

1

How To Create A CUPS Shared Printer

In Linux For A Printer That Doesn’t
Have Adequate Windows Drivers

This tutorial is mostly aimed for people that have older printers, but just don’t have adequate

drivers for them for newer Windows operating systems. A perfect example is the HP LaserJet

1000 which doesn’t have x64 drivers at all. But, this printer works perfectly under Linux x64 or

x86. The point is to connect this printer to a Linux rig (any rig will do, even a Raspberry Pi, as

long as you can connect the printer to it through USB or a printer port) and share the printer

from that rig on the network and use that rig as a print server.

I won’t get into installing the printer on the Linux install in great detail, every printer is specific

in one way or another (requires this or that library, requires a special proprietary driver/UI,

maybe requires compiling something because of license issues, etc.), so I can’t get into all of

those different examples. I’ll do a general walk through for the steps that are more or less the

same on every Linux OS. What I can do in detail is explain how to configure the printer so that

any Windows OS can print to the Linux print server without needing any special driver at all.

❖ Configuring the Linux print server

There are a few prerequisites that need to be met in order to configure the Linux install as a

print server.

1. CUPS. The Common UNIX Printing System (CUPS) will be the engine behind the Linux print

server. Most Linux distros (distributions, different flavors of the same thing basically ☺)

have it listed as the cups package. To install it in Ubuntu or any other Debian based distro,

the terminal command would be sudo apt-get install cups. For other distros, install and

configure commands may vary, depending on the package manager, service/init manager

(systemd or another), etc. After installing CUPS, in systemd, the CUPS service (daemon) will

automatically be configured and added to the list of services running on the Linux install. As

with most Linux daemons (services), the name of the service is cupsd.

If your printer manufacturer doesn’t offer Linux drivers or they are older and won’t run or

get compiled properly on a modern kernel, it’s also preferable to install the cups-filters

package (command: sudo apt-get install cups-filters in Ubuntu/Debian based

distros). This is just a collection of PPD files that enable CUPS to talk to the printer. PPD is

short for PostScript Printer Description. CUPS doesn’t speak a lot of languages, but what it

can do is speak the PostScript language, so with the help of some proprietary binaries or

firmwares (binary blobs, sometimes, if the license allows it, included in the cups-filters

package), it can talk using the PostScript language to the printer and send it commands to

print. If the proprietary binaries and/or firmware are not included in the cups-filters

package, try searching if your distro has a separate package that installs these binary blobs

or try searching for a package from another distro that may contain them and then

manually install (copy) them at the appropriate locations. Also, the cups-filters package

may not contain the adequate PPD file for your printer. In this case, once again, you have to

manually search online to see if a package from another distro contains the PPD file you

need and/or any binary blobs that are required in order for CUPS to communicate with the

printer.

In most cases (especially for ancient printers, Linux has great backwards compatibility), the

cups-filters package is the only thing you’ll need, if your manufacturer doesn’t support

Linux, so these are just some pointers what to do if for some reason your device is not in

the most common list of drivers (PPD files).

2. Samba. Samba is basically a reimplementation of the SMB (Server Message Block) protocol

(originally developed by IBM for OS/2, reimplemented by Microsoft in Windows NT 3.1 and

later NT based operating systems), as well as other Microsoft specific or proprietary

protocols (NetBIOS, WINS, SAM, LSA, NTLM, etc.). These protocols offer file and printer

2

sharing to clients (computers) in a computer network (such as a local area network).

Basically, it was a reverse engineered networking layer, server authentication layer and

other protocols developed by Microsoft and other companies. After Microsoft lost two

antitrust lawsuits against the Samba team, they were ordered to disclose documents that

fully describe the networking protocols developed by Microsoft. So, at the moment, the

Samba development team is working with full documentation from Microsoft, meaning the

project (Samba) is no longer a reverse engineered effort.

Since most of these old printers do have x86 (32-bit) drivers for Windows (designed for

Windows XP, but most of them work even on Windows 7 and later versions of Windows if

you manually install them), the simplest solution for the x86 clients would be to just share

the printer in the LAN network as a CIFS/SMB printer. Even if the drivers for your printer

don’t work on anything else but on Windows XP, you’ll still need them in order to install the

printer on a Windows XP rig. Remember, the goal is to make the printer available and

installable on any Windows version you might have in your home/LAN/MAN network.

Most Linux distros will have the Samba package simply listed as samba (sudo apt-get
install samba for Ubuntu and Ubuntu/Debian based distros). On systemd based distros,

this command will also automatically install the smbd and nmbd services (daemons) that are

responsible for the networking protocols required by Windows. For distros that have other

init (initialization) systems (not systemd), you’ll have to refer to your distro’s init system

documentation in order to set these services to automatically start when the rig boots up.

3. Zero-Configuration Networking (Zeroconf/mDNS/Avahi/Bonjour). In order to view

the Linux print server in the network and use it in DHCP (no static IP or additional settings

required in our local network’s router/DHCP server) we need to have these zeroconf services

(daemons) installed and enabled. Avahi is a free software implementation of the mDNS

(Multicast DNS) protocol. Apple’s Bonjour software implements the mDNS protocol (as well

as other network services).

Some Linux distros have the nss-mdns package (GNU Name Service Switch – Multicast

DNS) in their repositories, which is a plugin for the GNU NSS service, and also contains

Avahi and the Avahi daemon (avahi-daemon). Depending on your Linux flavor, additional

settings might be required (such as editing the /etc/nsswitch.conf or similar manual edits

to configuration files). Look up your distor’s manual pages or Wiki/forums in order to find

out more about how to properly configure the Avahi daemon and NSS service to make the

Linux print server broadcast itself in the network. For Ubuntu and Ubuntu/Debian based

distro’s, I’ve found this set of packages usually resolves the problems you might be having

when installing and configuring the rig to be browsable in the network: sudo apt-get
install avahi-daemon avahi-discover avahi-utils libnss-mdns mdns-scan.

