A Magic Square of Squares

$$
\begin{array}{|l|l|l|}
\hline 2 & & 6 \\
\hline & 5 & I \\
\hline 4 & 3 & \\
\hline
\end{array}
$$

A 3×3 magic square of unique integers with 3 perfect squares.

\rightarrow Finding a magic square of squares is hard, maybe impossible. but one with seven squares was found.

Found by
Dr Andrew Bremner in 1997.

$22212 I$	23^{2}	565^{2}
527^{2}	425^{2}	289^{2}
205^{2}	$36072 I$	373^{2}

\rightarrow The search has been for another Seven, but no other has been found.
\rightarrow There are plenty of Sixes.
\rightarrow And we make Sixes by making Fives.

Making Fives

\rightarrow Use parametric formulas on pairs of co-primes.
$\rightarrow M, N, P, R$

Dr Lee Morgenstern

Overlapping progressions of 3 perfect squares

Making Sixes

\rightarrow Fives are ubiquitous, Sixes are rare, and the enigma is if there is only one Seven.
\rightarrow Make Fives and hope another perfect square shakes out.
\rightarrow Can we increase the likelihood of finding more Sixes?
(and thereby having more chances at finding a Seven.)

The Plan

\rightarrow Use pairs of primes for M, N, P, R.
\rightarrow Try every pair of primes up to the first Iooo primes.
\rightarrow Record which pairs generate Sixes.

$$
\begin{aligned}
& \text { e.g. } M=\varsigma \quad N=43 \quad P=2 \quad R=\varsigma \\
& \text { (2254 is the overlapping number) }
\end{aligned}
$$

There is structure!

466976666	92414^{2}	1874^{2}
2254^{2}	64354^{2}	887320066
8588787856	1394^{2}	65366^{2}

466976666	92414^{2}	1874^{2}
2254^{2}	64354^{2}	883720016
8883787866	1394^{2}	653666^{2}

4269576676	92414^{2}	1874^{2}
2254^{2}	64354^{2}	853721016
8538778766	1394^{2}	65366^{2}

460876666	92414^{2}	1874^{2}
2254^{2}	64354^{2}	88732006
5888787866	1394^{2}	65366^{2}

460876666	92414^{2}	1874^{2}
2254^{2}	64354^{2}	88732006
5888787866	1394^{2}	65366^{2}

This square just happened to shake out.

Magic number / 3 !

The Plan

\rightarrow Generate squares from the first IOOO primes.
throw away the Fives and Sevens (if any.)
\rightarrow Determine which M, N, P, R Mod Io, finds the most Sixes. check which modulo finds more.
\rightarrow Also determine which one finds the least, and also pick a middle one.
best, middle \& worst candidates.

The Plan

\rightarrow Count which M, N, P, R mod io make the most/least progressions of 3 perfect squares. We dislike multiples!
\rightarrow For example, maybe our best candidate is $\mathrm{I}, 7,7, \mathrm{I}$ generate the Fives again, but this time with the first 1000 primes that are $\mathrm{I} \bmod$ io for $M, 7 \bmod$ io for N, and so on.
\rightarrow Our M, N, P, R values will be larger. maybe we'll find a bigger Six.

The QUESTION

\rightarrow Can we use this strategy as a predictor of finding more Sixes?
\rightarrow Hypothesis: We will generate more Sixes with our best candidate than with our worst.
\rightarrow The Nagging Doubt: Sixes get rarer as M, N, P, R gets higher, so maybe we can't tell a) that it's random, or b) there's some other structure that lower values don't shed light on.

Results of Run \#I

\rightarrow We found Is34 Sixes.
\rightarrow With modulo IO...
\rightarrow The best candidate is: $1,3,7,9$
\rightarrow The middle candidate is: $\mathrm{I}, 3, \mathrm{I}, 7$
\rightarrow The worst candidate is: $9,9,7,1$
\rightarrow The best modulo is actually 6 with $5, \mathrm{I}, 5, \mathrm{I}$.

Distribution of Sixes in Run \#I

Results of Run \#2

	Sixes	3sq prog.
Best $(1,3,7,9)$	98	210
Faux-Best $(1,7,7,1)$	77	147
Middle $(1,3,1,7)$	120	236
Worst $(9,9,7,1)$	19	25

The ANSWER to the QUESTION

\rightarrow Can we use this strategy as a predictor of finding more Sixes?
$\rightarrow \mathrm{NO}$

Results of Run \#2 (middle)

Results of Run \#2 (middle, new)

\rightarrow Check for candidates with M, N, P, R all $>\mathrm{IOO},>\mathrm{I} 000$.
\rightarrow Look for candidates in I, 3, I, 7 with mod ioo.
\rightarrow Check for patterns in the indices of mod io primes.

