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Pain
Ralf Baron. Research over the past decade 
has unravelled a variety of independently 
operating pain mechanisms, but our 
patients have not yet seen the fruits of this 
endeavour, and approval of new pain medi­
cations is rare. One reason for this state of 
affairs is the obvious heterogeneity of pain 
mechanisms. Thus, the potential of novel 
compounds addressing specific therapeutic 
targets is often obscured if a heterogeneous 
group of patients is included in trials that 
evaluate the average pain reduction for 
the entire cohort. The next decade will see 
dramatic changes in trial design, and in the 
clinical management of patients with pain.

When designing clinical trials, identi­
fication of the responding patient is an 
important factor. A complex cornucopia of 

clinical characteristics, including psycho­
social factors, comorbidities, sensory 
abnormalities, and pathophysiological 
mechanisms, are likely to influence the over­
all response to pain treatment,1,2 and the 
specific clinical response pattern depends 
on the drug or intervention used.3 Statistical 
modelling of treatment response, using 
data from existing and new trials, should 
reveal certain clinical baseline profiles that 
will increase the likelihood of response. 
Knowledge about predictive pathophysio­
logical mechanisms will, consequently, be 
translated back into basic research.

Relevant outcome parameters must also 
be determined. A commonly used end point 
in trials and in the clinic is the change in 
pain intensity averaged over the past 3 days. 
In reality, however, patients experience a 
complex temporal pattern of painful sensa­
tions. Some individuals perceive only a few 
severely painful attacks per day, in others the 
pain depends on movement, and often there 
are pain-free periods during the night. How 
can a patient calculate an average of these 
sensations over 3 days? Alternative outcome 
parameters that capture the individual pain-
related quality of life and functionality need 
to be developed to account for the complex 
perception of pain and its consequences as 
precisely as possible.

For shared decision-making between 
patients and physicians, and in light 
of shrinking health resources, careful 
evaluation of the risks and benefits of 

pain management is a prerequisite. The 
above approaches will help us to success­
fully implement the individualization of 
pain therapy.

Child neurology
Donna M. Ferriero. We are witnessing an 
illuminating period in child neurology, and 
discoveries abound that will inform practice 
and research for the next decade. The past 
10 years saw the advent of therapeutic hypo­
thermia for neonatal encephalopathy, and 
the results have been sufficiently encoura­
ging to make this approach the standard of 
care in this scenario.4 However, the protec­
tion afforded by therapeutic hypothermia 
is not complete, so the search for adju­
vant therapies continues. The addition of 
erythropoietin to therapeutic hypothermia 
has shown promising results in early clini­
cal trials, especially for perinatal stroke.5 
The use of stem cells represents another 
potential avenue to treat neonatal encepha­
lopathy, and is being tested in pilot studies.6 
Cell-based therapies have also been used to 
correct inborn errors of metabolism, such as 
lysosomal storage diseases.7

Precision medicine will pave the way for 
more appropriate and targeted therapies in 
the next decade. De novo and rare inherited 
copy number variations (CNVs) are recog­
nized to underlie the clinical manifestations 
of a growing list of neurodevelopmental 
conditions. For example, genome-wide 
analysis in cerebral palsy—not traditionally 
thought to be genetically determined—has 
uncovered a large number of chromosomal 
abnormalities associated with the disease.8 
These findings were substantiated in a 
recent study, which determined the impact 
of de novo CNVs on the diagnosis and 
classification of cerebral palsy.9

Similarly promising results have been 
obtained in other neurological condi­
tions, including epileptic encephalo­
pathies. The Epilepsy Phenome/Genome 
Project used exome-based sequence data to 
highlight novel candidate genes related 
to infantile spasms and Lennox–Gastaut 
syndrome.10 Our understanding of the 
clinically heterogeneous neuromuscular 
disorders, such as the congenital muscu­
lar dystrophies, has also benefited from 
unbiased genomic approaches.11
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A combined CNV and single-nucleotide 
variant data approach is expediting the dis­
covery of new syndromes and genes involved 
in neuropsychiatric diseases associated with 
developmental delay, despite considerable 
genetic heterogeneity.12 Perhaps the disease 
that has benefited most from novel techno­
logies is autism: both de novo missense muta­
tions and de novo likely gene-disrupting 
(LGD) mutations contribute to diagnosis.13

The next decade will be about levera­
ging the knowledge buried in genomics 
to define the causes of and treatments for 
paediatric neurological diseases.