On most systemd based distros (Ubuntu, Suse, Red Hat, etc.), the package manager

automatically configures the services (daemons) and starts them (Arch Linux is an

exception). On other distros, you may have to do this manually (add them to the list of

services using the system’s process supervisor tools). For example, Void Linux uses RunIt as

it’s init/service supervisor system. Once a package is installed, if it installs a service as well,

the service will be visible as a directory in /etc/sv. The service is not automatically started

or considered as a service at all, unless you make a symbolic link from that directory located

in /etc/sv to /var/service. So, let’s say we want the Avahi service (avahi-daemon) to

automatically start with the operating system. All we have to do is make a symbolic link

from /etc/sv/avahi-daemon to the /var/service directory (using the command sudo ln
-s /etc/sv/avahi-daemon /var/service) and the service will start as soon as the

symbolic link is created. You can check if the service is running with the command sudo sv
status avahi-daemon. If it’s running, sv (RunIt’s service manager) will report something

like the following: run: avahi-daemon: (pid 770) 186392s.

4. Print Settings. This is basically a GUI that allows users to manually add printers to their

operating system. On most distros, this package is installed automatically and the desktop

entry (shortcut) for it resides in Settings (Settings → Print Settings). More minimalistic

distros, such as Arch or Void, may not have it preinstalled, so you need to manually install

the system-config-printer package. Some distros may also require root or admin (users

that are in the “wheel” group) privileges to install the printer, so it’s advisable to invoke the

3

Print Settings GUI from the terminal as root (terminal command: sudo system-config-
printer).

Now, once we have these prerequsites installed, we can continue to set up the printer. First, we

need to install the printer in Linux. We can use either the Print Settings UI or we can use the

CUPS web UI (http://localhost:631, http://localhost.local:631 or http://<linux_rig_ip>:631).

Using either one is fine. In this example, I’ll be using the Print Settings UI. We invoke it as root

by running sudo system-config-printer, and when the GUI shows up, we click the Add

button.

Next, a printer wizard will show up. In this particular example, I’ll be adding the HP LaserJet

1000 printer (doesn’t have x64 drivers for Windows at all, the latest drivers are x86 only and

they do work on Windows Vista, 7, 8, 8.1 and 10, but only on the 32-bit versions), but the same

principle applies to any other printer. If your printer has no USB port, only an LPT (printer) port,

you might have to add it through the Enter URI field. If you feel lost, search online on how to

install/add your printer on Linux. In this example, I’ll be using the HPLIP (HP Linux Imaging and

Printing libraries, which is available for most distros in the repository) as the driver for the

printer. The USB setting listed on the right works as well (tested) and that uses the generic

CUPS driver with the adequate CUPS PPD filter file, but sometimes, the printer doesn’t print with

this driver (filter), so I decided to switch to the proprietary HPLIP driver, which works great.

After we set up the URI (Uniform Resource Identifier, address; in this case, the OS automatically

detected the URI, it just asked me for which driver to use on the list of compatible drivers, HP

Linux Imaging and Printing (HPLIP) or CUPS - the USB selection), we click the Forward

button.

http://localhost:631/
http://localhost.local:631/

4

The next screen might show up (depending on how old the hardware on the Linux install is and

whether it instantly finds the files it needs or not, LOL ☺). Just let it finish searching for the

adequate drivers.

If the wizard doesn’t find the adequate drivers (PPD filters file), it will ask you to point in which

directory the PPD file for your printer is located. If you haven’t downloaded one already try

searching online to see if anyone from the Linux community has created a PPD file for your

printer. Chances are, the first two or three results in the search will contain some forum post

with the adequate PPD file as attachment in the post ☺. Place the PPD file in

/usr/share/ppd/<manufacturer> (in my case /usr/share/ppd/HP). If your printer’s

manufacturer doesn’t have a directory in /usr/share, create one. If the PPD file is compressed

(zip, gz, xz, etc.), uncompress it first, then copy it to /usr/share/ppd/<manufacturer>.

(terminal command: sudo copy /path/to/ppd/file.ppd /usr/share/ppd/<manufacturer>).

The next screen of the wizard might ask you for some printer specific options, as shown in the

image below. The HP LaserJet 1000 doesn’t have a duplexer, so I’ll just leave the check box

unticked and click the Forward button.

The next screen will ask you for some settings that are related to how the printer will be viewed

in the network and some of them (such as the Printer Name) can’t be changed afterwards

through the Print Settings UI (you have to remove the printer and then add it again with a

different printer name). The Printer Name field defines how your printer will be viewed in the

network, as well as locally in the Linux install. I like short simple names for the printers, so I

usually just use the first letters of the manufacturer and model (in this case, HPLJ1000). This

makes things easier when you manually have to add the printer in Windows, since in most cases

you have to type the IP address or the hostname manually. The Description field is optional, so

I usually set this field to the real printer’s make and model, in this case HP LaserJet 1000. The

Location field is also optional, but I usually put in the hostname or something similar that

5

describes the PC/laptop which the printer is physically connected with. After we’ve enter the

desired values, we hit the Apply button.

The next screen will ask us if we want to print a test page. It’s preferable to do so to test out if

the printer is working properly.

After we hit the Print Test Page button, the following screen will show up. If everything’s set up

OK, your printer will print a test page.

After you hit the OK button, the wizard will return you to the Printer Properties page. This

page is basically the setup page for your printer. Here, you can choose various features, like

which driver the printer uses, to which port/URI the printer is connected to, the size of the paper

which the printer uses, etc.

6

The HP LaserJet 1000 is just your basic printer with a USB only interface, so it doesn’t have a lot

of options, not even a toner level indicator, so I’ll just set the paper size in printer properties UI,

hit the Apply button and then OK.

The wizard has finished adding the printer and we can start using it locally (in Linux). Make sure

the printer is set up as Enabled and Shared in the Print Settings UI.

