}{2}+\left.x\right|_{2} ^{3}=\left(\frac{81}{4}+\frac{27}{3}+\frac{9}{2}+3\right)-\left(\frac{16}{4}+\frac{8}{3}+\frac{4}{12}+2\right) \\
& =\left(\frac{81}{4}+\frac{48}{4}+\frac{18}{4}\right)-\left(\frac{8}{3}+\frac{24}{3}\right)=\frac{147}{4}-\frac{32}{3} \\
& \\
& =\frac{441-128}{12}=\frac{313}{12}
\end{aligned}
$$

(d) $\int_{0}^{1} \sqrt{x}(\sqrt{x}+2)^{2} d x$

Sol: $\int_{0}^{1} x^{\frac{1}{2}}\left(x+4 x^{\frac{1}{2}}+4\right)$

$$
\begin{aligned}
&=\int_{0}^{1} x^{\frac{3}{2}}+4 x+4 x^{\frac{1}{2}}=\frac{x^{5 / 2}}{5 / 2}+\frac{4 x^{2}}{2}+\left.\frac{4 x^{\frac{3}{2}}}{\frac{3}{2}}\right|_{0} ^{1} \\
&=\frac{2 x^{5 / 2}}{5}+2 x^{2}+\left.\frac{8 x^{3 / 2}}{3}\right|_{0} ^{1} \\
&=\left(\frac{2}{5}+2+\frac{8}{3}\right)-(0+0+0)=2+\frac{6+40}{15}
\end{aligned}
$$

$$
=\frac{30}{15}+\frac{46}{15}=\frac{76}{15}
$$

(1) $f(3)=2(3)=6$
(2)

$$
\begin{aligned}
& f(x)=\left[\begin{array}{l}
\lim _{x \rightarrow 3^{+}} 2 x=6=L_{1} \\
\lim _{x \rightarrow \overline{3}} 6=6=L_{2} \\
L_{1}=L_{2}
\end{array}, l\right.
\end{aligned}
$$

(3)

$$
\begin{aligned}
f(3)= & \lim _{x \rightarrow 3}^{i} \\
6= & 6 \\
& {[1,4] \text { óni, s ìezi~ if, wi, : } }
\end{aligned}
$$

$$
\begin{aligned}
\therefore \int_{1}^{4} f(x) & =\int_{1}^{3} 6 d x+\int_{3}^{4} 2 x d x \quad \frac{6}{1} \frac{2 x}{1} e_{1}^{2} \\
& =6 x \int_{1}^{3}+\left.x^{2}\right|_{3} ^{4} \\
& =(18-6)+(16-9)=19
\end{aligned}
$$

$$
\int_{-1}^{3} f(x) d x \leadsto f(x)=\left\{\begin{array}{l}
3 x^{2}, \forall x \geqslant 0 \quad \text {-i } \quad \Perp ; \text {; } 1 \text { shy } \\
2 x, \forall x<0
\end{array}\right.
$$

(1) $f(0)=3(0)^{2}=0 \quad$ ajs
(2)

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{l}
\lim _{x \rightarrow 0} 3 x^{2}=0=L_{1} \\
\lim _{x \rightarrow 0} 2 x=0=L_{2}
\end{array}\right. \\
& \therefore L_{1}=L_{2}
\end{aligned}
$$

(3)

$$
\begin{aligned}
f(0) & =\lim _{x \rightarrow 0} \\
0 & =0 \quad[-1,3] \text { ōn, 山⿲e } i=\text { if, } \sin , \therefore
\end{aligned}
$$

$$
\begin{aligned}
\approx \int_{-1}^{3} f(x) & =\int_{-1}^{0} 2 x d x+\int_{0}^{3} 3 x^{2} d x \quad \frac{2 x}{-1} 0_{0}^{3} x^{2} \\
& =\left.x^{2}\right|_{-1} ^{0}+\left.x^{3}\right|_{0} ^{3} \\
& =(0-1)+(27-0)=26
\end{aligned}
$$

Examples

$$
\begin{aligned}
& f(x)=2 x \xrightarrow{[1,3]} F(x)=x^{2} \\
& \begin{array}{l}
F_{1}(x)=\begin{array}{l}
F^{2} \\
x^{2} \\
x_{2}(x)=3 \\
x^{2} \\
F_{3}(x)=100 \\
x^{2}+7000
\end{array} \rightarrow(c)
\end{array} \\
& \begin{array}{l}
F_{1}(x)=\begin{array}{l}
F^{2} \\
x^{2} \\
x_{2}(x)=3 \\
x^{2} \\
F_{3}(x)=100 \\
x^{2}+7000
\end{array} \rightarrow(c)
\end{array} \\
& \begin{array}{l}
F_{1}(x)=\begin{array}{l}
F^{2} \\
x^{2} \\
x_{2}(x)=3 \\
x^{2} \\
F_{3}(x)=100 \\
x^{2}+7000
\end{array} \rightarrow(c)
\end{array} \\
& F(x)=x^{2}+C \\
& C \in R
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}= \\
\int f(x) d x=F(x)+c
\end{array} \\
& \int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)=0 \\
& \text { uJns } \\
& \int_{1}^{3} 2 x d x=\left.x^{2}\right|_{1} ^{3}=(3)^{2}-(1)^{2}=8 \\
& \int 2 x d x=x^{2}+c \\
& \text { T jow Jubu sि, Pls aishl orsei }
\end{aligned}
$$

(a)

$$
\begin{aligned}
& f(x)=3 x^{2}+2 x+1 \\
& \begin{aligned}
\int f(x) d x & =\frac{3 x^{3}}{3}+\frac{2 x^{2}}{2}+x+c \\
& =x^{3}+x^{2}+x+c
\end{aligned}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& f(x)=\cos x+x^{-2} \\
& \begin{aligned}
\int f(x) d x & =\sin x+\frac{x^{-1}}{-1}+c \\
& =\sin x-x^{-1}+c
\end{aligned}
\end{aligned}
$$

(c)

$$
\begin{aligned}
f(x)=x & +\sec x \tan x \\
\int f(x) d x & =\frac{x^{2}}{2}+\sec x+c \\
& =\frac{1}{2} x^{2}+\sec x+c
\end{aligned}
$$

(d)

$$
\begin{aligned}
& f(x)=\sin (2 x+4) * 1 \rightarrow \frac{8}{8}=\frac{6}{6}=\frac{2}{2} \\
& f(x)=\frac{2}{2} \sin (2 x+4) \\
& f(x)=\frac{1}{2} \cdot(2) \cdot \sin (2 x+4) \\
& \int f(x) d x=\frac{1}{2} \cdot-\cos (2 x+4)+c
\end{aligned}
$$

$$
=-\frac{1}{2} \cos (2 x+4)+c
$$

(a) $\int\left(x^{2}+3\right)^{2}(2 x) d x$

$$
\begin{aligned}
& =f(x)=x^{2}+3 \rightarrow f(x)=2 x \\
& \therefore \int\left(x^{2}+3\right)^{2}(2 x) d x=\frac{\left(x^{2}+3\right)^{3}}{3}+c=\frac{1}{3}\left(x^{2}+3\right)^{3}+c
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \int\left(3 x^{2}+8 x+5\right)^{6} \cdot(3 x+4) d x * 1=\frac{8}{8}=\frac{2}{2} \\
= & \frac{2}{2} \int\left(3 x^{2}+8 x+5\right)^{6} \cdot(3 x+4) d x \\
= & \frac{1}{2} \int\left(3 x^{2}+8 x+5\right)^{6} \cdot(6 x+8) d x \\
= & \frac{1}{2} \frac{\left(3 x^{2}+8 x+5\right)^{7}}{7}+c=\frac{1}{14}\left(3 x^{2}+8 x+5\right)^{7}+c
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \int \sin ^{4} x \cos x d x \\
& \begin{aligned}
\int(\sin x)^{4} \cdot \cos x d x & =\frac{(\sin x)^{5}}{5}+c \\
& =\frac{1}{5}(\sin x)^{5}+c
\end{aligned}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \int \tan ^{6} x \cdot \sec ^{2} x d x \\
= & \int(\tan x)^{6} \cdot \sec ^{2} x d x
\end{aligned}
$$

$$
=\frac{(\tan x)^{7}}{7}+c=\frac{1}{7}(\tan x)^{7}+c
$$

(1)

$$
\overbrace{3 \int \sin 3 x \cdot 3 d x=-3 \cos 3 x+c}^{9 \sin 3 x d x}
$$

(2) $\int x^{2} \cdot \sin x^{3} d x$

$$
\begin{aligned}
& \frac{(3)}{3} \int^{2} x \cdot \sin x^{3} d x \\
& \frac{1}{3} \int 3 x^{2} \cdot \sin x^{3} d x=-\frac{1}{3} \cos x^{3}+c
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) } \int \sqrt{1-\sin 2 x} d x \\
& \int \sqrt{\left(\sin ^{2} x+\cos ^{2} x\right)-2 \sin x \cdot \cos x} d x \\
& \int \sqrt{\sin ^{2} x-2 \sin x \cos x+\cos ^{2} x} d x \\
& \int \sqrt{(\sin x-\cos x)(\sin x-\cos x)} d x \\
& \int \sqrt{(\sin x-\cos x)^{2}} d x \\
& \pm \int(\sin x-\cos x) d x= \pm(-\cos x-\sin x)+c \\
& \pm \sqrt{ } \int \sqrt{(\cos x \cdot \cos \cdot \ldots}
\end{aligned}
$$

$$
=\mp(\cos x+\sin x)+c
$$

$$
\begin{aligned}
& \text { (4) } \int \sin ^{4} x d x \\
& =\int\left(\sin ^{2} x\right)^{2} d x \\
& \sin ^{2} x=\frac{1-\cos 2 x}{2} \\
& =\int\left(\frac{1}{2}(1-\cos 2 x)\right)^{2} d x \\
& \text { ejv } \\
& =\frac{1}{2}(1-\cos 2 x) \\
& =\int \frac{1}{4}\left(1-2 \cos 2 x+\cos ^{2} 2 x\right) d x \\
& =\frac{1}{4} \int\left(1-2 \cos 2 x+\left[\frac{1}{2}(1+\cos 4 x)\right]\right) d x \\
& =\frac{1}{4}\left[\int d x-\int 2 \cos 2 x^{d x}+\frac{1}{2} \int d x+\frac{1}{2} \int \cos 4 x d x\right] \\
& =\frac{1}{4}\left[x-\sin 2 x+\frac{1}{2} x+\frac{1}{8} \int \cos 4 x \cdot 4 d x\right] \\
& =\frac{1}{4}\left[\frac{3 x}{2}-\sin 2 x+\frac{1}{8} \sin 4 x\right]+C \\
& =\frac{3 x}{8}-\frac{1}{4} \sin 2 x+\frac{1}{32} \sin 4 x+C \\
& \int \sin ^{5} x d x \\
& \text { た̂er } \\
& \sin ^{2} x+\cos ^{2} x=1 \\
& =\int \sin \alpha\left(\sin ^{2} x\right)^{2} d x \\
& =\int \sin x\left(1-\cos ^{2} x\right)^{2} \\
& =\int \sin x\left(1-2 \cos ^{2} x+\cos ^{4} x\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int \sin x d x-2 \int \sin x \cdot \cos ^{2} x d x+\int \sin x \cdot \cos ^{4} x d x \\
& =-\cos x-2 \cdot \frac{-1}{-1} \int \sin x \cdot(\cos x)^{2} d x+\frac{-1}{-1} \int \sin x \cdot(\cos x)^{4} d x \\
& =-\cos x+2 \frac{(\cos x)^{3}}{3}-\frac{(\cos x)^{5}}{5}+C \\
& =-\cos x+\frac{2}{3} \cos ^{3} x-\frac{1}{5} \cos ^{5} x+C
\end{aligned}
$$