Alzheimer disease
Giovanni B. Frisoni.  If you wish to 
know where you are going, first ask your­
self where you are coming from. A decade 
ago, patients with cognitive complaints typi­
cally consulted me after 3.5 years of cogni­
tive symptoms, and diagnosis of Alzheimer 
disease (AD) was largely based on structural 
imaging (CT or MRI) to rule out second­
ary causes. Biomarkers such as cortical 
hypometabolism on 18F-FDG–PET, hippo­
campal atrophy on MRI, and cerebrospinal 
fluid (CSF) biomarkers (amyloid‑β42 and 
tau) were reserved for the few with early 
symptoms or an unclear clinical picture. 
The typical patient diagnosed with AD had 
a mean Mini-Mental State Examination 
(MMSE) score of 20/30, treatment was 
based on symptomatic drugs only, and dis­
appointment was still raging about the dra­
matic failure of AN1792, the first candidate 
AD modifier.14

My typical patient of 2015 has a history 
of cognitive complaints of 12 months or 
less. In my academic memory clinics, we 
use imaging and CSF biomarkers for most 
patients. In the context of real-life diagnostic 
research studies, we include quantitated and 
automated imaging biomarker readouts in 
the clinical reports (18F-FDG–PET metrics of 
cortical hypometabolism, automated hippo­
campal volume extraction algorithms),15 
and we have access to molecular imaging 
biomarkers that allow in vivo neuropatho­
logical analysis (for example, amyloid PET).16 
Patients diagnosed with AD typically have 
an MMSE score of 25–26/30 and little or no 
disability, and most are given symptomatic 
drugs and are usually enrolled in clinical 
trials of second-generation anti-amyloid 
or anti-tau disease modifiers, some of 
which are providing early indications 
of effectiveness.17,18

In 2025, I expect that early diagnosis of 
AD with molecular (imaging and CSF) 

biomarkers will be daily practice in all 
memory clinics worldwide, and patients 
will be prescribed a cocktail of drugs aimed 
at both improving symptoms and delay­
ing disease progression. The main efforts, 
however, will be directed towards asymp­
tomatic people with the molecular signature 
of AD (brain amyloidosis or tau).19 These 
individuals will be screened in the popula­
tion with blood and genetic biomarkers,20–22 
and will be treated with disease modifiers 
to prevent the onset of cognitive symptoms 
and disability. This well-known disease-
prevention paradigm is analogous to the 
treatment of hypertension and hyperchol­
esterolaemia to prevent cardiovascular and 
cerebrovascular events.

The toughest challenge will be to promote 
brain health by changing lifestyles in the 
population. An impressive amount of evi­
dence indicates that physical activity has 
multiple benefits for vascular, cognitive 
and emotional health;23,24 however, people 
are reluctant to take up running, swim­
ming or cycling for the sake of health alone. 
Scientists should stop advocating the need 
for yet another clinical trial on the cogni­
tive benefits of healhy lifestyles,23 and lobby 
decision-makers to implement societal poli­
cies to actively promote these lifestyles. This 
approach will substantially benefit not only 
the brain, but society overall.

Neuro-oncology
Chetan Bettegowda and Ziya L. Gokaslan. 
The past decade has seen an explosion in the 
understanding of the molecular and genetic 
basis of dozens of tumour types, ignited by 
advances in our ability to study systems 
at a global level, and at an unprecedented 
pace. For many tumour types, our improved 
knowledge of the tumour–host interaction, 
the critical pathways that lead to tumori­
genesis, and the mechanisms that under­
lie treatment response and resistance have 
led to the development of new therapies, 
including those that modulate the immune 
system or target specific genetic alterations. 
These discoveries have led to dramatic 
improvements in outcomes for a number 
of cancer types. Unfortunately, although 
the scientific advances in neuro-oncology 
have kept pace with those in other areas of 
oncology, the translation of this knowledge 
has been slow to improve patient outcomes.

Median survival for glioblastoma, the 
most common brain cancer, remains meas­
ured in months, with nearly all patients even­
tually succumbing to the disease. There is a 
dearth of FDA-approved therapies for nearly 

all CNS malignancies. One factor in our 
inability to adequately treat these tumours is 
the failure of historical classification methods 
to appreciate their complexity. Within any 
broad category of cancers affecting the CNS, 
genetic, epigenetic and proteomic profil­
ing has revealed the existence of multiple 
subtypes.25 These molecular characteristics 
can be predictive and prognostic, and have 
already begun to guide treatment selec­
tion in certain patient populations, such as 
SMO inhibitors in SHH-driven medullo­
blastoma, and tyrosine kinase inhibition in 
BRAF-mutant gliomas.26,27

In the next 10 years, we anticipate that the 
pathological diagnosis of CNS tumours will 
incorporate routine comprehensive molecu­
lar characterization. The knowledge derived 
from such detailed investigations of tumour 
specimens will enable significant advances, 
providing the basis for novel therapeutic and 
diagnostic strategies. CNS malignancies fall 
into the category of rare diseases, with each 
affecting only a few thousand individuals 
around the world, making appropriate clini­
cal trials difficult to conduct. Grouping of 
patients into well-curated populations that 
are comparable at the subcellular level will 
allow the execution of clinical trials in popu­
lations that are most likely to benefit. These 
advances will, hopefully, lead to the improve­
ments in survival that we are all so desperate 
to witness.

