PRRS pathology and control

Reproductive pathology

- Early gestation
 - embryonic death, infertility return to estrus
- Late gestation
 - transplacental infection abortions, early farrowing, fetal death, weak, congenitally infected piglets

Reproductive pathology

- Focal detachment/degeneration of the placenta (Karniychuk et al. 2009, 2013)
 - Sn/CD169 cell numbers increase in the placenta during late gestation
 - Activated NK cells induce placental damage
- Fetal infection THYMUS!! (Ladinig et al. 2014, 2015)
 - Inoculation of 114 pregnant gilts at 85 DOG extermination at 21DPI: >95% of dead fetuses were infected

Bodyweight of live piglets

Viable

Reproductive PRRS Pathology

Andrea Ladinig, Susan Detmer, John Harding et al. 2014, 2015, 2016

Incomplete diffuse epitheliochorial placenta

with atrophy at the peripheral tips without invasion of fetal tissue into the maternal endometrium, nor endometrial decidualization

Fetal evaluation

Immunopathogenesis in the lungs (Gómez-Laguna et al., 2013)

- Pro inflammatory cytokine upregulation (TNF- α , INF- β)
- Anti inflammatorry cytokine downregulation (IL-10, IL-4)
- Haptoglobin levels increase
 - CD163 receptor upregulation helps virus internalization, replication
 - Decrease the bactricide activity of macrophages
 SECONDARY INFECTIONS

Microscoipc lung lesions in PRRS

- Intralobular interstitial pneumonia
- Septal infltration by mononuclear cells
- Intraalveolar necrotic debris
- Intraalveolar cellular infilration
- Type 2 pneumocyte hypertrophy and hyperplasia

Type 2 pneumocytes

Aims

- Identification of type 2 pneumocytes in pigs
- Characterize PRRSV induced lesions
 - H&E
 - IHC
- Establish a new scoring system
- Find a more objective scoring method by counting IHC positive cell

PRRSV infection model

- 9-week-old piglets
- 2.2 × 10⁵ TCID₅₀/ml, subtype 1 "wild" isolate, from Germany
- Euthanasia at 10 DPI (n = 7) and 21 DPI (n = 5), parallely from PBS treated control group
- Necropsy and histopathology from all 7 lung lobes
- FFPE
- H&E
- IHC (left middle lobe only): TTF-1, Ki67, MAC387, panCK
- Blinded analysis

Scoring of H&E slides

Severity (0-3) and extention (0-3)

- pneumocyte hypertrophy and hyperplasia
- septal mononuclear infiltration
- intraalveolar necrotic debris accumulation
- intraalveolar inflammatory cells
- perivascular inflammatory cells

Scoring IHC slides

- TTF-1, Ki67, MAC387, (panCK)
- IHC positive cells on 50, non overlapping 0.20 mm² fields
- SPSS:
 - Significance calculation: Student's T test
 - Correlation analysis IHC and H&E scores: Pearson's X²-test

intraalveolar necrotic debris accumulation 9+10 DPI 21+22 DPI * p = 0,00; + p = 0,01 total

intraalveolar inflammatory cell inflitration Intraalveolar accumulation of infl. cells 9+10 DPI 21+22 DPI

SciVerse ScienceDirect

EXPERIMENTALLY INDUCED DISEASE

Immunohistochemical Characterization of Type II Pneumocyte Proliferation after Challenge with Type I Porcine Reproductive and Respiratory Syndrome Virus

G. Balka*, A. Ladinig†, M. Ritzmann†,‡, A. Saalmüller§, W. Gerner§, T. Käser§, C. Jakab*, M. Rusvai* and H. Weißenböck¶

*Department of Pathology and Forensic Veterinary Medicine, Faculty of Veterinary Science, Szent István University, Budapest, Hungary, † Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria, † Clinic for Swine, Ludwig-Maximilians University, Oberschleissheim, Germany, § Institute of Immunology, Department of Pathobiology and ¶ Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine, Vienna, Austria

Control of PRRS

Control – eradication

Control – eradication

- The key of control: decrease or stop virus excretion/circulation among the sows
 - homogenous immune status of the breeding animals (gilts introduction)
 - Piglet vaccination to reduce shedding
- Eradication: LOAD-CLOSE-EXPOSE
 - Min. 210 days, mass vaccination two times at least, then loading with naive gilts
 - Thorough examination of suckling piglets (PCR), then the sentinels (ELISA)
- Prevent reinfection biosecurity (air filtration)
- Vaccination + management!!!