7

Next, we have to set up Samba and CUPS. Samba makes the printer browsable for the older rigs

in our network (Windows XP and maybe Windows Vista/7, x86 only), as well as takes care of the

printer handling (tells Linux to use CUPS for all printing jobs, instead of its own printing

solution).

To configure Samba, we need to edit the etc/samba/smb.conf file (on some distros, this file

may reside in /etc only, /etc/smb.conf). First, we’ll make a backup of the original (unmodified)

Samba settings file using the terminal command sudo cp /etc/samba/smb.conf
/etc/samba/smb.conf.bak. So, now we’ll use our favorite text editor to edit this file. I usually

use Mousepad or Nano, but you can use any editor preinstalled with your distro: sudo
<text_editor> /etc/samba/smb.conf.

First, in the [global] section, edit the workgroup name to the one on your Windows installation.

By default, Windows sets the workgroup name to “WORKGROUP”, so I usually just set it to that.

8

Next, in the server string line, write something memorable, something that describes your

print server.

Next, right after the server role = standalone server line, add the following lines.

9

 server min protocol = LANMAN1
 client min protocol = LANMAN1
lanman auth = yes
 ntlm auth = yes
 load printers = yes
 printing = cups
 printcap = cups
 printcap name = cups

I’ll explain what each of these settings does.

• server min protocol = LANMAN1. This option defines the minimal version of the SMB

protocol the server will use. After version 4.x, Samba defaults to SMB2, which is what

Windows 7 uses. But, since we’d also like other older Windows versions to be able to access

the shared printer, we’ll set the server min protocol setting to LANMAN1, which is what

Windows 2000 uses, but Windows XP supports as well.

• client min protocol = LANMAN1. This setting defines the minimum protocol version that a

client can announce itself to the Samba server. As with the previous setting, we’ll set this

setting to a Windows 2000 client.

• lanman auth = yes. This setting may be depreciated on newer Samba versions (I’m not

sure). The LANMAN1 protocol supports unauthenticated login to a print or a file share server,

so this setting just requires that all clients using the LANMAN1 protocol authenticate

themselves to the server in order to access the server’s resources (file and print shares, active

directory, etc.). If you’re having problems with authentication from older clients (Windows

2000/XP), try and uncomment this line (remove the # symbol) restart the services and see if

that solves the problem.

• ntlm auth = yes. This setting tells Samba to start communicating with a Windows client

using the NTLMv1 (NT LAN Manager) protocol, but preferably, negotiate a switch to the

NTLMv2 protocol. Since version 4.6.2, Samba starts communication with Windows clients with

a minimal version of NTLMv2, since NTLMv1 has some security issues and is somewhat

depreciated. But, some older Windows versions use it (namely Windows NT 3.1, but some not

up to date Windows 2000 and XP rigs might use it as a default session startup protocol as

well), so it’s best to leave this setting to yes. Try disabling this setting (simply comment out

this line, insert a # symbol at the beginning of the line) and see if you’re having problems

10

communicating with the Samba printer share. If everything is OK, leave it disabled, if not,

revert the setting back (delete the # symbol) and restart the cupsd, nmbd and smbd services.

• load printers = yes. This setting completely enables or disables the printer sharing option

in Samba. By default, Samba has printer sharing enabled, but, just in case in some future

versions of Samba, the development team decides to set the default for this setting to no,

we’ll manually set it to yes.

• printing = cups. This setting basically tells Samba not to handle any print jobs by itself, but

instead forward all print jobs to CUPS. Convenient in most cases, since everything is handled

from a single end point (the CUPS print server).

• printcap = cups. This setting tells Samba not to handle any of the printer’s capabilities by

itself (the printcap file), but instead let CUPS handle the printer’s capabilities (duplexing,

toner levels, toner density, toner save, etc.). The current version of CUPS doesn’t need this

directive to be defined in the Samba configuration file, but we’ll set it to cups just in case.

• printcap name = cups. Once again, let CUPS do all the hard work ☺. This setting tells

Samba to let CUPS handle the file name and location of the printcap file.

It’s also advisable to completely disable the Home folder shares in Samba (the user’s home

directory, noted as “User’s Files” or “My Documents” in Windows). We’ll do this by commenting

out the adequate lines. Look for the [homes] line in smb.conf and add the ; or # symbols in

front of all lines in the [homes] setting.

;[homes]
; comment = Home Directories
; browseable = no
; writable = yes

Next, we get to the printer share part of the smb.conf file. Find the [printers] line in the

smb.conf file and edit it in the following way.

[printers]
 comment = CUPS Print Server
 path = /var/spool/samba
 browseable = yes

11

 public = yes
 guest ok = yes
 read only = yes
 writable = no
 printable = yes

The [printers] section is a global section that defines the printer share for every printer on the

print server. You can also define each of these settings on a per printer basis, but we won’t get

into that. Now, I’ll explain what each of the options do.

• comment = CUPS Print Server. You can write anything you want in this section. This setting

basically describes the print server’s share and you can read this text if you hover over the

shared printer’s icon in the network.

• path = /var/spool/samba. This setting defines the directory which the print server will use a

spool directory. The default setting is fine, there’s no need to change this.

• browseable = yes. This setting defines whether the shared printer can be seen in the

network or not. Otherwise, you’d have to manually define the address to the shared printer

(\\computer-hostname\shared-printer-name).

• public = yes. This setting allows or disallows guests to print to that printer. Basically,

anyone can print on the printer.

• guest ok = yes. A synonym for the setting above (public = yes). Some Samba versions

have one or the other compiled in the binaries and libraries as a settings, some have both.

We’ll set both of them just in case.

• read only = yes. This setting basically limits users to write to the print server, but only via

print spooling operations. Every other kind of write operation is disallowed.

• writable = no. A synonym for the setting above (read only = yes). Once again, some

Samba versions may have binaries compiled with one setting or the other (or both), so just in

case, it’s best to define them both.