(4) STi
$\sin ^{2}=\left(\sin ^{2} x\right)=\sin ^{2}=\frac{1}{2}(1-\cos 2 x)$
$\sin \xrightarrow{50} \sin \left(\sin ^{2} x\right)^{2} \quad \sin ^{2}+\cos ^{2}=1$

$$
\text { (5) } \begin{aligned}
& \int(\sin x-\cos x)^{7} \cdot(\cos x+\sin x) d x \\
= & \frac{(\sin x-\cos x)^{8}}{8}+c
\end{aligned}
$$

(6)

$$
\begin{aligned}
& \int \frac{1+\tan ^{2} x}{\tan ^{3} x} d x \\
= & \int\left(1+\tan ^{2} x\right) \cdot(\tan x)^{-3} d x \\
= & \int\left(\sec ^{2} x\right) \cdot(\tan x)^{-3} d x \\
= & \frac{(\tan x)^{-2}}{-2}+c=-\frac{1}{2 \tan ^{2} x}+c
\end{aligned}
$$

$$
\begin{aligned}
& \sec ^{2}-\tan ^{2}=1 \\
& \sec ^{2}=\tan ^{2}+1
\end{aligned}
$$

(7)

$$
\begin{aligned}
& \int \cos ^{3} x d x \\
= & \int \cos x\left(\cos ^{2} x\right) d x \\
= & \int \cos x\left(1-\sin ^{2} x+\cos ^{2} x\right) d x=1 \\
= & \int \cos x d x-\int \cos x \cdot \sin ^{2} x d x \\
= & \sin x-\frac{\sin ^{3} x}{3}+c=\sin x-\frac{1}{3} \sin ^{3} x+c
\end{aligned}
$$

(8)

$$
\begin{aligned}
& \int \frac{\tan x}{\cos ^{2} x} d x \\
= & \int(\tan x) \cdot\left(\frac{1}{\cos ^{2} x}\right) d x \\
= & \int(\tan x) \cdot\left(\sec ^{2} x\right) d x=\frac{(\tan x)^{2}}{2}+c
\end{aligned}
$$

$$
=\frac{1}{2} \tan ^{2} x+c
$$

(9) $\int \sin 6 x \cos ^{2} 3 x d x$

$$
\begin{aligned}
& =\int(2 \sin 3 x \cdot \cos 3 x)(\cos 3 x)^{2} d x \\
& =\int 2 \sin 3 x \cdot(\cos 3 x)^{3} d x \\
& =2 \cdot \frac{-3}{-3} \int \sin 3 x \cdot(\cos 3 x)^{3} d x \\
& =\frac{2}{-3} \cdot \frac{(\cos 3 x)^{4}}{4}+c=-\frac{1}{6} \cos ^{4} 3 x+c
\end{aligned}
$$

$$
\begin{aligned}
& \text { (10) } \int \frac{\cos 4 x}{\cos 2 x-\sin 2 x} d x \quad \int \frac{\cos ^{2} 2 x-\sin ^{2} 2 x}{\cos 2 x-\sin 2 x} d x \quad \cos 4 x=\cos ^{2} 2 x-\sin ^{2} 2 x \\
& =\int \frac{(\cos 2 x-\sin 2 x)(\cos 2 x+\sin 2 x)}{\sin 2 x-\cos 2 x-\sin 2 x} d x \\
& =\int \frac{\cos 2 x d x}{} d x+\frac{2}{2} \int \sin 2 x d x \\
& =\frac{12}{2} \int \frac{1}{2} \sin 2 x-\frac{1}{2} \cos 2 x+C
\end{aligned}
$$

$$
\text { 1. } \begin{aligned}
& \int \frac{\left(2 x^{2}-3\right)^{2}-9}{x^{2}} d x \\
= & \int\left[\left(2 x^{2}-3\right)^{2}-9\right] \cdot x^{-2} d x=\int\left[\left(4 x^{4}-12 x^{2}+9\right)-9\right] \cdot x^{-2} d x \\
= & \int 4 x^{2}-12 d x=\frac{4}{3} x^{3}-12 x+c
\end{aligned}
$$

2. $\int \frac{(3-\sqrt{5 x})^{7}}{\sqrt{7 x}} d x$

$$
=\frac{1}{\sqrt{7}} \int^{1} \frac{(3-\sqrt{5} \cdot \sqrt{x})^{7}}{\sqrt{x}} d x
$$

$$
=\frac{1}{\sqrt{7}} \cdot-\frac{\sqrt{5}}{2}-\frac{2}{\sqrt{5}} \int \frac{(3-\sqrt{5} \cdot \sqrt{x})^{7}}{\sqrt{x}} d x
$$

$$
=\frac{-2}{\sqrt{35}} \cdot \int(3-\sqrt{5 x})^{7} \cdot \frac{1}{\sqrt{x}} \cdot \frac{-\sqrt{5}}{2} d x
$$

$$
\begin{aligned}
& =\frac{-2}{\sqrt{35}} \int(3-\sqrt{5 x})^{7} \cdot\left(\frac{-\sqrt{5}}{2 \sqrt{x}}\right) d x \\
& =\frac{-2}{\sqrt{35}} \frac{(3-\sqrt{5 x})^{8}}{8}+c=\frac{-1}{4 \sqrt{35}}(3-\sqrt{5 x})^{8}+c
\end{aligned}
$$

3.

$$
\begin{aligned}
& \int \frac{\cos ^{3} x}{1-\sin x} d x \\
& =\int \frac{\cos x\left(\cos ^{2} x\right)}{1-\sin x} d x=\int \frac{\cos x\left(1-\sin ^{2} x\right)}{1-\sin x} d x \\
& =\int \frac{\cos x(1-\sin x)(1+\sin x)}{1-\sin x} d x
\end{aligned}
$$

$$
=\int \cos x d x+\int \sin x \cdot \cos x d x
$$

$$
=\sin x+\frac{\sin ^{2} x}{2}+c
$$

$$
\begin{aligned}
=\int \frac{1}{\sin ^{2} x} \cdot \cos x d x & =\int(\sin x)^{-2} \cdot \cos x d x \\
& =\frac{\sin ^{-1} x}{-1}+c
\end{aligned}=-\frac{1}{\sin x}+c
$$

(5)

$$
\begin{aligned}
& \int \frac{x}{\left(3 x^{2}+5\right)^{4}} d x \\
&=\int x\left(3 x^{2}+5\right)^{-4} d x=\frac{1}{6} \int \frac{6 x \cdot\left(3 x^{2}+5\right)^{-4}}{7} d x \\
&=\frac{1}{6} \frac{\left(3 x^{2}+5\right)^{-3}}{-3}+c \\
&=\frac{-1}{18\left(3 x^{2}+5\right)^{3}}+c
\end{aligned}
$$

(6)

$$
\begin{aligned}
& \int \sqrt[3]{x^{2}+10 x+25} d x \\
= & \int\left(x^{2}+10 x+25\right)^{\frac{1}{3}} d x= \\
= & \int\left((x+5)^{2}\right)^{\frac{1}{3}} d x= \\
& =\frac{(x+5)^{5 / 3}}{\frac{5}{3}}+c \\
= & \frac{3}{5}(x+5)^{\frac{5}{3}}+c
\end{aligned}
$$

(7) $\int \sin ^{3} x d x$

$$
\begin{aligned}
& =\int \sin x\left(\sin ^{2} x\right) d x \\
& =\int \sin x\left(1-\cos ^{2} x\right) d x \\
& =\int \sin x d x-\int \cos ^{2} x \cdot \sin x \\
& =-\cos x-\frac{1}{-1} \int \cos ^{2} x \cdot-\sin x \\
& =-\cos x+\frac{1}{3} \cos ^{3} x+c
\end{aligned}
$$

$$
\text { (8) } \begin{aligned}
& \int \frac{\cos \sqrt{1-x}}{\sqrt{1-x}} d x \\
= & \int \cos \sqrt{1-x} \cdot \frac{1}{\sqrt{1-x}} d x \\
= & \frac{-2}{-2} \int \cos \sqrt{1-x} \cdot \frac{1}{\sqrt{1-x}} d x \\
= & -2 \int \cos \sqrt{1-x} \cdot \frac{1}{-2 \sqrt{1-x}} d x \\
= & -2 \sin \sqrt{1-x}+C
\end{aligned}
$$

(9)

$$
\begin{aligned}
& \int\left(3 x^{2}+1\right)^{2} d x \\
= & \int 9 x^{4}+6 x^{2}+1 d x \\
= & \frac{9}{5} x^{5}+2 x^{3}+x+c
\end{aligned}
$$

(10) $\int \frac{\sqrt{\sqrt{x}-x}}{\sqrt[4]{x^{3}}} d x$

$$
=\int \frac{\left(x^{\frac{1}{2}}-x\right)^{\frac{1}{2}}}{\frac{3 / 4}{x^{4}}} d x=\int\left(x^{\frac{1}{2}}-x\right)^{\frac{1}{2}} \cdot x^{\frac{-3}{4}} d x
$$

$$
=\int\left[x^{\frac{1}{2}}\left(1-x^{\frac{1}{2}}\right)\right]^{\frac{1}{2}} \cdot x^{\frac{-3}{4}} d x
$$

$$
=\int \frac{x^{\frac{1}{4}}}{\frac{1}{4}}\left(1-x^{\frac{1}{2}}\right)^{\frac{1}{2}} \cdot x^{\frac{3}{4}} d x
$$

$$
=\int\left(1-x^{\frac{1}{2}}\right)^{\frac{1}{2}} \cdot x^{-\frac{1}{2}} d x
$$

$$
=\frac{-2}{-2} \int\left(1-x^{\frac{1}{2}}\right)^{\frac{1}{2}} \cdot x^{-\frac{1}{2}} d x
$$

$$
\begin{aligned}
& =-2 \int\left(1-x^{\frac{1}{2}}\right)^{\frac{1}{2}} \cdot-\frac{1}{2} x^{-\frac{1}{2}} d x \\
& =-2 \frac{\left(1-x^{\frac{1}{x^{2}}}\right)^{\frac{3}{2}}}{\frac{3}{2}}+c=\frac{-4}{3}\left(1-x^{\frac{1}{2}}\right)^{\frac{3}{2}}+c
\end{aligned}
$$

$$
\begin{aligned}
& \text { (11) } \int(1+\cos 3 x)^{2} d x \\
& =\int 1+2 \cos 3 x+\cos ^{2} 3 x d x \\
& =\int d x+\int 2 \cos 3 x d x+\int \frac{1}{2} d x+\int \frac{1}{2} \cos 6 x d x \\
& =\int d x+\frac{2}{3} \int 3 \cos 3 x d x+\int \frac{1}{2} d x+\frac{1}{12} \int 6 \cos 6 x d x \\
& =x+\frac{2}{3} \sin 3 x+\frac{1}{2} x+\frac{1}{12} \sin 6 x+c \\
& =\frac{3}{2} x+\frac{2}{3} \sin 3 x+\frac{1}{12} \sin 6 x+c
\end{aligned}
$$