Regenerative neurology
John A. Kessler. The field of neurologi­
cal therapeutics has blossomed over the 
past decade, with therapies that can both 
prevent disease progression and treat symp­
toms, but at present no techniques are avail­
able for regenerating the damaged nervous 
system. The next decade will witness the 
advent of regenerative neurology, a broad 
term that encompasses regeneration, 
replacement and/or engineering of cells to 
restore normal nervous system function. 
This change will reflect the convergence of 
advances in stem cell biology, gene therapy, 
materials science and nanotechnology, and 
gene-editing techniques (for example, the 
TALENS and CRISPR–Cas9 gene-editing 
platforms).28,29

Clinical trials of different types of 
stem cells have already commenced for 

‘‘When designing clinical trials, 
identification of the responding 
patient is an important factor’’

PERSPECTIVES

© 2015 Macmillan Publishers Limited. All rights reserved



NATURE REVIEWS | NEUROLOGY 	 VOLUME 11  |  NOVEMBER 2015  |  661

neurological disorders including spinal 
cord injury, stroke, amyotrophic lateral 
sclerosis, multiple sclerosis (MS), several 
genetic enzyme deficiencies, and other dis­
eases.30,31 Similarly, numerous gene therapy 
trials have been conducted for a spectrum of 
disorders, including Parkinson disease (PD), 
brain tumours, diabetic neuropathy, genetic 
enzyme deficiencies, and AD.32–34

Although these early trials might dem­
onstrate some clinical benefits, their effi­
cacy will be limited by both technical and 
biological constraints, and strategies that 
combine new technologies are likely to be 
required. For example, stem cells require 
a highly regulated microenvironment, 
or ‘niche’, to survive, differentiate and 
integrate—an issue that is not addressed 
by current trials. Biomaterials can be 
designed to promote transplant survival and 
integration, both by providing the neces­
sary cell–matrix interactions and through 
localized delivery of drugs or proteins.35,36 
Convergent technologies will be required 
to explore the potential of RNA interfer­
ence or short hairpin RNAs to knock down 
levels of mutant proteins in inherited neuro­
logical diseases37 or, even more remarkably, 
to correct the defective gene sequences via 
gene-editing techniques.28,29 This effort 
will require new vectors—both viral and 
nonviral—that are being developed to 
overcome the problems that have impeded 
gene therapy to date.32,33 The advent of 
such combinatorial approaches in the next 
decade will help to launch a new era of 
regenerative neurology.

Epilepsy
Annamaria Vezzani. Epilepsy is a devasta­
ting neurological disease that afflicts approx­
imately 1% of the world’s population. Over 
the past 10 years, working as a basic scientist 
in the field of experimental epilepsy, I have 
witnessed the emergence of important new 
knowledge related to the basic mechanisms 
of the generation and recurrence of epileptic 
seizures—the main hallmark of epilepsy. 
Studies in animal models and in vitro brain 
cell and slice preparations have been instru­
mental in deepening our understanding 
of the molecules and pathways involved 
in the pathogenesis of seizures, and in the 

adaptive changes that the brain undergoes 
to re-establish homeostasis and promote 
repair.38,39 These mechanisms represent an 
invaluable source of potential targets for 
drug and biomarker discovery.

Unfortunately, the development of new 
therapies lags behind the advances in basic 
research. In around 40% of people with epi­
lepsy, the seizures cannot be controlled by 
the available antiepileptic drugs (AEDs). 
Even in responsive patients, the AEDs 
mainly provide symptomatic control of 
seizures, and often produce serious adverse 
effects.40,41 Next-generation therapies need 
to have disease-modifying properties to halt 
or reverse the progression of epilepsy, or to 
prevent its onset in susceptible individu­
als. This unmet clinical need represents a 
translational research priority for the next 
decade. In addition, an intensive search is 
underway for EEG, imaging and circulating 
biomarkers of epilepsy onset and prognosis, 
and for prediction of the therapeutic effects 
of drugs.42,43 The availability of biomarkers 
will be instrumental in the development of 
a new generation of therapies that are better 
targeted to the brain pathological processes 
in people who have epilepsy or are at high 
risk of developing the disease.