12

• printable = yes. This setting essentially declares the printer service in Samba as enabled,

so this setting has to be declared as yes (enabled). If declared otherwise, the smbd service

will refuse to load the smb.conf file. Also, Samba uses this setting to differentiate regular file

shares from printer shares in the network.

It’s also wise to note that Samba’s smbd and nmbd services interpret white spaces in the

smb.conf file verbatim. This means that printable =yes is not the same as printable = yes.

The former setting will be ignored and the defaults will be loaded (whatever they may be for that

particular setting). The latter will be parsed and loaded as a valid setting.

Even though we’ve allowed guests to print to the printer, it’s wise to set an access username and

a password for the Linux install. What this basically means is that, users that have the exact

address to the printer share (\\<computer-hostname>\<shared-printer-name>) and add the

printer manually in Windows, will be able to print even if they don’t have the adequate

credentials to access the PC through the network. But, if you browse the network or if you try to

browse the PC through its network address (\\<computer-hostname> or

\\<computer_ip_address>), you will be prompted to enter credentials in order to view the PC’s

shared resources (printers and/or file shares). It’s good to have this failsafe, since anyone can

print to the printer (guests are allowed), but if we do this, no one will be able to browse the PC

through the network unless they have the adequate credentials (username and password).

And that is it essentially, hit Ctrl + S (Save) and save the file ☺.

Now, open a terminal window (Ctrl + Alt + T on most Linux distros, some might also have Win

+ T set as a shortcut for the terminal) and type in the following command: sudo smbpasswd -a
<username>. The username has to be a valid username also defined in the Linux install (for

example, the username you defined as your default logon username when you installed Linux).

After you hit Enter, smbpasswd will ask you to define a password for that user (it might ask you

for your root password first, LOL ☺). Enter it and repeat it.

Next, we need to enable the user. Type in the following in the terminal and hit Enter afterwards:

sudo smbpasswd -e <username>.

13

Now, we have to restart the smbd and nmbd services in order for the declared directives in the

smb.conf file to take effect. In Ubuntu and other systemd based distros, the command to restart

a service is as follows: sudo systemctl restart <name_of_service>. So, in our case, the

commands will be sudo systemctl restart smbd followed by sudo systemctl restart nmbd.

(I don’t actually know if systemctl can restart multiple services in one command, LOL ☺). But,

in my example, I’m not using a systemd based distro, I’m using Void Linux, which uses RunIt as

a service and init (system initialization) manager, so the commands differ. In my case, I’ll be

using the following command to restart the smbd and nmbd services: sudo sv restart smbd
nmbd (sv can restart multiple services in one command).

Alternatively, if you don’t want to bother manually restarting the services, you just restart the

print server and be done with it, LOL ☺.

After restarting the services, test the parameters of the Samba configuration. We can do this

with the testparm tool that Samba has included. The output of the command should be similar

to this.

Global parameters
[global]
 client min protocol = LANMAN1
 dns proxy = No
 log file = /var/log/samba/%m.log
 max log size = 50
 ntlm auth = ntlmv1-permitted

14

 printcap name = cups
 server min protocol = LANMAN1
 server role = standalone server
 server string = Compaq EVO D510 (Print Server)
 idmap config * : backend = tdb

[printers]
 browseable = No
 comment = CUPS Print Server
 guest ok = Yes
 path = /var/spool/samba
 printable = Yes

Don’t worry about Samba reporting that the printers won’t be browseable in the [printers]

section (browseable = No), you will be able to browse them, no worries on that part. I really

have no idea why the testparm reports that. It reports that on every single print server

configuration I’ve done, and I’m still able to browse the printer in the network, LOL ☺.

Now, we can try and browse the Linux install from the network in Windows. Once you type in the

computer’s hostname or IP address in the address bar (\\<computer-hostname> or

\\<computer_ip_address>) in Windows Explorer (named File Explorer in Windows 10 and later),

a prompt asking you for a username and a password should be presented to you.

Enter the credentials you previously defined with the smbpasswd tool (the username and the

password). Don’t forget to tick the Remember my credentials tick box ☺. After you hit OK,

you should be able to see the shared printer in Explorer.

15

If establishing the connection takes a while, try and disable the ntlm auth = yes option in

smb.conf (insert a # symbol at the front) and restart the smbd and nmbd services. This should

resolve the problem.

If you’d like to be able to browse the Linux install through the network with the hostname (not

just the IP address), you have to make sure that the Avahi daemon (avahi-daemon) is up and

running. That’s the service responsible for mDNS/ZeroConf/Bonjur. On systemd based distros,

the command for checking whether the service is running or not would be sudo systemctl
status avahi-daemon. If the command replies with a PID somewhere in the response, this

means that the service is running ☺. If not, it’s probably not running and you’d have to dig into

the issue deeper (another service blocking it, maybe a missing library, etc.). If the Avahi

daemon is running, but you still can’t browse the print server with the print server’s hostname,

see if a firewall is installed on your Linux print server (Uncomplicated Firewall in Ubuntu – ufw).

Try to unblock the Avahi service with the firewall’s tools (in Ubuntu, type in sudo ufw app list

in the terminal to get the Avahi daemon’s name in the application list, then type sudo ufw
allow “<name_of_avahi_daemon_as_listed_in_the_previous_command>”.

If you have older Windows x86 installs in your network (Windows 2000/XP/Vista/7), try and

connect to the printer. If your manufacturer offers x86 drivers for your printer, try and manually

load them (point the printer installation wizard in Windows to look for drivers in a directory or on

a CD, as is the case in Windows 2000/XP). If they install, try and print a test page, it should

work ☺.

Good, now that we have Samba configured, we can continue and configure CUPS. Configuring

CUPS is pretty much the same as configuring Samba, there’s one configuration file responsible

for all of the options in CUPS. The configuration file is named cupsd.conf and is located in

/etc/cups (on some Linux distros, it may be located in /etc). So, we’ll just use our favorite text

editor to edit this file (sudo <your_favorite_text_editor> /etc/cups/cupsd.conf). In my

case, that’s Mousepad, so the command would be sudo mousepad /etc/cups/cupsd.conf.