(12) $\int \sec ^{2} 4 x d x$

$$
=\frac{1}{4} \int 4 \cdot \sec ^{2} 4 x d x=\frac{1}{4} \tan 4 x+c
$$

(13) $\int \csc ^{2} 2 x d x$

$$
=\frac{1}{2} \int 2 \csc ^{2} 2 x d x=-\frac{1}{2} \cot 2 x+c
$$

-: ouls,jus ins ès?
(14)

$$
\begin{aligned}
& \int \tan ^{2} 8 x d x \\
&= \int\left(\sec ^{2} 8 x-1\right) d x \\
&= \int \sec ^{2} 8 x d x-\int d x \\
&= \frac{1}{8} \int 8 \sec ^{2} 8 x d x-\operatorname{sen}^{2} \theta=1 \\
&=
\end{aligned}
$$

(15) $\int \frac{\sqrt{\cot 2 x}}{1-\cos ^{2} 2 x} d x$
ës

$$
\begin{aligned}
& =\int \frac{(\cot 2 x)^{\frac{1}{2}}}{\sin ^{2} 2 x} d x \\
& =\int(\cot 2 x)^{\frac{1}{2}} \cdot \csc ^{2} 2 x d x \\
& =-\frac{1}{2} \int(\cot 2 x)^{\frac{1}{2}} \cdot-2 \csc ^{2} 2 x d x \\
& =-\frac{1}{2} \frac{(\cot 2 x)^{\frac{3}{2}}}{\frac{3}{2}}+c=-\frac{1}{3}(\cot 2 x)^{\frac{3}{2}}+c
\end{aligned}
$$

\[

\]

(17)

$$
\begin{aligned}
& \int \sin ^{2} 8 x d x \\
& =\int \frac{1}{2}(1-\cos 16 x) d x \\
& \sin ^{2} \theta=1-\cos ^{2} \theta \\
& \sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta) \\
& =\frac{1}{2} \int d x-\frac{1}{2} \int \cos 16 x d x \\
& =\frac{1}{2} \int d x-\frac{1}{32} \int 16 \cos 16 x d x=\frac{1}{2} x-\frac{1}{32} \sin 16 x+c
\end{aligned}
$$

(18)

$$
\begin{aligned}
& \int \cos ^{4} 3 x d x \\
& \begin{array}{l}
=\int\left(\cos ^{2} 3 x\right)^{2} d x \\
=\int\left[\frac{1}{2}(1+\cos 6 x)\right]^{2} d x
\end{array} \\
& =\int \frac{1}{4}\left(1+2 \cos 6 x+\cos ^{2} 6 x\right) d x \\
& =\frac{1}{4} \int 1+2 \cos 6 x+\left(\frac{1}{2}(1+\cos 12 x)\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4} \int 1+2 \cos 6 x+\frac{1}{2}+\frac{1}{2} \cos 12 x d x \\
& =\frac{3}{8} \int d x+\frac{1}{2} \int \cos 6 x+\frac{1}{8} \int \cos 12 x d x \\
& =\frac{3}{8} x+\frac{1}{12} \sin 6 x+\frac{1}{96} \sin 12 x+C
\end{aligned}
$$

$$
\begin{aligned}
& \ln \\
& \left.\log _{e}\right|^{b}=x \longrightarrow e^{x}=b
\end{aligned}
$$

$$
\begin{aligned}
& \ln b=x \quad e^{x}=b \\
& e=2.7182818 \ldots \\
& f(x)=\left(1+\frac{1}{x}\right)^{x} \\
& \lim _{x \rightarrow \infty} f(x) \\
& y=\left(1+\frac{1}{x}\right)^{x} \\
& \begin{array}{l|l}
n & f(n) \\
\hline 0 & f(0)=\text { undifineel }
\end{array} \\
& f(1)=q^{\prime}=2 \\
& 2 \quad f(2)=\left(\frac{3}{2}\right)^{2}=2.25 \\
& 3 \quad f(3)=\left(\frac{4}{3}\right)^{3}=2.441 \ldots \\
& y=e=2.71828 \ldots
\end{aligned}
$$

mipl rúlsollự

$$
\begin{aligned}
& \ln 1=0 \\
& \ln e=1 \\
& \ln (a * b)=\ln a+\ln b \\
& \ln \left(\frac{a}{b}\right)=\ln a-\ln b \\
& \text { (c) } \ln b=\ln b^{c}
\end{aligned}
$$

$$
\begin{aligned}
& \ln x=\text { 2nd, dev }+2 \ln =-2 \\
&=\frac{1}{x} \cdot d x=\frac{d x}{x} \\
& \text { añ } \\
& \int \frac{1}{x} d x=\ln x+c \\
& \ln \left(x^{2}+3\right)=\frac{1}{x^{2}+3} \cdot 2 x d x=\frac{2 x}{x^{2}+3} d x \\
& \int \frac{3 x^{2}+2 x}{x^{3}+x^{2}+6} d x=\ln \left(x^{3}+x^{2}+6\right)+c
\end{aligned}
$$

(1)

$$
\begin{aligned}
& y=\ln \sqrt{x} \\
& y=\frac{1}{\sqrt{x}} \cdot \frac{1}{2 \sqrt{x}}=\frac{1}{2 x}
\end{aligned}
$$

(2)

$$
\begin{aligned}
y & =\ln \sqrt{x^{2}+1} \\
y & =\ln \left(x^{2}+1\right)^{\frac{1}{2}} \\
y & =\frac{1}{2} \ln \left(x^{2}+1\right) \rightarrow y^{\prime}=\frac{1}{2} \cdot \frac{1}{x^{2}+1} \cdot 2 x=\frac{1}{2} \cdot \frac{2 x}{x^{2}+1} \\
& =\frac{x}{x^{2}+1}
\end{aligned}
$$

(3)

$$
\begin{aligned}
& y=\ln \sin ^{2} x \\
& \begin{aligned}
& y=2 \ln \sin x \Rightarrow y^{\prime}=2 \frac{1}{\sin x} \cdot \cos x=2 \frac{\cos x}{\sin x} \\
&=2 \cot x \\
& y=\ln \sin ^{2} x \Rightarrow y^{\prime}=\frac{1}{\sin ^{2} x} \cdot 2 \sin x \cdot \cos x \\
&=\frac{2 \sin x \cos x}{\sin ^{2} x}=2 \frac{\cos x}{\sin x}=2 \cot
\end{aligned}
\end{aligned}
$$

(1)

$$
\begin{aligned}
& \int \cot x d x \\
& \int \frac{\cos x}{\sin x \mid} d x=\ln |\sin x|+c
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \int \frac{x^{2}-1}{x^{3}-3 x+2} d x \\
& \frac{3}{3} \int \frac{x^{2}-1}{x^{3}-3 x+2} d x=\frac{1}{3} \int \frac{3 x^{2}-3}{x^{3}-3 x+2} d x \\
&=\frac{1}{3} \ln \left|x^{3}-3 x+2\right|+C
\end{aligned}
$$

(3) $\int \sec x d x$

$$
\begin{aligned}
& \int \sec x \cdot \frac{\sec x+\tan x}{\sec x+\tan x} d x \\
& \int \frac{\sqrt{\sec x}+\sqrt{\tan x \cdot \sec x}}{\sqrt{\sec x}+\frac{\tan x}{20}} d x=\ln |\sec x+\tan x|+c
\end{aligned}
$$

(1) $e_{e}^{0}=1$
(2) $e^{l_{n}}=1$
(3) $e^{(a+b)}=e^{a} \cdot e^{b}$
(4) $e^{\left(\frac{a}{b}\right)}=e^{a}-e^{b}$
(5) $e^{a^{(b)}}=b e^{a}$

$$
\begin{aligned}
& \text { Ein }
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{\frac{1}{2}}_{\text {and }} e^{\tan 2 x}=e^{\tan 2 x} \cdot \sec ^{2} 2 x+2 d x=2 \sec ^{2} 2 x \cdot e^{\tan 2 x} d x \\
& \int \frac{e^{\tan x}}{\cos ^{2} x}=\int \underset{\sec ^{2} x}{\sin ^{2}} \cdot e^{\tan x}=e^{\tan x}+c \\
& \text { (e) T (}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d x} 5^{x}=5^{x} * d x * \ln 5=(\ln 5)\left(5^{x}\right) \\
& 2^{-2 x}=2^{-2 x} *-2 d x * \ln 2=\underbrace{2_{-\infty}^{2}}_{-2 \ln 2)^{-2 x}} d x \\
& \text { 㖊 } \\
& \int-3 x^{2} . x=\frac{-6}{-6} \cdot \frac{\ln 4}{\ln 4} \int 4^{-3 x^{2}} \cdot x \\
& =\frac{1}{-6 \ln 4} \int \frac{4^{-3 x^{2}}}{\frac{-6 x}{20}} \cdot \frac{-\ln 4}{\Delta \operatorname{an}} \\
& =\frac{1}{-6 \ln 4} \cdot 4^{-3 x^{2}}+C
\end{aligned}
$$

$$
4-5
$$

$-i \sum_{-}^{2} L L$ dos $\frac{d y}{d x}$ r. 11 M
(a) $y=\ln 3 x \longrightarrow y^{\prime}=\frac{1}{\beta x} \cdot \beta=\frac{1}{x}$
(b)

$$
\begin{aligned}
& y=\ln \left(x^{2}\right) \\
& y=2 \ln x \longrightarrow y^{\prime}=2 \frac{1}{x} \cdot 1=\frac{2}{x}
\end{aligned}
$$

or $y=\ln \left(x^{2}\right) \longrightarrow y^{\prime}=\frac{1}{x^{2}} \cdot 2 x=\frac{2}{x}$
(c) $y=\ln \left(\frac{x}{2}\right) \longrightarrow y^{\prime}=\frac{2}{x} \cdot \frac{1}{2}=\frac{1}{x}$
(d) $y=(\ln x)^{2} \longrightarrow y^{\prime}=2(\ln x)^{\prime} \cdot \frac{1}{x}=\frac{2}{x}(\ln x)$
(e)

$$
\begin{aligned}
& y=\ln \left(\frac{1}{x}\right)^{3} \\
& y=3 \ln \left(\frac{1}{x}\right) \longrightarrow y^{\prime}=3 x \cdot \frac{-1}{x^{2}}=\frac{-3}{x}
\end{aligned}
$$