In the coming years, substantial efforts 
will be devoted to addressing the patho­
genic mechanisms underlying comorbidi­
ties such as cognitive deficits, depression 
and autism spectrum disorders, which 
severely affect quality of life in people with 
epilepsy, especially those in the paediatric 
population.44 In the context of preclinical 
research, it will be critical to refine animal 
models of adult and paediatric epilepsies 
to improve biomarker validation and drug 
discovery.45 In addition, novel approaches 
are being developed, including the use of 
simple model organisms such as zebrafish 
(Danio rerio) to model acute seizures and 
genetic epilepsies,46 and the generation of 
patient-specific neurons through induced 
pluripotent stem cell reprogramming to 
facilitate the development of cell-based 
novel drugs.47

Finally, technological improvements in 
diagnostic and research tools are ongoing. 
These include more-sophisticated EEG 
recording modalities for monitoring and 
predicting seizures in patients, optogenetic-
based approaches for halting seizures, new 
devices for delivering drugs on demand, and 
improved and novel noninvasive molecu­
lar brain imaging approaches.40,48–51 This 
armamentarium, together with increas­
ingly sensitive and informative ‘omics’ and 

genetic approaches,52,53 will help us not only 
to increase our knowledge of this multi­
faceted and complex disease, but also to 
markedly improve the therapeutic options 
for patients.

Channelopathies
Stephen G. Waxman. The prototypical 
antiepileptic medication phenytoin was dis­
covered nearly a century ago. When pheny­
toin was introduced into clinical practice, 
its mode of action was not understood, 
but we now know that it acts, in large part, 
by blocking sodium channels. Since the 
advent of phenytoin, a stream of additional 
compounds that target ion channels have 
been developed.

Over the past decade, the pace of prog­
ress has quickened. A remarkable conver­
gence of genetics, ion channel biology and 
neurology has yielded dramatic and far-
reaching advances in our understanding 
of ion channels and their roles in human 
disease. Ion channels are increasingly being 
implicated in epileptiform disorders, and 
sodium channels have been shown to have 
important pathogenetic roles in disorders 
including myotonias and periodic paralyses, 
migraine, and peripheral neuropathy.54–58 
Studies on channelopathies—disorders 
caused by mutations in genes encoding spe­
cific ion channels—have firmly established 
a role for sodium channels such as NaV1.7 
(encoded by SCN9A) as central players 
in human pain.59 In concert, therapeu­
tic molecules that block specific subtypes 
of sodium channels while sparing others 
are under development.60 Advanced tech­
niques for atomic-level molecular model­
ling,61 together with the solution of the 
crystal structure of prototypical bacterial 
sodium channels, have propelled molecular 
pharmacology to new levels.

The next decade promises to be even 
more exciting. In my opinion, we are likely 
to see rapid translation of these advances 
into the therapeutic realm. I predict that 
within the next 10  years, new, more-
effective therapies for pain that target 
‘peripheral’ molecules such as the sodium 
channels NaV1.7, NaV1.8 and NaV1.9 will 
enter the clinical domain. Given that the 
target molecules are crucial for electro­
genesis in peripheral pain-signalling 

‘‘The toughest challenge will 
be to promote brain health by 
changing lifestyles...’’

‘‘Precision medicine will pave 
the way for more appropriate and 
targeted therapies in the next 
decade’’
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neurons but have little, if any, role in the 
brain, these new pain medications should 
not affect the brain and, thus, will not have 
central adverse effects such as sedation, 
confusion, ataxia or diplopia, and will not 
have addictive potential. I also anticipate 
that new genomically guided approaches 
to chronic pain, in which medications are 
matched to the genomic make-up of the 
patient, will transform pain management 
from ‘trial and error’ to ‘first time around’.

Finally, I believe that additional channel­
opathies of the nervous system are likely 
to soon be discovered soon. Evidence is 
emerging that NaV1.8 sodium channels, 
which are not normally present within 
the cerebellum, are expressed by Purkinje 
neurons in patients with MS.62 This anom­
alous expression leads to mistuning of 
these critically important cerebellar output 
neurons, which in turn leads to clinical dys­
function. Experiments in animal models 
have already demonstrated that some of the 
symptoms produced by this channelopathy 
can be ameliorated by blocking the offend­
ing molecules.63 Hopefully, these findings 
will provide a basis for development of new 
targeted therapies for MS.