Find the # Only listen for connections from the local machine. line and below it, it’ll

read Listen localhost:631. Change this line to Port 631, as shown in the image below.

16

This setting tells CUPS to listen for incoming print jobs on HTTP port 631 or IPP (Internet Printing

Protocol) port 631, but not just on our local machine (the Linux print server, localhost), but from

any machine in our local network (or the internet for that matter). This is a prerequisite and

must be allowed, since we’ll be using the HTTP/IPP driverless method (sort of… it uses a generic

driver) in Windows 10 (and above) to print to this print server (i.e. the printer we don’t have

drivers for).

Next, find the # Restrict access to the server... line and add the Allow all in a new line

after the Order allow,deny line, as in the picture below.

17

This setting basically tells CUPS to just allow everyone access to the print server. Since we

added the printer as root, anyone trying to modify any of the printer’s settings through CUPS has

to have the root password, so there’s no need to alarm yourself regarding security ☺. All anyone

can do is view the printer’s settings through CUPS and that’s basically it.

Next we have to find the # Restrict access to the admin pages... line and after the Order
allow,deny line, add a new line and write Allow all in it, as shown in the image below.

As the setting says, this basically allows everyone to access the admin pages (the web UI’s

admin pages). Once again, the printer is set up from the root account, so no worries regarding

security, everyone can just read (view) the admin pages, nothing more ☺.

Next, find the # Restrict access to configuration files... line and change whatever is

between <Location /admin/conf> and </Location> to the following.

<Location /admin/conf>
 AuthType Basic
 Allow all
 Require user @SYSTEM
 Order allow,deny
 Allow all
</Location>

18

This also strips down a bit on security, but once again, nothing to worry about. Essentially, the

user that would like to modify any of the printer’s settings has to have the admin’s password or

the root password (which are the same on most popular Linux distro’s, even though they can

differ and you can change them after the distro’s installer finishes installing the OS).

And that is basically it. All we have to do now is just restart the CUPS service (sudo systemctl
restart cupsd on systemd based distros) and that’s that ☺. Since all three services (smbd,

nmbd and cupsd), as well as the avahi-daemon, are supposed to work together regarding the

printing services, it’s wise to restart all of them at once (one after another, the order is not really

important). In my case, I’ll use sudo sv restart smbd nmbd cupsd avahi-daemon.

Once again, if you can’t be bothered with commands or figuring out if your distro runs systemd

or another service/init manager, just restart the print server ☺.

The printer is now configured and we can move on to adding it on our local network’s Windows

installs ☺.

19

❖ Adding the printer on Windows 10/11 (x86 & x64)

Things are super easy in Windows 10 and 11. Hit Start (the Windows logo key) and start typing

“printers” and the Printers & Scanners section (from the new Settings section) will pop up.

Click on the Add a printer or scanner button.

After clicking on the button, Windows will start searching the local area network for available

printers that advertise themselves through the IPP or WSD (Web Services for Devices) protocols.

If you’ve configured everything correctly, the printer should show up as <Human Readable

Printer Name> @ <COMPUTER-HOSTNAME>.

20

Click on the printer and then click on Add device, Windows should continue installing it. It will

use the generic IPP Class driver, but this driver works just fine with CUPS, no problems there ☺.

21

And that is basically it. Try and print a test page or a document to this printer, it will print ☺.

For the x86 (32-bit) versions of Windows 10, you can also try and add this printer through

Samba (manually through the network) if you’ve got working x86 drivers for your printer and

they work in Windows 10. That is actually the preferred method, since the method described

above uses a generic IPP driver from Microsoft and it does work, but can’t print in color (or so

I’ve read, I don’t own any color printers) and the settings of the driver are somewhat limited. Go

to Control Panel → Devices and Printers and look for the printer added through the Printers

& Scanners Settings option (the new Control Panel in Windows 8/8.1 and above, mostly usable

and working in Windows 10 and above). Right click on the printer → Printer properties, now

click on Preferences.

22

As you can see, the driver doesn’t offer a lot of options. Even the Advanced button doesn’t offer

much, except choosing paper size and scaling. If your printer has no other options except these

(lower end laser models) and can’t print in color, using this driver is just fine. But if you’d like to

print in color and the Windows install is 32-bit, it’s preferable that you install the printer through

the network (SMB) and load the 32-bit drivers for the printer.

❖ Adding the printer on Windows Vista/7 (x86 & x64)

Things get more and more complicated as we move down in Windows versions, LOL ☺. But, the

good news is that in Windows 7 and lower, we’ll be using a PS (PostScript) driver which can print

in color.

In this case, we’ll use the PS language (standard) that CUPS understands. CUPS by default is

equipped with IPP/HTTP (and the secure versions as well, IPPS/HTTPS) as a data transfer

protocol and PS (PostScript) as a language that is used to talk to the printer. There are plugins

that expand the capabilities of CUPS (such as the PCL5 and PCL6 plugins), but since we (I) have

no idea what kind of printer we’ll be using and what kind of protocol (language) it uses for

printing, it’s best to stick to the open source and standardized protocols and for which there are

generic (or compatible) drivers in most Windows versions.

Let’s start. Go to Control Panel → Devices and Printers and click on the Add printer button.

Afterwards, select Add a network, wireless or Bluetooth printer.

23

Windows will try to search for printers that have advertised themselves as network printers

through mDNS/ZeroConf. We don’t actually want that, it’ll connect through Samba to the printer.

Even if our printer is listed on the list, we want to print through HTTP (IPP), so just hit on The

printer that I want isn’t listed button.

Next, click on Select a shared printer by name. Mark down the name of the printer as listed

in the Print Settings in Linux.