(f) $y=\ln (2-\cos x) \longrightarrow y^{\prime}=\frac{1}{2-\cos x} \cdot \sin x=\frac{\sin x}{2-\cos x}$
(g) $y=e^{-5 x^{2}+3 x+5} \longrightarrow y^{\prime}=e^{-5 x^{2}+3 x+5} \cdot(-10 x+3)$

$$
y^{\prime}=(-10 x+3) e^{-5 x^{2}+3 x+5}
$$

(H)

$$
\begin{aligned}
& y=9^{\sqrt{x}} \longrightarrow y^{\prime}=9^{\sqrt{x}} \cdot\left(\frac{1}{2 \sqrt{x}}\right) \cdot \ln 9 \\
& u^{\prime}-\ln 9 \\
&\left(a^{\sqrt{x}}\right)
\end{aligned}
$$

$$
y^{\prime}=\frac{\ln 9}{2 \sqrt{x}}\left(9^{\sqrt{x}}\right)
$$

(I) $y=7^{-\frac{x}{4}} \longrightarrow y^{\prime}=7^{\left(-\frac{x}{4}\right)} \cdot\left(-\frac{1}{4}\right) \cdot \ln 7=\frac{-\ln 7}{4} \cdot 7^{-\frac{x}{4}}$
(J)

$$
\begin{aligned}
y=x^{2} \cdot e^{x} \longrightarrow y^{\prime} & =x^{2} \cdot\left(e^{x} \cdot 1\right)+2 x\left(e^{x}\right) \\
& =e^{x}\left(x^{2}+2 x\right)=x e^{x}(x+2)
\end{aligned}
$$

-: âx
(a)

$$
\left.\begin{array}{rl}
\int_{0}^{3} \frac{1}{x+1} d x & =\ln |x+1|]_{0}^{3} \\
& =\ln |3+1|-\ln |0+1|
\end{array}=\ln 4-\left.\ln \right|^{0}=\ln 4\right\}
$$

(b)

$$
\begin{aligned}
\int_{0}^{4} \frac{2 x}{x^{2}+9} d x & \left.=\ln \left|x^{2}+9\right|\right]_{0}^{4} \\
& =\ln |16+9|-\ln |0+9|=\ln 25-\ln 9 \\
& =\ln 5^{(2)}-\ln \frac{2}{2}^{2}=2[\ln 5-\ln 3] \\
& =2 \ln \frac{5}{3}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\int_{\ln 3}^{\ln 5} e^{2 x} d x & =\frac{2}{2} \int_{\ln 3}^{\ln 5} e^{2 x} d x \\
& =\frac{1}{2} \int_{\ln 3}^{\ln 5} 2 e^{2 x} d x \\
& \left.=\frac{1}{2} e^{2 x}\right]_{\ln 3}^{\ln 5} \\
& =\frac{1}{2}\left[e^{2 \ln 5}-e^{2 \ln 3}\right]=\frac{1}{2}\left[e^{\ln 5^{2}}-e^{1 \ln 3^{2}}\right] \\
& =\frac{1}{2}\left[5^{2}-3^{2}\right]=8
\end{aligned}
$$

(d)

$$
\begin{aligned}
\int_{0}^{\ln 2} e^{-x} d x & =-\int_{0}^{\ln 2}-e^{-x} d x \\
& \left.=-e^{-x}\right]_{0}^{\ln 2}=-\left[e^{-\ln 2}-e^{0}\right]
\end{aligned}
$$

$$
\begin{aligned}
\left.=-e^{-x}\right]_{0}^{\ln 2} & =-\left[e^{-\ln 2}-e^{0}\right] \\
& =-\left[e^{\ln 2^{-1}}-e^{0}\right] \\
& =-\left[\frac{1}{2}-1\right]=\frac{1}{2}
\end{aligned}
$$

(e)

$$
\begin{aligned}
\int_{0}^{1}\left(1+e^{x}\right)^{2} e^{x} d x= & \left.\frac{\left(1+e^{x}\right)^{3}}{3}\right]_{0}^{1} \\
= & \frac{1}{3}\left[\left(1+e^{\prime}\right)^{3}-\left(1+\not \dot{e}^{3}\right)^{3}\right] \\
& \frac{1}{3}\left[(1+e)^{3}-8\right]
\end{aligned}
$$

(f)

$$
\begin{aligned}
\int_{0}^{1} \frac{3 x^{2}+4}{x^{3}+4 x+1} d x & \left.=\ln \left|x^{3}+4 x+1\right|\right]_{0}^{1} \\
& =\ln \left((1)^{3}+4(1)+1\right)-\ln \left((0)^{3}+4(0)+1\right) \\
& =\ln 6-\ln 1^{70}=\ln 6
\end{aligned}
$$

(9)

$$
\begin{aligned}
& \int_{1}^{4} \frac{e^{\sqrt{x}}}{2 \sqrt{x}} d x \\
=\int_{1}^{4} e^{\sqrt{x}} \cdot \frac{1}{2 \sqrt{x}} & =e^{\sqrt{x}} \int_{1}^{4} \\
& =e^{\sqrt{4}}-e^{\sqrt{1}}=e^{2}-e=e
\end{aligned}
$$

(h)

$$
\begin{aligned}
\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\sec ^{2} x}{2+\tan x} d x & =\ln / 2+\tan x /]_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \\
& =\ln \left(2+\tan \frac{\pi}{4}\right)-\ln \left(2-\tan \frac{\pi}{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\ln (2+1)-\ln (2-1) \\
& =\ln 3-\ln \pi^{\circ}=\ln 3
\end{aligned}
$$

$$
\text { (i) } \begin{aligned}
& \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cos x}{\sqrt{\sin x}} d x \\
&=\left.\int_{\frac{\pi}{6}}^{\pi / 2} \cos x \cdot(\sin x)^{-\frac{1}{2}} d x=\frac{(\sin x)^{\frac{1}{2}}}{\frac{1}{2}}\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} \\
&= 2 \sqrt{\sin x} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}= \\
&=2\left(\sqrt{\sin \frac{\pi}{2}}-\sqrt{\sin \frac{\pi}{6}}\right) \\
&==2\left(\sqrt{1}-\sqrt{\frac{1}{2}}\right)=2-2 \sqrt{\frac{1}{2}} \\
&=2-\sqrt{2}
\end{aligned}
$$

(j) $\int \cot ^{3} 5 x d x$

$$
\begin{aligned}
& =\int \cot 5 x(\cot 5 x)^{2} d x \\
& =\int \cot 5 x\left(\csc ^{2} 5 x-1\right) d x \\
& =\int\left(\cot 5 x \cdot \csc ^{2} 5 x\right) d x-\cot 5 x d x \\
& =\int(\cot 5 x)^{1} \cdot\left(\csc ^{2} 5 x\right) d x-\int \frac{\cos 5 x}{\sin 5 x} d x \\
& =\frac{1}{-5} \int\left(\cot ^{2} 5 x\right) \cdot\left(-5 \csc ^{2} 5 x\right) d x-\frac{1}{5} \int \frac{5 \cos 5 x}{\sin 5 x} d x \\
& =\frac{1}{-5} \frac{\cot ^{2} 5 x}{2}-\frac{1}{5} \ln |\sin 5 x|+C \\
& =\frac{1}{-10} \cot ^{2} 5 x-\frac{1}{5} \ln |\sin 5 x|+C
\end{aligned}
$$

(k)

$$
\begin{aligned}
& \int_{0}^{\pi / 2} e^{\cos x} \cdot \sin x d x \\
= & -\int_{0}^{\pi / 2} e^{\cos x} \cdot(-\sin x) d x \\
= & -\left[e^{\cos x}\right]_{0}^{\pi / 2}=-\left[e^{0}-e^{1}\right]=e-1
\end{aligned}
$$

(i)

$$
\begin{aligned}
& \int_{1}^{2} x \cdot e^{-\ln x} d x \\
= & \int_{1}^{2} x \cdot \bigotimes^{\ln x^{-1}} d x=\int_{1}^{2} x \cdot x^{-1} d x=\int_{1}^{2} \frac{x}{x} d x \\
= & \left.\int_{1}^{2} d x=x\right]_{1}^{2}=2-1=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { (a) } \begin{aligned}
& \int_{1}^{8} \frac{\sqrt{\sqrt[3]{x}-1}}{\sqrt[3]{x^{2}}} d x=2 \\
& E H S=\int_{1}^{8}(\sqrt[3]{x}-1)^{\frac{1}{2}} \cdot \frac{1}{\sqrt[3]{x^{2}}} d x=3 \int_{1}^{8}(\sqrt[3]{x}-1) \cdot \frac{1}{3} \cdot \frac{1}{\sqrt[3]{x^{2}}} d x \\
&\left.\left.=\beta \cdot \frac{(\sqrt[3]{x}-1)^{\frac{3}{2}}}{\frac{3}{2}}\right]_{1}^{8}=2(\sqrt[3]{x}-1)^{\frac{3}{2}}\right]_{1}^{8} \\
& 2\left[(\sqrt[3]{8}-1)^{\frac{3}{2}}-(\sqrt[3]{1}-1)^{\frac{3}{2}}\right]=2(2-1)^{\frac{3}{2}} \\
&=21=\text { RHS }
\end{aligned}
\end{aligned}
$$

(b) $\int_{-2}^{4}|3 x-6| d x=30$
let: $3 x-6=0 \Rightarrow x=2 \in[-2,4] \quad \int_{-2}^{2}(3 x-6) \quad \int_{2}^{4} 3 x-6$

$$
\begin{aligned}
& \left.\left.=\frac{-3 x^{2}}{2}+6 x\right]_{-2}^{2}+\frac{3 x^{2}}{2}-6 x\right]_{2}^{4} \\
& =[(-6+12)-(-6-12)]+[(24-24)-(6-12)] \\
& =(6+18)+6=30 \text { RHS }
\end{aligned}
$$

$$
\begin{array}{r}
\left(\int_{-2}^{1} f(x) d x\right):\left(\int_{-2}^{6}[f(x)+3] d x=32\right) \\
(f(x)+3) d x=32 \\
\hdashline
\end{array}
$$

$$
\int_{-2}^{6} f(x) d x+\int_{-2}^{6} 3 d x=32
$$

$$
\left.\int_{-2}^{1} f(x) d x+\int_{1}^{6} f(x) d x+3 x\right]_{-2}^{6}=32
$$

$$
\begin{aligned}
& \int_{-2}^{1} f(x) d x+6+(3(6)-3(-2))=32 \\
& \int_{-2}^{1} f(x) d x+6+24=32 \Rightarrow \int_{-2}^{1} f(x) d x=2
\end{aligned}
$$