Linhares et al. 2013

- TTPN (time to produce negative piglets)
- TTBP (time to baseline production)

LVI (local/live virus inoculation) vs. MLV

- With LVI negative piglets earlier
- With LVI earlier herd stability

BUT!!!

The use of MLV was significantly more cost effective, less additional losses (abortions, medication, loss of income, etc.)

Vaccines

- MLV: strong reaction, horizontal and vertical spread
- KV: no AB reaction in naïve animals; booster effect after infection or MLV; harmless, no shedding, no spread
- Marker, subunit, peptide vaccines, genome shuffling

Vaccines

- Genetic heterogenicity has a negative impact on vaccine efficacy (Labarque et al. 2004), BUT
- Degree of (ORF5) similarity can NOT predict vaccine efficacy (Prieto et al. 2008)
- Different strains (vaccines) induce differet cytokine production pattern (Díaz et al. 2006)
- Vaccines do not prevent infection and viraemia after heterologous challenge, BUT in a natural infection model they can provide 70% clinical protection (Martelli et al. 2009)

Suvaxyn PRRS challenge trial

- 41 piglets involved in the study born to 4 sows
- Piglets were randomly cross fostered after birth, then 2 litters got vaccinated

Treatment Group	Test Material	Dose Volume per Day of Admin (mL) Challenge		Challenge	Day of challenge	Day of necropsy**	
T01	Saline solution (CP)	2	50	PRRSV-1 subtype 1 strain AUT15-33 by	D20	2442	
Т02	Suvaxyn PRRS MLV (IVP)	2 mL IM	D0	IN route at 1x10 ⁶ cfu total in 5ml	D28	D41/42	

• At weaning (D25) former littermates were put back together

Suvaxyn PRRS challenge trial

- Challenge at day 28 with highly pathogenic PRRSV-1, Subtype 1 "ACRO" strain AUT15-33
- Clinical observation, recteal temperature, body weight
- Serum samples, nasal swabs, oral swabs
 - ELISA and PCR
- Euthanasia at day 41/42
- Necropsy
 - Macroscopical evaluation (% affetced)
 - Lung tissue samples for PCR and histopathology

Suvaxyn PRRS challenge trial

Histopathology (Balka et al. 2013, J. Comp. Pathol.)
 BLINDED ANALYSIS

- Pneumocytic hypertrophy and hyperplasia
- Septal infiltration with mononuclear cells
- Intraalveolar necrotic debris
- Intraalveolar accumulation of inflammatory cells
- Perivascular accumulation of inflammatory cells

ANALYSIS OF BODY WEIGHT - COMPARISONS OF AVERAGE DAILY GAIN BETWEEN TREATMENTS

Label	Difference in average daily gain	std error of diff. in average daily gain	2-tailed p- value (1)	Significance of 2-tailed p- value (2)		
28 to 35 ADG T01 v T02	0.07	0.02	0.0013	*		
28 to 41/42 ADG T01 v T02	0.07	0.03	0.0173	*		
35 to 41/42 ADG T01 v T02	0.07	0.04	0.0971	N.S.		

Suvaxyn PRRS challenge trial RESULTS – histological scoring sheet

Microscopic Exa	min	ation of the	Lung		Nr.: 5	886										
				ran		nid	Lca			ran		mid	R c		ac	
lesions			S	E	S	E	S	Е	S	E	S	Е	S	E	S	Е
pneumocytic	0	not present					0	0					0	0	0	0
hypertrophy and	1	mild	1	1	1				1		1	1				
hyperplasia	2	moderate				2				2						
Пуротрішоги	3	severe														
septal infiltration	0	not present					0	0					0	0	0	0
with	1	mild	1								1	1				
mononuclear	2	moderate		2	2	2			2	2						
cells	3	severe														
	0	not present	0	0	0	0		0			0	0	0	0	0	0
necrotic debris	1	mild							1	1						
	2	moderate														
	3	severe														
							_	_				_	_	_	_	
intraalveolar	0	not present	0	0			0	0			0	0	0	0	0	0
accumulation of	1	mild			1	1			1	-						
infl. cells	2	moderate								2						
	3	severe														
perivascular accumulation of infl. cells	0	not present					0	0					0	0	0	0
	1	mild	1	1							1	1				
	2	moderate			2	2			2	2						
	3	severe														
		total														

Suvaxyn PRRS challenge trial RESULTS – summary of histological data

Thank you for your attention!