24

In this case, the printer’s name is HPLJ1000, which is also the share name of the printer. Also,

keep note of the caption of the letters (all capitals). Caption doesn’t matter in Samba shares,

since Windows doesn’t distinguish between capital and small letters (in Windows, the directories

Share and share have the same name, which is not true for the rest of the operating systems

out there, as well as all POSIX compatible OSes, like Linux), but it does when HTTP or IPP is

used as a data transfer protocol. By default, HTTP distinguishes between capital and small letters

in an URL (this can be mitigated, but by default, it does).

Moving on. As noted above, select the radio button Select a shared printer by name and

enter the HTTP address of the printer. The HTTP address should have the following syntax:

http://<print_server_hostname>:631/printers/<printer_share_name>. If you don’t like

using hostnames, use http://<print_server_ip>:631/printers/<printer_share_name>. Just

remember that in this case you have to set up the print server with a static IP address.

Otherwise, the next time the DHCP server assigns an address to the print server, the address

might not be the same as the one you entered in the address field (the current IP address of the

print server).

So, in this case, we’ll be entering http://compaq-evo-gp:631/printers/HPLJ1000. The 631

part is the port on which the print server is listening. This can be changed, but the default one is

just fine.

Don’t pay attention to what the Add Printer wizard says about the print server’s printer share

address (http://computername/printers/printername/.printer), the /.printer part at the

end of the address doesn’t work (or, at least, has never worked for me, LOL ☺). Maybe it works

on printers shared on Windows servers, who knows… I wouldn’t know since I’ve never configured

a Windows based print server, LOL ☺.

25

After we click Next, Windows will prompt us for a driver. What we’re looking for is a generic PS

(PostScript) driver. The Microsoft PS Class Driver should do the job fine, but in some cases,

I’ve had problems with it (like printing zoomed out, extra space at the edges of the page).

Through trial and error, I found out that the Samsung ML-XXXX series PS drivers work best with

most printers in this type of setup. So, we’ll choose a Samsung PS driver. In this case, It’ll be

the Samsung ML-2570 Series PS driver.

If this driver doesn’t work or doesn’t work properly with your printer, choose another PS driver

from the list. Trial and error is part of this hacky setup ☺.

After we click on OK, Windows will install the printer driver and we can click the Next button.

Afterwards, click on Print a test page. If a test page comes out of the printer, that means that

the driver is working. We can tinker with the settings later on, but since the driver is working, we

can click the Finish button.

26

Now, since we’ve (most probably, LOL ☺) added the printer, let’s look at some of the options this

printer driver has. Go to Control Panel → Devices and Printers, right click on the printer and

choose Printer Properties.

In the Printer Properties tabbed window, select the General tab and then click on Preferences.

The driver’s settings are hidden behind this button.

27

As we can see from the settings window, there aren’t a lot of options available. This is a generic

driver from the driver store that Windows will use if no other driver is supplied, but it should

suffice for most people’s printing needs. In the Layout tab, click on the Advanced button.

Here, we can set up some options that most low end (mid/low budget) USB/LPT/Ethernet

printers have. Don’t expect every option to work, since we’re using a driver that’s not even

intended to be used with the printer you’ve shared on the print server. From what I’ve gathered,

the paper size option works 100% of the time, and that’s about it ☺. Every other option…

depends, but most of them don’t work. The scaling and toner save options might work, if you

choose a driver from the same manufacturer, but a different model. So, I’ll just set up the paper

size option here and be done with the advanced settings.

28

Afterwards, just click the OK button and the OK button on the preferences window to get back

to the properties window. After you get back to the properties window, click on the Sharing tab.

As expected, no sharing options at all. If we used SMB (Samba) or IPP to connect to the printer,

we would’ve had sharing options, but, since we’re transferring data to CUPS via HTTP, we don’t

get any sharing options. This isn’t such a big deal, the print server will be online 24/7 and we

can add the printer to another machine through the same HTTP address we used to add the

printer earlier.

Let’s go over to the Ports tab.

29

Note the Description field, it reads Internet Port. As expected, Windows uses HTTP to

communicate with the printer. Now, click on the Configure Port button.

Note that we’re not actually authenticating to the print server in any way to print. If we didn’t do

the Allow all additions to the CUPS configuration file, we most probably would have to

authenticate ourselves in order to print (most probably with the local user account on the print

server or any other user account that has print privileges on the print server).

Click the OK button to go back to the Properties tabbed window and go to the Advanced tab.

30

This tab holds real value regarding testing drivers and how/if they work. Note the New Driver…

button and the Driver: drop down menu. See, we don’t have to actually uninstall the printer in

order to use a different driver for the printer. We just have to choose one from the drop down

list (the already installed printer drivers in Windows) or choose one manually from the store or a

driver .inf file (if we want to manually install a new driver, a driver that’s not included in the

Windows driver store) through the New Driver… button. Don’t mess with the settings in the

Printing Defaults…, Print Processor… and Separator Page… buttons, the defaults are fine,

you might mess something up with the configuration. If you need to change the driver, just use

the Driver: drop down menu and/or New Driver… buttons.

We can click the Close button now.

What I haven’t mentioned is that we can use the same method as presented in Windows Vista/7,

to connect to the printer in Windows 10 or above. We don’t have to use IPP in Windows 10/11 to

print to this printer. But, we can’t use the IPP class driver from Microsoft if we choose to add the

printer as a HTTP shared printer. The IPP class driver works only through an IPP port. If we go to

Control Panel → Devices and Printers in Windows 10, right click on our printer (in my case

HP LaserJet 1000 @ COMPAQ-EVO-GP), go to Properties and then choose the Ports tab,

here’s what we’ll find.

31

Note the Description field, it reads IPP Port. Now, let’s shift to the Advanced tab and see

which driver the printer is using.