$$
\begin{aligned}
& \left(\int_{1}^{a}(x+1 / 2) d x=2 \int_{0}^{\pi / 4} \sec ^{2} x d x\right) \text { í indeli; }(a \in R)=\text { an } 11 \mathrm{~m} \\
& \left.\left.\frac{x^{2}}{2}+\frac{x}{2}\right]_{1}^{a}=2 \tan x\right]_{0}^{\pi / 4} \\
& {\left[\left(\frac{a^{2}}{2}+\frac{a}{2}\right)-\left(\frac{1}{2}+\frac{1}{2}\right)\right]=2\left(\tan \frac{\pi}{4}-\tan 0\right)} \\
& \frac{a^{2}+a}{2}-1=2(1-0) \\
& \frac{a^{2}+a}{2}=3 \Rightarrow a^{2}+a=6 \Rightarrow a^{2}+a-6=0 \\
& (a+3)(a-2)=0 \\
& a=2 \\
& a=-3
\end{aligned}
$$

$$
\left(\int_{1}^{3} f(x) d x\right)
$$

$$
\begin{array}{ll}
\because & f(x) \\
\because & =2 x+2 \\
\therefore & f(x)=0 \Rightarrow 2 x+2=0 \Rightarrow x=-1
\end{array}
$$

$$
\begin{aligned}
\because \quad f(-1) & =(-1)^{2}+2(-1)+K=-5 \\
& =1-2+K=-5 \Rightarrow K=-4
\end{aligned}
$$

$$
\therefore f(x)=x^{2}+2 x-4
$$

$$
\left.\therefore \quad \int_{1}^{3}\left(x^{2}+2 x-4\right) d x=\frac{x^{3}}{3}+x^{2}-4 x\right]_{1}^{3}
$$

$$
\begin{aligned}
& \left(\frac{\frac{27}{3}}{3}+9-4(3)\right)-\left(\frac{1}{3}+1-4\right)=6-\left(\frac{1}{3}-3\right) \\
& 9-\frac{1}{3}=\frac{27-1}{3}=\frac{26}{3}=6-\frac{1}{3}+3
\end{aligned}
$$

(a, b) ب ب ب

$$
\begin{aligned}
& \because f(x)=3(x-3)^{2} \\
& f^{\prime \prime}(x)=6(x-3) \\
& \because f^{\prime \prime}(x)=0 \Rightarrow 6(x-3)=0 \Rightarrow x=3=a \\
& \because f(x)=(x-3)^{3}+1 \\
& f(3)=(3-3)^{3}+1=1=b \\
& \therefore \quad \int_{0}^{b} f^{\prime}(x) d x-\int_{0}^{a} f^{\prime \prime}(x) d x \\
& =\int_{0}^{1} 3(x-3)^{2} d x-\int_{0}^{3} 6(x-3) d x \\
& \left.\left.=\frac{3(x-3)^{3}}{\beta}\right]_{0}^{1}-\frac{8(x-3)^{2}}{2}\right]_{0}^{3} \\
& \left.(x-3)^{3}\right|_{0} ^{1}-\left.3(x-3)^{2}\right|_{0} ^{3} \\
& (-8-(-27))-3\left(0-(-3)^{2}\right) \\
& =-8+27+27=46
\end{aligned}
$$

تا

$$
\begin{aligned}
& A_{1}=\int_{a}^{c} f(x) d x \\
& A_{2}=\int_{c}^{b} f(x) d x \\
& A=\left|A_{1}\right|+\left|A_{2}\right|
\end{aligned}
$$

己渞, [[-2,2] ánol, cke,
let: $f(x)=x^{3}-4 x=0$ $\therefore \alpha^{5} \cdot{ }^{5}$

$$
\begin{aligned}
& x\left(x^{2}-4\right)=0 \\
& \simeq x^{2}-4=0 \Rightarrow x^{2}=4 \rightarrow x= \pm 2 \in[-2,2] \\
& \longrightarrow x=0 \in[-2,2] \\
& A_{1}=\int_{-2}^{0}\left(x^{3}-4 x\right) d x \\
& \xrightarrow[-2]{\stackrel{1}{2} A_{1} \int_{0}^{1} A_{2}} \int_{2}^{0} \\
& \left.=\frac{x^{4}}{4}-2 x^{2}\right]_{-2}^{0} \\
& =(0-(4-8))=4 \\
& \left.A_{2}=\int_{a}^{2}\left(x^{3}-4 x\right) d x=\frac{x^{4}}{4}-2 x^{2}\right]_{n}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =(4-8)-(0)=-4 \\
A & =\left|A_{1}\right|+\left|A_{2}\right| \\
& =|4|+|-4|=8 \text { unit }^{2}
\end{aligned}
$$

$$
\begin{aligned}
A & =\int_{1}^{3} x^{2} d x \\
& \left.=\frac{1}{3} x^{3}\right]_{1}^{3} \Rightarrow \frac{1}{3}(27-1)=\frac{26}{3} \text { unit }^{2}
\end{aligned}
$$

let $f(x)=0 \Rightarrow x^{3}-3 x^{2}+2 x=0$

$$
\begin{aligned}
A_{1} & =\int_{0}^{1}\left(x^{3}-3 x^{2}+2 x\right) d x \\
& \left.=\frac{x^{4}}{4}-x^{3}+x^{2}\right]_{0}^{1} \Rightarrow\left(\left(\frac{1}{4}-(+1)-0\right)=\frac{1}{4}\right. \\
A_{2} & =\int_{1}^{2}\left(x^{3}-3 x^{2}+2 x\right) d x \\
& \left.=\frac{x^{4}}{4}-x^{3}+x^{2}\right]_{1}^{2} \Rightarrow\left[\left(4-0^{2}+4\right)-\left(\frac{1}{4}-1+1\right)\right]=\frac{-\frac{1}{4}}{2} \\
A & =\left|A_{1}\right|+\left|A_{2}\right| \\
& =\left|\frac{1}{4}\right|+\left|-\frac{1}{4}\right|=\frac{1}{2} \text { unit }^{2}
\end{aligned}
$$

 $[-2,3]$ jriolde,
let $f(x)=0$

$$
\begin{aligned}
& x^{2}-1=0 \rightarrow x^{2}=1 \\
& \therefore x= \pm 1 \in[-2,3] \\
& {[-2,-1],[-1,+],[1,3] \quad \therefore=[\text { ind.: }}
\end{aligned}
$$

$$
\begin{aligned}
A_{1} & =\int_{-2}^{1}\left(x^{2}-1\right) d x \\
& \left.=\frac{x}{3}-x\right]_{-2}^{-1} \rightarrow\left(\frac{-1}{3}+1\right)-\left(\frac{-8}{3}+2\right)= \\
& =\frac{-1}{3}+\frac{8}{3}+1-2=\frac{7}{3}-1=\frac{4}{3} \\
A_{-2}^{-1} \int_{-1}^{1} & =\int_{-1}^{3}\left(x^{2}-1\right) d x \\
& \left.=\frac{x^{3}}{3}-x\right]_{-1}^{1} \rightarrow\left(\frac{1}{3}-1\right)-\left(\frac{-1}{3}+1\right)=\frac{1}{3}+\frac{1}{3}-1-1 \\
& =\frac{2}{3}-2=-\frac{4}{3} \\
& \left.=\frac{x^{3}}{3}-x\right]_{1}^{3} \Rightarrow(9-3)-\left(\frac{1}{3}-1\right)=7-\frac{1}{3} \\
A_{3} & =\int_{1}^{3}\left(x^{2}-1\right) d x \\
A & =\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right| \\
& =\left|\frac{4}{3}\right|+\left|\frac{-4}{3}\right|+\left|\frac{20}{3}\right|=\frac{28}{3}=9 \frac{21}{3}-\frac{1}{3}=\frac{20}{3}
\end{aligned}
$$

 $\left[-\frac{\pi}{2}, \pi\right] \quad$ iテ̈d ćsk,
let $y=0 \Rightarrow \sin x=0$

$$
\begin{aligned}
& \sin (0+n \pi)=0 \\
& x=0+n \pi \\
& =\prod_{0-1}^{-2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { @ } n=-2 \rightarrow x=-2 \pi \notin\left[-\frac{\pi}{2}, \pi\right] \\
& \text { a } n=-1 \rightarrow x=-\pi \notin\left[-\frac{\pi}{2}, \pi\right] \\
& \text { a } n=0 \rightarrow x=0 \rightarrow\left[-\frac{\pi}{2}, \pi\right]
\end{aligned}
$$

$$
@ n=1 \rightarrow x=\pi \in\left[-\frac{\pi}{2}, \pi\right]
$$

$$
\text { @ } n=2 \longrightarrow x=2 \pi \notin\left[-\frac{\pi}{2}, \pi\right]
$$

$$
\left[-\frac{\pi}{2}, 0\right],[0, \pi]: \underbrace{i}_{1} \sim e_{1}^{1} \therefore
$$

$$
\xrightarrow[-\frac{\pi}{2}]{\int_{-\pi / 2}^{0} \int_{0}^{\pi} \mid}
$$

$$
\begin{aligned}
A_{1}= & \int_{-\frac{\pi}{2}}^{0} \sin x d x \quad \frac{\int_{-\pi / 2}^{0} \int_{0}^{11}}{-\frac{\pi^{2}}{1}} 0 \\
= & -\left.\cos x\right|_{-\pi / 2} ^{0}=-(1)+(0)=-1 \\
A_{2}= & \int_{0}^{\pi} \sin x d x \\
= & -\left.\cos x\right|_{0} ^{\pi}=-(-1)+(1)=2 \\
& A=\left|A_{1}\right|+\left|A_{2}\right|=|-1|+|2|=3 \text { unit }^{2}
\end{aligned}
$$

 let $y=0 \rightarrow \cos x=0$

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}+n \pi\right)=0 \\
& \therefore \quad x=\frac{\pi}{2}+n \pi \\
& -2 \frac{1012}{-101}
\end{aligned}
$$

