A Magic Square of Squares

A 3 x 3 magic square of unique integers with 3 perfect squares.

Finding a magic square of squares is hard, maybe impossible.
 but one with seven squares was found.

Found by Dr Andrew Bremner in 1997.

- The search has been for another Seven, but no other has been found.
- → There are plenty of Sixes.
- → And we make Sixes by making Fives.

Making Fives

- → Use parametric formulas on pairs of *co-primes*.
- *→ M*,*N*,*P*,*R*

- → Fives are ubiquitous, Sixes are rare, and the enigma is if there is only one Seven.
- → Make Fives and hope another perfect square shakes out.
- Can we increase the likelihood of finding more Sixes?
 (and thereby having more chances at finding a Seven.)

The Plan

- → Use pairs of primes for *M*,*N*,*P*,*R*.
- → Try every pair of primes up to the first 1000 primes.
- → Record which pairs generate Sixes.

e.g. M=5 N=43 P=2 R=5

(2254² is the overlapping number)

There is structure!

4269576676	92414 ²	1874 ²
2254 ²	64354 ²	8537210116
8538778756	1394 ²	65366 ²

4269576676	92414 ²	1874 ²
2254 ²	64354 ²	8537210116
8538778756	1394 ²	65366 ²

This square just happened to shake out.

Magic number / 3!

The Plan

- → Generate squares from the first 1000 primes. throw away the Fives and Sevens (if any.)
- → Determine which M,N,P,R Mod 10, finds the most Sixes. check which modulo finds more.
- → Also determine which one finds the least, and also pick a middle one.

best, middle & worst candidates.

The Plan

- → Count which M,N,P,R mod 10 make the most/least progressions of 3 perfect squares. We dislike multiples!
- → For example, maybe our best candidate is 1,7,7,1
 generate the Fives again, but this time with the first 1000 primes that are 1 mod 10 for *M*, 7 mod 10 for *N*, and so on.
- → Our M,N,P,R values will be larger. maybe we'll find a bigger Six.

- Solution Can we use this strategy as a predictor of finding more Sixes?
- → Hypothesis: We will generate more Sixes with our best candidate than with our worst.
- → The Nagging Doubt: Sixes get rarer as M,N,P,R gets higher, so maybe we can't tell a) that it's random, or b) there's some other structure that lower values don't shed light on.

Results of Run #1

- → We found 1534 Sixes.
- → With modulo 10...
 - → The best candidate is: 1, 3, 7, 9
 - → The middle candidate is: 1, 3, 1, 7
 - → The worst candidate is: 9, 9, 7, 1
- → The best modulo is actually 6 with 5, 1, 5, 1.

Distribution of Sixes in Run #1

Results of Run #2

	Sixes	3sq prog.
Best (1,3,7,9)	98	210
Faux-Best (1,7,7,1)	77	147
Middle (1,3,1,7)	<mark>120</mark>	<mark>236</mark>
Worst (9,9,7,1)	19	25

The ANSWER to the QUESTION

- → Can we use this strategy as a predictor of finding more Sixes?
 - → NO

Results of Run #2 (middle)

Results of Run #2 (middle, new)

What's Next?

- → Check for candidates with M, N, P, R all > 100, > 1000.
- → Look for candidates in 1, 3, 1, 7 with mod 100.
- → Check for patterns in the *indices* of mod 10 primes.