As expected, it’s using the Microsoft IPP Class Driver. This driver works only with the IPP

protocol, so you can’t use it if you’re using HTTP as a communication protocol (between the print

server and the client). So, if you change the driver here with a driver that’s not an IPP class

driver, the printer won’t work or it will print raw data, since CUPS expects IPP data to be

transferred through the IPP protocol, not PS or PCL data. The same thing will happen if we use

the IPP driver, but add the printer as a HTTP printer. You can’t mix and match these two types of

communication protocols and the drivers they use (well, at least not in Windows ☺). If you

choose to use the HTTP protocol, you have to use a PS driver (CUPS understands PS through

HTTP), if you use the IPP protocol, you have to use the Microsoft IPP Class Driver or another IPP

driver, preferably supplied by the manufacturer (since that driver will most likely have more

options than the generic Microsoft IPP driver).

32

❖ Adding the printer on Windows 8/8.1 (x86 & x64)

Adding the printer in Windows 8/8.1 is more or less the same as in Windows Vista/7, we use the

HTTP protocol to add the printer. What may differ is the number of PS drivers available in

Windows 8/8.1, for example the Microsoft PS Class Driver (which might not be available on

Windows 7, depending on how many drivers were added or removed from the installation

disc/USB drive). You can try and use this driver, it should work just fine ☺. You can also try the

Windows Update button, that might add new printer drivers in the selection (though, to be

honest, it has never added any new drivers for me, LOL ☺).

❖ Adding the printer on Windows 2000/XP (x86 & x64)

Once again, we can choose between two methods. Since Windows 2000 is x86 only, we can use

the x86 drivers available for our printer. If the printer is so old, the last drivers available from

the manufacturer are for Windows 95/98, you can use the HTTP data transfer protocol in both

Windows XP (don’t know if HTTP for printers is supported on Windows 2000). If you’re using

Windows XP x64, you can only use the HTTP transfer method (since, most probably, we don’t

have x64 at all for our printer). In any case, there is at least one method available to connect

these old OSes to the print server ☺.

Let’s get started. First, we’ll use the classic method, where we manually install the appropriate

drivers for the printer (preferably, downloaded from the manufacturer’s site). On the desktop,

double click on My Network Places. If this icon doesn’t exist on your desktop, that’s fine, just

double click on My Computer or My Documents. If none of these icons exist on your desktop,

hit Win + E, which will open Windows Explorer. In the address bar field, type in

\\<print_server_hostname> and hit Enter. You can also use your print server’s IP address

instead of the hostname.

33

Next, Windows will most probably ask you for credentials. Remember the credentials we set in

Samba? Well, now we have to use those. Enter the username and password you set in Samba to

access the print server’s shares through the network. In this example, I’ll just enter the

credentials I set up in Samba on my print server. Don’t forget to tick the Remember my

password tick box.

If the credentials are correct, Windows Explorer should show us the shared resources on the

print server.

34

And, as we can see, there’s the shared printer on our print server ☺. Right click on the printer

and select Connect….

You might get this warning after you click on Connect….

Just click on the Yes button. It doesn’t matter anyway since we didn’t configure our print server

to actually share the printer drivers with the clients connected to it. Of course, this can be done,

but since most operating systems nowadays are 64-bit (even smart device OSes), there’s not

35

much point sharing the x86 (32-bit) drivers through SMB. We can manually install the drivers for

the few (if any) x86 Windows OSes in our local network ☺.

After we hit the Yes button, this window will appear. Yes, we do want to search for the

appropriate drivers, so we click on the OK button.

Next, the driver selection window will pop up. Click on the Have Disk… button.

Since we’re connecting to the printer through SMB (Samba) and not using CPUS as an

intermediate layer (we’re not using HTTP or IPP, we’re using SMB as the communication protocol

between the print server and the client), we need to load the appropriate drivers for the printer.

In this case, HP LaserJet 1000 does have x86 drivers available for Windows 2000 and XP. I’ve

already downloaded them, extracted the content from the .exe archive (you can do this using

WinRAR or 7-Zip, just right click on the .exe file and select Extract to <name_of_archive> or

7-Zip → Extract to “<name_of_archive>”) and put them in C:\HPLJ1000. So, after we hit

the Have Disk… button, we need to point Windows to the .inf file (the driver installation file that

holds all relevant data regarding the printer, as well as info on where to copy the driver files,

etc.). When the Install From Disk window appears, hit the Browse button.

Next, we point the Locate File window to where our drivers are located, i.e. in this case, in

C:\HPLJ1000. Then, we hit the Open button.

36

Once again, hit the OK button.

The Add Printer Wizard will then ask us to choose from a list of drivers available in the .inf file.

In most cases, manufacturers make drivers for a series of models, not just one model and they

bundle them all up in one package. This is mostly due to the fact that most of these printers

differ in minor things, like having or not having Wi-Fi or maybe the mechanical parts, size/shape

of the printer design, etc. These minor differences are the reason why the drivers for a whole

series are bundled. It makes no sense to make different drivers for the XXY model, when the

XXX model is basically the same, the only difference is, let’s say, connector placement. This

doesn’t just go for printer drivers, this is more or less the same for any driver out there:

graphics cards, USB hubs, cameras, Wi-Fi cards, etc.

In this particular case, the drivers for the HP LaserJet 1000 are one of a kind and this printer is

one of a kind. Exactly one of the reasons why there are no x64 drivers available. See, back in

the day, HP did a minor boo boo by subcontracting Zenographics to use their proprietary