@ $n=-2 \rightarrow x=\frac{\pi}{2}-2 \pi=\frac{-3 \pi}{2} \notin[-\pi, \pi]$

$$
@ n=1 \longrightarrow x=\frac{\pi}{2}-\pi=-\frac{\pi}{2} \in[-\pi, \pi]
$$

(2) $n=0 \rightarrow x=\frac{\pi}{2} \in[-\pi, \pi]$

@ $n=1 \longrightarrow x=\frac{\pi}{2}+\pi=\frac{3 \pi}{2} \notin[-\pi, \pi]$
@ $n=2 \longrightarrow x=\frac{\pi}{2}+2 \pi=\frac{5}{2} \pi \notin[-\pi, \pi]$

$$
\left[-\pi, \frac{-\pi}{2}\right],\left[-\frac{\pi}{2}, \frac{\pi}{2}\right],\left[\frac{\pi}{2}, \pi\right] \quad:\left[-\ddot{e}_{1}=\right.
$$

$$
\begin{aligned}
A_{1} & =\int_{-\pi}^{-\pi / 2} \cos x d x \\
& =\left.\sin x\right|_{-\pi} ^{-\pi / 2} \Rightarrow(-1-0)=-1 \\
A_{2} & =\int_{-\pi / 2}^{\pi / 2} \cos x d x \\
& =\left.\sin x\right|_{-\pi / 2} ^{\pi / 2} \Rightarrow(1-(-1))=2 \\
A_{3} & =\int_{\pi / 2}^{\pi} \cos x d x \\
& =\left.\sin x\right|_{\pi / 2} ^{\pi} \Rightarrow(0-(1))=-1 \\
A & =\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|=|-1|+|2|+|-1|=4 \text { unit }
\end{aligned}
$$

$$
A=\left|\int_{a}^{b} f(x)-g(x)\right|
$$

$f(x)$

$$
g(x)
$$

cícu, deref

$$
f(x)=g(x)
$$

$$
A=\left|A_{1}\right|+\left|A_{2}\right| \ldots \quad b_{1}=0 \underbrace{2}
$$

let: $\quad x=\sqrt{x} \longrightarrow x^{2}-x=0$

$$
\begin{aligned}
& x(x-1)=0 \\
& x=1 \\
& {[0,1]: 3 \sim 1 n_{1}:-} \\
& A=\int_{0}^{1}(x-\sqrt{x}) d x \\
& =\int_{0}^{1} x-(x)^{\frac{1}{2}} d x \\
& \left.\left.=\frac{x^{2}}{2}-\frac{(\alpha)^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{1}=\frac{x^{2}}{2}-\frac{2}{3} \sqrt{x^{3}}\right]_{0}^{1} \\
& 1121 \\
& \text { 3-4 }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\overline{2} \int_{0}}{}=\left(\frac{1}{2}-\frac{2}{3}\right)-0=\frac{3-4}{6}=\frac{-1}{6} \\
& =A=\left|\frac{-1}{6}\right|=\frac{1}{6} \text { unit }
\end{aligned}
$$

let:

$$
\begin{aligned}
x^{3}=x & \rightarrow \begin{array}{l}
x^{3}-x=0 \\
\\
\\
\\
\\
\\
\\
\\
\\
\left.x^{2}-1\right)=0
\end{array} \\
x^{2}-1=0 \rightarrow x^{2}=1 & \longrightarrow x= \pm 1 \\
& x=0
\end{aligned}
$$

$$
\begin{aligned}
& A_{1}=\int_{-1}^{0}\left(x^{3}-x\right) d x \\
& {[-1,0],[0,1]: C_{1} \text { ins. } \therefore} \\
& \underset{-1}{\Perp} \int_{-1}^{0} \int_{0}^{1} \\
& =\frac{x^{4}}{4}-\left.\frac{x^{2}}{2}\right|_{-1} ^{0} \Rightarrow\left(0-\left(\frac{1}{4}-\frac{1}{2}\right)\right)=\frac{1}{4}
\end{aligned}
$$

$$
\begin{aligned}
A_{2} & =\int_{0}^{1}\left(x^{3}-x\right) d x \\
& =\frac{x^{4}}{4}-\left.\frac{x^{2}}{2}\right|_{0} ^{1} \Rightarrow\left(\left(\frac{1}{4}-\frac{1}{2}\right)-0\right)=\frac{-1}{4} \\
A & =\left|A_{1}\right|+\left|A_{2}\right|=\left|\frac{1}{4}\right|+\left|\frac{-1}{4}\right|=\frac{1}{2} \text { unit }
\end{aligned}
$$

 let $\quad \sin x=\cos x$

$$
\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

either $x=\frac{\pi}{4} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
or $x=\frac{5 \pi}{4} \notin\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$
\left[-\frac{\pi}{2}, \frac{\pi}{4}\right],\left[\frac{\pi}{4}, \frac{\pi}{2}\right]:=-10, \therefore
$$

$$
\begin{aligned}
\therefore A_{1} & =\int_{-\pi / 2}^{\pi / 4}(\cos x-\sin x) d x \\
& =\sin x-\left.(-\cos x)\right|_{-\pi / 2} ^{\pi / 4} \\
& =\sin x+\left.\cos x\right|_{-\pi / 2} ^{\pi / 4} \Rightarrow\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)-(-1+0) \\
& =\sqrt{2}+1
\end{aligned}
$$

$$
\begin{aligned}
A_{2} & =\int_{\pi / 4}^{\pi / 2}(\cos x-\sin x) d x \\
= & \sin x+\left.\cos x\right|_{\pi / 4} ^{\pi / 2} \Rightarrow\left((1+0)-\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)\right) \\
& =1-\sqrt{2} \\
A=\left|A_{1}\right|+\left|A_{2}\right| & =|\sqrt{2}+1|+|1-\sqrt{2}| \\
& =\sqrt{2}+1+\sqrt{2}-1=2 \sqrt{2} \text { unit }^{2}
\end{aligned}
$$

"\& Lutl

$$
\frac{\dot{\operatorname{lu}}}{\dot{\sim} \mu 1}=\dot{a} _\ldots 1
$$

$$
\begin{aligned}
V=\frac{\Delta d}{\Delta t}=\frac{d_{2}-d_{1}}{t_{2}-t_{1}} & =\text { slop } \\
& =5
\end{aligned}
$$

$$
\begin{aligned}
& >V=\frac{d(d)}{d t} \Rightarrow V=d(t) \\
& d=\int_{t_{1}}^{t_{2}} V d t
\end{aligned}
$$

: Euppli ise

$$
L \cdot\rangle_{1}=t
$$

そ̌,
BuO.sconp:mmm
C60~1

$$
d=\int_{1}^{3} v(t)=\int_{1}^{3}(2 t-4) d t
$$

$$
\text { @ } v(t)=0 \Rightarrow 2 t-4=0 \Rightarrow t=2 \in[1,3]
$$

$$
\begin{aligned}
d_{1} & \left.=\int_{1}^{2}(2 t-4) d t=t^{2}-4 t\right]_{1}^{2} \\
& =(4-8)-(1-4)=-1 \\
d_{2} & \left.=\int_{2}^{3}(2 t-4) d t=t^{2}-4 t\right]_{2}^{3} \\
& =(9-12)-(4-8)=1
\end{aligned}
$$

$$
\leftrightarrow, \int_{1}^{2}, \int_{2}^{3}
$$

$$
\begin{aligned}
& =(9-12)-(4-8)=1 \\
\therefore d & =\left|d_{1}\right|+\left|d_{2}\right|=|-1|+|1|=2 m
\end{aligned}
$$

(b)

$$
\begin{aligned}
S & =\int_{1}^{3} V(t)=\int_{1}^{3}(2 t-4) d t \\
& \left.=t^{2}-4 t\right]_{1}^{3}=(9-12)-(1-4)=0
\end{aligned}
$$

$$
\begin{aligned}
& d=\int_{4}^{5} v(t)=\int_{4}^{5}(2 t-4) d t \\
&\left.=t^{2}-4 t\right]_{4}^{5} \\
&=(25-20)-(16-16) \\
&=5 \mathrm{~m}
\end{aligned}
$$

(d)

$$
\approx \dot{a}|; \gamma 1=\underbrace{n}| 1 \sim *
$$

$$
\begin{aligned}
& S=\int_{0}^{4} V(t)=\int_{0}^{4}(2 t-4) d t \\
&\left.=t^{2}-4 t\right]_{0}^{4} \\
&=(16-16)-(0-0) \\
&=0
\end{aligned}
$$

Coṇ (82) m/s - ais \tilde{S}_{1} oû \hat{L}, वyir till (a) - E害 $\hat{\jmath}(3)$ (b)
(a)

$$
\begin{aligned}
& \because v=\int a(t) \Rightarrow v=\int 18=18 t+c \\
& \because v=18 t+c \Rightarrow 82=18(4)+c=c=10 \\
& \therefore v=18 t+10=\int_{2}^{3} v(t)=\int_{2}^{3} 18 t+10=9 t^{2}+\left.10 t\right|_{2} ^{3} \\
& \therefore d=\int_{2} \\
& (81+30)-(36+20)=55 \mathrm{~m}
\end{aligned}
$$

(b)

$$
\begin{aligned}
S & =\int_{0}^{3} V(t)=\int_{0}^{3} 18 t+10=9 t^{2}+\left.10 t\right|_{0} ^{3} \\
& =(81+30)-(0+0)=111 \mathrm{~m}
\end{aligned}
$$

(4-6) ~ ~

$$
\text { @ } y=0 \Rightarrow x^{4}-x=0
$$

$$
\begin{array}{r}
\begin{array}{l}
x\left(x^{3}-1\right)=0 \\
{\left[x^{3}=1\right.} \\
\therefore \sigma:[-1,0],[0,1]
\end{array}, l
\end{array}
$$

(2) $f(x)=0$
(2) x
(3) añol $_{1}=\hat{0}$ fint
[]
(4) $\dot{\partial} \sim \tilde{n}^{\tau} \times \hat{\sim}$

$$
\therefore \sigma:[-1,0],[0,1]
$$

(5) $x \in[]$
(5) $x \notin[]$
(6) $M B B_{1}$ 5j.
(6) $A=\int f(x)$
(7) $A=\left|A_{1}\right|+\left|A_{2}\right|+\cdots$

$$
\begin{aligned}
\therefore A_{1} & =\int_{-1}^{0}\left(x^{4}-x\right) d x \\
& =\frac{x^{5}}{5}-\left.\frac{x^{2}}{2}\right|_{-1} ^{0}=(0-0)-\left(\frac{-1}{5}-\frac{1}{2}\right)
\end{aligned}=\frac{1}{5}+\frac{1}{2} .
$$

(a)

$$
\begin{aligned}
f(x)=0 \Rightarrow & x^{4}-3 x^{2}-4=0 \\
& \left(x^{2}-4\right)\left(x^{2}+1\right)=0
\end{aligned}
$$

$$
x^{2}=4 \Rightarrow x=-2 \in[-2,3]
$$

$$
x=2 \in[-2,3]
$$

衾, $\quad \sigma:[-2,2],[2,3]$

$$
\begin{aligned}
& \therefore A_{1}=\int_{-2}^{2}\left(x^{4}-3 x^{2}-4\right) d x \\
&\left.=\frac{x^{5}}{5}-x^{3}-4 x\right]_{-2}^{2}
\end{aligned} \begin{aligned}
& A_{2}=\left(\frac{32}{5}-8-8\right)-\left(\frac{-32}{5}+8+8\right) \\
&=\frac{32}{5}+\frac{32}{5}-16-16=\frac{64}{5}-32 \\
&=\frac{64}{5}-\frac{160}{5}=\frac{-96}{5} \\
&\left.=\frac{x^{5}}{5}-x^{4}-4 x^{2}-4\right) d x \\
&=\frac{243}{5}-\frac{32}{5}-39+16 \\
&=\frac{211}{5}-23=\frac{211-115}{5}=\frac{96}{5} \\
&=\left|\frac{-96}{5}\right|+\left|\frac{96}{5}\right|=\frac{192}{5} \\
& \text { unit }
\end{aligned}
$$

$$
\begin{aligned}
& \text { @ } f(x)=0 \Rightarrow x^{4}-x^{2}=0 \\
& x^{2}\left(x^{2}-1\right)=0 \\
& x^{2}=1 \Rightarrow x= \pm 1 \\
& x=0 \\
& \therefore \sigma:[-1,0],[0,1] \\
& \underset{4}{4} \int_{-1}^{0} \int_{0}^{1} \quad 1 \quad 1 \quad \\
& A_{1}=\int_{-1}^{0}\left(x^{4}-x^{2}\right) d x \\
& =\frac{x^{5}}{5}-\left.\frac{x^{3}}{3}\right|_{-1} ^{0} \Rightarrow(0-0)-\left(\frac{-1}{5}+\frac{1}{3}\right)= \\
& =\frac{1}{5}-\frac{1}{3}=\frac{3-5}{15}=\frac{-2}{15} \\
& A_{2}=\int_{0}^{1}\left(x^{4}-x^{2}\right) d x \\
& \left.=\frac{x^{5}}{5}-\frac{x^{3}}{3}\right]_{0}^{1} \Rightarrow\left(\frac{1}{5}-\frac{1}{3}\right)-(0-0)=\frac{3-5}{15}=\frac{-2}{15} \\
& A=\left|A_{1}\right|+\left|A_{2}\right|=\left|\frac{-2}{15}\right|+\left|\frac{-2}{15}\right|=\frac{4}{15} \quad \text { unit }
\end{aligned}
$$

(a) $y=0 \Rightarrow \sin 3 x=0$
when $3 x=0 \Rightarrow x=0$
or $3 x=\pi \Rightarrow x=\frac{\pi}{3} \in[0, \pi / 2]$

$$
\begin{aligned}
& \therefore \sigma_{i}\left[0, \frac{\pi}{3}\right],\left[\frac{\pi}{3}, \frac{\pi}{2}\right] \\
& \therefore A_{1}=\int_{0}^{\pi / 3} \sin 3 x d x
\end{aligned}
$$

$=-\left.\frac{1}{3} \cos 3 x\right|_{0} ^{\pi / 3}=\frac{-1}{3}(\cos \pi-\cos 0)=\frac{-1}{3}(-1-1)$
$A_{2}=\int_{\pi / 3}^{\pi / 2} \sin 3 x d x$
$=\left.\frac{-1}{3} \cos 3 x\right|_{\pi / 3} ^{\pi / 2}=\frac{-1}{3}\left(\cos \frac{3 \pi}{2}-\cos \pi\right)$

$$
=\frac{-1}{3}(0+1)=\frac{-1}{3}
$$

$$
A=\left|A_{1}\right|+\left|A_{2}\right|=\left|\frac{2}{3}\right|+\left|\frac{-1}{3}\right|=1 \text { unit }
$$

$$
\begin{aligned}
& \text { (a) } y=0 \Rightarrow 2 \cos ^{2} x-1=0 \Rightarrow \cos ^{2} x=\frac{1}{2} \quad \therefore \cos x=\frac{1}{\sqrt{2}} \\
& \therefore x=\frac{\pi}{4} \in\left[0, \frac{\pi}{2}\right] \quad \text { en } \\
& \therefore \cos 2 x
\end{aligned}
$$

シié âg

$$
\begin{aligned}
& 2 \cos ^{2} x-1=\cos 2 x \\
& \text { @ } y=0 \longrightarrow \cos 2 x=0 \longrightarrow 2 x=\frac{\pi}{2} \Rightarrow x=\frac{\pi}{4} \in\left[0, \frac{\pi}{2}\right] \\
& \therefore \sigma:\left[0, \frac{\pi}{4}\right],\left[\frac{\pi}{4}, \frac{\pi}{2}\right] \\
& \therefore A_{1}=\int_{0}^{\pi / 4} \cos 2 x d x \\
& =\frac{1}{2} \int_{0}^{\pi / 4} \cos 2 x \cdot 2 d x=\left.\frac{1}{2} \sin 2 x\right|_{0} ^{\pi / 4} \\
& =\frac{1}{2}\left(\sin \frac{\pi}{2}-\sin 0\right)=\frac{1}{2}(1-0)=\frac{1}{2} \\
& A_{2}=\int_{\pi / 4}^{\pi / 2} \cos 2 x d x \\
& =\frac{1}{2} \int_{\pi / 4}^{\pi / 2} \cos 2 x \cdot 2 d x=\left.\frac{1}{2} \sin 2 x\right|_{\pi / 4} ^{\pi / 2} \\
& =\frac{1}{2}\left(\sin \pi-\sin \frac{\pi}{2}\right)=\frac{1}{2}(0-1)=-\frac{1}{2} \\
& \therefore A=\left|A_{1}\right|+\left|A_{2}\right|=\left|\frac{1}{2}\right|+\left|-\frac{1}{2}\right|=1 u_{n i t}{ }^{2}
\end{aligned}
$$

 let $\frac{1}{2} x=\sqrt{x-1} \Rightarrow \frac{x^{2}}{4}=x-1 \Rightarrow x^{2}=4 x-4$

$$
\begin{aligned}
& \therefore \quad x^{2}-4 x+4=0 \\
& (x-2)(x-2)=0 \\
& x=2 \in[2,5] \\
& \therefore \sigma:[2,5]
\end{aligned}
$$

$$
\begin{aligned}
& \therefore A=\left|\int_{2}^{5} \frac{x}{2}-(x-1)^{\frac{1}{2}} d x\right| \\
& \left.=\left\lvert\, \frac{x^{2}}{4}-\frac{(x-1)^{\frac{3}{2}}}{3 / 2}\right.\right]_{2}^{5} \mid \\
& =\left|\left(\frac{25}{4}-\frac{2}{3}(4)^{\frac{3}{2}}\right)-\left(1-\frac{2}{3}\right)\right| \\
& =\left|\left(\frac{25}{4}-\frac{16}{3}\right)-\left(\frac{1}{3}\right)\right| \\
& =\left|\left(\frac{25}{4}-\frac{16}{3}-\frac{1}{3}\right)\right|=\left|\left(\frac{25}{4}-\frac{17}{3}\right)\right| \\
& =\left|\frac{75-68}{12}\right|=\frac{7}{12} \text { unit }^{2}
\end{aligned}
$$

let $x^{2}=x^{4}-12$

$$
\begin{aligned}
\therefore \quad & x^{4}-x^{2}-12=0 \\
& \left(x^{2}-4\right)\left(x^{2}+3\right)=0
\end{aligned}
$$

$$
L x^{2}=-3 \notin R \quad d o
$$

$$
\rightarrow \quad x^{2}=4 \quad \Rightarrow \quad x= \pm 2
$$

$$
\therefore G:[-2,2]
$$

$\therefore A=\left|\int_{-2}^{2} x^{2}-\left(x^{4}-12\right) d x\right|$

$$
\left.=\left\lvert\, \frac{x^{3}}{3}-\frac{x^{5}}{5}+12 x\right.\right]_{-2}^{2} \mid
$$

$$
=\left|\left(\frac{8}{3}-\frac{32}{5}+24\right)-\left(\frac{-8}{3}+\frac{32}{5}-24\right)\right|
$$

$$
=\left|\frac{8}{3}-\frac{32}{5}+24+\frac{8}{3}-\frac{32}{5}+24\right|
$$

$$
\begin{aligned}
& =\left|\frac{16}{3}-\frac{64}{5}+48\right| \\
& =\left|\frac{80-192}{15}+48\right|=\left|\frac{-112}{15}+48\right|
\end{aligned}
$$

$$
\begin{aligned}
=\left|\frac{v}{15}+40\right| & =\left|\frac{\cdots}{15}+48\right| \\
& =\left|\frac{-112+720}{15}\right| \\
& =\left\lvert\, \frac{608}{15}\right. \text { unit }
\end{aligned}
$$

 let $g(x)=f(x)$

$$
\begin{aligned}
& \sin x \cdot \cos x=\sin x \\
\therefore & \sin x \cdot \cos x-\sin x=0 \\
& \sin x(\cos x-1)=0
\end{aligned}
$$

$$
\cos x=1 \quad x=0
$$

$$
x=2 \pi
$$

$$
\begin{aligned}
& \therefore \sigma^{\prime} {[0, \pi],[\pi, 2 \pi] } \\
& \sin x=0 \\
&=\int_{0}^{\pi} \sin x(\cos x-1) d x \\
&=-\int_{0}^{\pi}-\sin x(\cos x-1) d x[0,2 \pi] \\
& \therefore A_{1}=\int_{0}^{\pi}(\sin x \cdot \cos x-\sin x) d x \\
&\left.=-\frac{(\cos x-1)^{2}}{2}\right]_{0}^{\pi} \Rightarrow \frac{1}{2}\left((\cos \pi-1)^{2}-(\cos 0-1)^{2}\right) \\
&=\frac{-1}{2}(4)=-2 \pi \\
& A_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\frac{-1}{2}(\cos x-1)^{2}\right]_{\pi}^{2 \pi} \Rightarrow \frac{-1}{2}\left((\cos 2 \pi-1)^{2}-(\cos \pi-1)^{2}\right) \\
& =-\frac{1}{2}(0-4)=2 \\
& \therefore A=\left|A_{1}\right|+\left|A_{2}\right|=|-2|+|2|=4 \text { unit }^{2}
\end{aligned}
$$

$x \in\left[0, \frac{3 \pi}{2}\right] \operatorname{cic}(y=\sin x) \&(y=2 \sin x+1) \cos ^{2} \omega l J L \bar{\partial}, s_{1}, \bar{a}+L$
let $2 \sin x+1=\sin x$

$$
\begin{aligned}
& \therefore 2 / \sin x+1-\sin x=0 \\
& \sin x+1=0
\end{aligned} \Rightarrow \sin x=-1 \Rightarrow x=\frac{3 \pi}{2}
$$

let $y=0 \Rightarrow x^{3}+4 x^{2}+3 x=0$

$$
\begin{aligned}
& x\left(x^{2}+4 x+3\right)=0 \\
& \square \begin{aligned}
& x^{2}+4 x+3=0 \\
&(x+3)(x+1) \\
& \sim \\
& \\
& x=0 \\
& x=-1 \\
& x=0
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\sigma & =[-3,-1],[-1,0] \quad A_{1}=\int_{-3}^{-1} A_{2}=\int_{-1}^{0} \\
\therefore A_{1} & =\int_{-3}^{-1}\left(x^{3}+4 x^{2}+3 x\right) d x \quad 0_{0}^{-1} \\
& =\frac{x^{4}}{4}+\frac{4}{3} x^{3}+\left.\frac{3}{2} x^{2}\right|_{-3} ^{-1} \\
& =\left(\frac{1}{4}-\frac{4}{3}+\frac{3}{2}\right)-\left(\frac{81}{4}-\frac{4 \times 27}{3}+\frac{3 \times 9}{2}\right) \\
& =\left(\frac{3}{12}-\frac{16}{12}+\frac{18}{12}\right)-\left(\frac{81}{4}-36+\frac{27}{2}\right) \\
& =\left(\frac{5}{12}\right)-\left(\frac{81}{4}-\frac{144}{4}+\frac{54}{4}\right)=\frac{5}{12}+\frac{9}{4}= \\
& =\frac{20+108}{48}=\frac{128}{48} \\
A_{2} & =\int_{-1}^{0}\left(x^{3}+4 x^{2}+3 x\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x^{4}}{4}+\frac{4}{3} x^{3}+\left.\frac{3}{2} x^{2}\right|_{-1} ^{0} \Rightarrow(0)-\left(\frac{1}{4}-\frac{4}{3}+\frac{3}{2}\right) \\
& =-\frac{5}{12} \\
\therefore A & =\left|A_{1}\right|+\left|A_{2}\right| \\
& =\left|\frac{8}{3}\right|+\left|\frac{-5}{12}\right|=\frac{32}{12}+\frac{5}{12}=\frac{37}{12} \text { unit }
\end{aligned}
$$