ZjStream host based data transfer protocol. Basically, what this means is that HP doesn’t have

access to the design plans for their proprietary ZJS decoder/controller chips, or the source code

for the drivers. Not only that, but HP were told that they couldn’t sell Zenographic’s proprietary

decoder chip with the ZJS protocol in their printer, but that they had to make it available

separately as an add-in module, LOL ☺. So, HP had to sell the printer, but not with a native USB

port on the back of the printer, oh no, a separate connector was sold in bundle with the printer,

that actually had the decoder chip in it. The connector on the printer side looks like a regular

printer port (LPT) connector and you’d be thinking “so what if I lose this USB to LPT cable, no

biggie, I can always use a regular printer port cable ☺”. Well, that’s not the case, since this chip

not only decodes the ZJS data, but also controls all of the mechanical parts in the printer, so

basically, without that connector (converter cable as referred to by HP), this printer doesn’t have

a brain, so even if you connect a regular printer cable to it, it won’t work. You have to use this

proprietary converter cable which also holds the brain of the printer. So, long story short, HP

doesn’t have access to the printer driver’s source code or the design plans for the ZJS

decoder/controller chip and they’re at the mercy of Zenographics whether they’d like to release

x64 (64-bit) drivers for this particular printer or not. Of course, in pursuit for profit,

Zenographics never release an x64 driver, thinking that the lack of drivers for x64 OSes will

drive (force) HP or other major printer manufacturer to subcontract them for the electronics and

37

drivers part of future printer models, for which they will release x64 Windows drivers. This, of

course, never happens and Zenographics ceases to exist in the mid 2000’s.

In any case, this is why x64 (64-bit) drivers are available for similar looking models, like the HP

LaserJet 1100, 1200 or 1300, but not for the LaserJet 1000. The other models use PCL as the

communication language with the printer.

Getting back on track, that is why in this particular case we have only one driver to choose from

the list, the HP LaserJet 1000. We select it and click on the OK button.

And, we’re done ☺. Just print out a test page, to make sure everything is working. Start →

Settings → Control Panel → Printers and Faxes, right click on your printer’s icon, select

Properties, then click on the Print Test Page button.

If we click on the Printing Preferences… button, we’ll see all of the features of a manufacturer

designated driver (logos, advanced options, etc.).

38

If for some reason, the SMB share method doesn’t work for you or works slowly (hit print, then

wait 30+ seconds for the printer to start printing, LOL ☺), we can add the printer using the HTTP

protocol (yes, it’s supported in Windows XP, not sure about Windows 2000 though). The method

is almost the same as the one described in Windows 7, except for a few minor differences. Go to

Control Panel → Printers and Faxes and click on the Add a printer link.

The Add Printer Wizard will pop up. Click the Next button.

39

Select the Add a network printer, or a printer attached to another computer radio button.

Afterwards, click on Next.

Next, select the Connect to a printer on the Internet or on a home or office network radio

button. Afterwards, enter the HTTP address of the printer (as we did in Windows Vista/7):

http://<print_server_hostname>:631/printers/<printer_share_name>. Alternatively, you

can use the IP address: http://<print_server_ip>:631/printers/<printer_share_name>.

Afterwards, click on the Next button.

40

Windows will ask you to either choose from a list of drivers or provide the drivers for the printer

(the Have Disk… button). As with the example in Windows Vista/7, we’ll choose a PS

(PostScript) driver for the printer, since that’s a language that CUPS understands and can

communicate to the printer using PS. I’ve already mentioned that I’ve had most success with

Samsung’s ML series PS drivers (regarding zoom settings), but basically any PS driver will do.

Some might print a bit zoomed out or zoomed in, but they will work. In this case, I’ll choose the

Samsung ML-6060 Series PS driver. Afterwards, click the OK button.

The Add Printer Wizard will now ask you if you’d like to use this printer as the default printer.

Choose whatever you’d prefer, I’ll choose Yes. Click the Next button afterwards.

41

And to finish the process, click the Finish button.

Next, we’d like to print a test page, to see if the driver is working. After the Add Printer Wizard

finishes adding the printer, it’ll bring you back to the Printers and Faxes section in Control

Panel. Find the printer we’ve just added, right click on it and choose Properties.

42

The printer properties page will appear. Click on the Print Test Page button. The printer should

print out a test page.

Let’s click on the Printing Preferences button and see what options are available in this driver.

43

As in the Windows Vista/7 scenario, not a lot of options available. This is expected when using a

generic PS driver. Let’s see what the Advanced button offers us.

Once again, not a lot of options. Set up your paper size and click the OK button afterwards.

When the Advanced Printing Preferences window brings you back to the Printing

Preferences window, click the OK button again, and that will bring you back to the Printer

Properties window. Click the OK button and we’re done installing and setting up the printer.

You can click the X button on the Printers and Faxes window in Control Panel now.

One more thing I’d like to add (that I forgot to mention earlier in this tutorial, LOL ☺) is to check

the printer’s print queue when testing the Windows drivers. Open up the Print Settings UI on

the print server and go to Printer → View Print Queue.

44

Print jobs sent from client computers will show up here. So, if a driver in Windows is somehow

misconfigured or just out right doesn’t work with this setup, no print jobs will show here. Let’s

see how the print queue looks when we send a print job to the print server and the print setup

does work.

As expected, the print queue reports there’s a test page being sent to the printer ☺. You can

leave the print queue open when testing print drivers. I usually use a remote desktop client

running on the print server (the Linux install, usually AnyDesk) so I don’t have to switch

monitors or chairs when configuring the print server, just switch the application on the rig you’re

configuring the print server from to see the print queue ☺.

Also, note the Document field in the window above. It reads Test Page. This basically means

that CUPS understands what this documents is, so in this case, we can be pretty sure that the

output (the printed page) is not garbled or raw data. If this fields reads Unknown, this may be

a sign of a misconfigured Windows driver (maybe you chose a PCL driver instead of a PS one,

maybe the PS driver you chose is somehow special and just doesn’t work as a regular PS driver,

etc.). If the printer prints out garbled or raw data, just change the PS driver in Windows, try a

different driver from the same manufacturer (or a different manufacturer) or use the generic

Microsoft PS Class driver (if it’s available on your Windows install), I’m sure you’ll eventually find

a PS driver that works for you ☺.

Well, this about wraps up this tutorial ☺. Any comments or suggestions, write me at

0x4e4f@gmail.com or on Reddit (u/PCChipsM922U).

mailto:0x4e4f@gmail.com
https://www.reddit.com/user/PCChipsM922U