:un $V(t)=\left(3 t^{2}-6 t+3\right) \mathrm{m} / \mathrm{sec}$ ã, . [2,4$]$ वَتِ, es acjéal äl (a

(a) $d=\int_{2}^{4} v(t)$
let $v(t)=0 \Rightarrow 3 t^{2}-6 t+3=0 \quad \% 3$
$t^{2}-2 t+1=0$

$$
(t-1)(t-1)=0
$$

debun, sis ΔS, qür $\gamma \therefore$

$$
\begin{aligned}
\therefore & d=\int_{2}^{4}\left(3 t^{2}-6 t+3\right) d t \Rightarrow t^{3}-3 t^{2}+\left.3 t\right|_{2} ^{4} \\
& (64-48+12)-(8-12+6)=28-2=26 \mathrm{~m}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& S=\int_{0}^{5} v(t)=\int_{0}^{5}\left(3 t^{2}-6 t+3\right) d t=t^{3}-3 t^{2}+\left.3 t\right|_{0} ^{5} \\
& (125-75+15)-(0)=65 \mathrm{~m}
\end{aligned}
$$

GGat

(a)

$$
\begin{aligned}
V & =\int a(t) \\
V & =\int 4 t+12=2 t^{2}+12 t+C \\
& \therefore V(t)=2 t^{2}+12 t+C \\
& \because V(4)=90 \Rightarrow 2(4)^{2}+12(4)+C=90 \quad \therefore C=10 \\
& \therefore V(t)=2 t^{2}+12 t+10 \\
V(2) & =2(2)^{2}+12(2)+10=42 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \text { let } v(t)=0 \Rightarrow 2 t^{2}+12 t+10=0 \quad \because .2 \\
& t^{2}+6 t+5=0 \\
& (t+5)(t+1)=0 \\
& \hdashline \quad \begin{aligned}
(t+1
\end{aligned} \\
& \begin{aligned}
& \therefore d=\int_{1}^{2} v(t)=\int_{1}^{2}\left(2 t^{2}+12 t+10\right) d t \\
& \frac{2}{3} t^{3}+6 t^{2}+\left.10 t\right|_{1} ^{2} \Rightarrow\left(\frac{16}{3}+24+20\right)-\left(\frac{2}{3}+6+10\right) \\
&=\frac{14}{3}+28=\frac{14}{3}+\frac{84}{3}=\frac{98}{3} \mathrm{~m}
\end{aligned}
\end{aligned}
$$

(c) $S=\int_{0}^{10} v(t)=\int_{0}^{10}\left(2 t^{2}+12 t+10\right) d t$

$$
\begin{aligned}
= & \frac{2}{3} t^{3}+6 t^{2}+\left.10 t\right|_{0} ^{10} \Rightarrow\left(\frac{2}{3} 1000+600+100\right)-(0) \\
& \frac{2000}{3}+\frac{2100}{3}=\frac{4100}{3} m
\end{aligned}
$$

 वiv cincoir ,

(a)

$$
\begin{aligned}
S=\int v(t) d t & =\int 100 t-6 t^{2}=50 t^{2}-2 t^{3}+C \\
\therefore S & =50 t^{2}-2 t^{3}+C \\
& t=0 \text { \& } S=0 \text { ij ij, ins } \\
0 & =50(0)^{2}-2(0)^{3}+C \Rightarrow c=0 \\
\therefore S(t) & =50 t^{2}-2 t^{3}
\end{aligned}
$$

$t=$? \& $S=0$ uj cher, ure, U_{1} aiei, jas ins -

$$
\begin{aligned}
50 t^{2}-2 t^{3} & =0 \\
2 t^{2}(25-t) & =0 \\
& \rightarrow t=25 \mathrm{sec}
\end{aligned}
$$

(b)

$$
\begin{aligned}
a(t) & =v^{\prime} \\
& =100-6 t \\
a(25) & =100-6(25)=100-300=-200 \mathrm{~m} / \mathrm{sec}^{2}
\end{aligned}
$$

$$
V=\pi \int_{a}^{b} y^{2} d x
$$

$$
\begin{aligned}
& \because y=\sqrt{x} \Rightarrow y^{2}=x \\
& \left.\therefore V=\pi \int_{0}^{4} x d \Rightarrow V=\pi \frac{1}{2} x^{2}\right]_{0}^{4} \\
& \therefore V=\frac{1}{2} \pi(16-0)=8 \pi \text { unit }
\end{aligned}
$$

$$
\begin{aligned}
& V=\pi \int_{a}^{b} x^{2} d y \\
& \because x=\frac{1}{\sqrt{y}} \Rightarrow x^{2}=\frac{1}{y} \\
& \left.\therefore V=\pi \int_{1}^{4} \frac{1}{y} d y \Rightarrow V=\pi \ln y\right]_{1}^{4} \\
& \therefore V=\pi(\ln 4-\ln 1)=\pi \ln 4=\pi \ln 2^{2}=2 \pi \ln 2 \\
& u^{2} i t^{3}
\end{aligned}
$$

$$
\begin{aligned}
& v=\pi \int_{a}^{b} y^{2} d x \\
& \left.v=\pi \int_{0}^{2} 8 x d \Rightarrow v=\pi 4 x^{2}\right]_{0}^{2} \\
& v
\end{aligned}=\pi 4(4-0)=16 \pi \text { unit } 3
$$

$$
\begin{aligned}
& V=\pi \int_{a}^{b} y^{2} d x \\
& \quad=y=2 x^{2} \Rightarrow y^{2}=4 x^{4} \\
& \therefore V=\pi \int_{0}^{5} 4 x^{4} d x \Rightarrow V=\left.\pi \frac{4}{5} x^{5}\right|_{0} ^{5} \\
& \therefore V=\frac{4 \pi}{5}(3,255-0)=2500 \pi \text { unit }
\end{aligned}
$$

 sue), $y=16$

$$
\begin{aligned}
& V=\pi \int_{a}^{b} x^{2} d y \\
& x^{2}=\frac{y}{4} \\
& \therefore V=\pi \int_{0}^{16}\left(\frac{y}{4}\right) d y \Rightarrow v=\left.\frac{\pi}{8} y^{2}\right|_{0} ^{16}
\end{aligned}
$$

$$
\begin{aligned}
\therefore v=11 \int_{0}\left(\frac{u}{4}\right) d y & \Rightarrow v=\left.\frac{\pi}{8} y\right|_{0} \\
& \therefore v=\frac{\pi}{8}(286-0)=32 \pi \text { unit }
\end{aligned}
$$

aly

$$
V=\pi \int_{y_{1},}^{b} x^{y_{2}} x d y
$$

$$
\because y=\frac{1}{x} \Rightarrow x=\frac{1}{y} \Rightarrow x^{2}=\frac{1}{y^{2}}
$$

(@) $x=1 \Rightarrow y_{1}=\frac{1}{1}=1$
@

$$
\begin{aligned}
x & =\frac{1}{2} \Rightarrow y_{2}=\frac{1}{y_{2}}=2 \\
& \therefore V=\pi \int_{1}^{2} \frac{1}{y^{2}} d y \Rightarrow V=\pi \int_{1}^{2} y^{-2} d y \\
& =\pi\left(\left.\left.\frac{y^{-1}}{-1}\right|_{1} ^{2} \Rightarrow \pi \frac{-1}{y}\right|_{1} ^{2}=\pi\left(\frac{-1}{2}+1\right)=\frac{\pi}{2}\right. \text { unit }
\end{aligned}
$$

 ．ỡU，

$$
\begin{aligned}
& v=\pi \int_{a}^{b} y^{2} d x \\
& v=\pi \int_{1}^{2} x^{4} d x=\left.\pi \frac{x^{5}}{5}\right|_{1} ^{2} \Rightarrow \frac{\pi}{5}(32-1)=\frac{31 \pi}{5} \text { unit }
\end{aligned}
$$

$\left(y=x^{2}+1\right)$ ál」
－©suet 今ो Uヵ $y=4$ rè ，

$$
\begin{aligned}
V= & \pi \int_{a}^{b} x^{2} d y \\
& \because y=x^{2}+1 \Rightarrow \sqrt{x^{2}=y-1}
\end{aligned}
$$

（a）$x=0 \Rightarrow y=(0)^{2}+1=1 \quad \therefore y=1 \quad$ \＆$y=4$

$$
\begin{aligned}
& \therefore v=\pi \int_{1}^{4}(y-1) d y=\pi \frac{(y}{2} \\
& \therefore \frac{\pi}{2}(9-0)=\frac{9 \pi}{2} \text { unit }
\end{aligned}
$$

 Svelifgluge $x=0$ riérl，

$$
v=\pi \int_{a}^{b} x^{2} d y
$$

$$
\begin{aligned}
v= & \pi \int_{a}{ }^{x} d y \\
& \because y^{2}+x=1 \Rightarrow x=1-y^{2} \Rightarrow x^{2}=\left(1-y^{2}\right)^{2}
\end{aligned}
$$

@

$$
\begin{aligned}
& x=0: \quad y^{2}+(0)=1 \Rightarrow y^{2}=1 \Rightarrow y= \pm 1 \\
& \therefore \quad v=\pi \int_{-1}^{1}\left(1-y^{2}\right)^{2} d y \\
&=\pi \int_{-1}^{1}\left(1-2 y^{2}+y^{4}\right) d y \\
&=\left.\pi\left[\left(y-\frac{2}{3} y^{3}+\frac{1}{5} y^{5}\right)\right]\right|_{-1} ^{1} \\
&=\pi\left[\left(1-\frac{2}{3}+\frac{1}{5}\right)-\left(-1+\frac{2}{3}-\frac{1}{5}\right)\right] \\
&=\pi\left(2-\frac{4}{3}+\frac{2}{5}\right)=\pi\left(\frac{30}{15}-\frac{20}{15}+\frac{6}{15}\right) \\
&=\frac{16 \pi}{15} \text { unit }_{3}^{3}
\end{aligned}
$$

- in \rightarrow of, Jos $x=0, x=2$

$$
\begin{aligned}
& v=\pi \int_{a}^{b} y^{2} d x \\
&=\pi \int_{0}^{2} x^{3} d x=\left.\frac{\pi}{4}\left(x^{4} \begin{array}{l}
x
\end{array}\right)\right|_{0} ^{2}=\frac{\pi}{4}(16-0)=4 \pi \text { unit } \\
& x=-2, x=2
\end{aligned}
$$