Autoantibody-related disorders
Sven Jarius and Brigitte Wildemann. Over 
the past 10 years, we have witnessed the dis­
covery of numerous autoantibody-related 
neurological disorders, and the field is still 
growing. Of particular importance was the 
identification of aquaporin‑4 (AQP4), 
the most abundant water channel in the 
CNS, as an antibody target in patients with 
neuromyelitis optica and its formes frustes,64 
and the discovery of N‑methyl‑d-aspartate 
receptors (NMDARs) and the voltage-
gated potassium channel (VGKC) complex 
proteins LGI1 and CASPR2 as antigens in 
limbic encephalitis.65

Testing for AQP4-IgG is of the utmost 
importance in the differential diagno­
sis of MS, particularly if optic neuritis, 
myelitis (mostly longitudinally extensive) 
and/or brainstem encephalitis are present, 
as some treatments that have been shown 
to be beneficial in MS—for example, IFN‑β, 
natalizumab and fingolimod—are consid­
ered to be ineffective or even detrimental 
in AQP4 encephalomyelitis. The availabil­
ity of NMDAR-IgG and VGKC-complex-
IgG testing has made it possible to identify 
patients with encephalitis who are likely to 
respond to immunotherapy.

In AQP4 and NMDAR encephalo­
myelitis, a direct pathogenic role of the 

respective antibodies is highly likely, and 
the therapeutic and prognostic implica­
tions have been formally demonstrated.66,67 
By contrast, the pathogenic impact of other 
antibodies with high differential diagnostic 
potential still needs to be studied in more 
detail. Further anti-neuronal reactivities 
identified over the past 10 years include, 
among others, antibodies to AMPAR, 
GABABR, GABAAR, glycine receptors, 
mGluR5 and DPPX in encephalitis; ITPR1, 
Homer‑3, CARP, PKCγ, and ARHGAP26 
in cerebellitis (termed ‘Medusa head 
ataxia’68–70); LRP‑4 in myasthenia gravis; 
and CASPR2 in neuromyotonia. Moreover, 
a new role in anti-AQP4-negative myelitis 
and optic neuritis, as well as in acute dis­
seminated encephalomyelitis, has been 
assigned to anti-myelin oligodendrocyte 
glycoprotein antibodies.71

These findings have substantially facili­
tated the laboratory diagnosis of neuro­
logical autoimmune disorders. However, 
the rapid increase in numbers of poten­
tially useful antibody markers also pres­
ents considerable diagnostic challenges. 
Currently, a multitude of commercial and 
in-house assays are used, some of which 
might be insufficiently sensitive and/or 
specific.72 Given the potentially dramatic 
therapeutic consequences of false test 
results, future research should focus not 
only on identifying new antibody markers, 
but also on developing highly standard­
ized immunoassays. In this context, 
emphasis needs to be placed on imple­
mentation of regular (international) inter-
laboratory comparison trials for the most 
important novel autoantibodies, as well 
on creating the necessary institutional 
structures to perform such trials in a 
manufacturer-independent fashion.

A particular threat lies in the discrep­
ancy between the low prevalence of many 
of the newly described autoantibodies and 
the high number of tests requested in daily 
practice by physicians who wish to offer 
their patients the most extensive diagnos­
tic work-up available. However, testing for 
rare markers in large, unselected popula­
tions always carries the risk of an unfavour­
able ratio of false-positive to true-positive 
results, even if highly specific test methods 

are used. Therefore, the development of 
consensus guidelines on antibody testing 
in neurology, which inform physicians 
who are not experts in neuroimmunol­
ogy about indications for antibody testing, 
seems warranted.

General neurology
Michael Weller. Over the past decade, 
neurology has evolved dramatically from 
a mainly diagnostic—and often consid­
ered largely academic—speciality into a 
broad-based clinical discipline with multi­
ple ramifications and subspecializations, 
increasingly focused on innovative and tar­
geted therapeutic interventions. The next 
decade will undoubtedly see even greater 
changes and challenges for a clinical dis­
cipline that combines highly specialized, 
complex interventions with patient care at 
the community level, across a wide range of 
countries with highly variable health-care 
systems and resources.

Some core areas of neurology have seen—
and should continue to see—major thera­
peutic advances. Examples include deep 
brain stimulation and other interventional 
treatments in PD,73 highly effective (but 
also potentially dangerous) immune inter­
ventions in MS,74 and the re-emergence 
of early multidisciplinary intervention, as 
well as an evolving area of neurorehab­
ilitation, in stroke.75,76 Other areas with a 
bright future include those where neurol­
ogy is working closely with neighbour­
ing disciplines, hopefully more often in a 
cooperative than a competing fashion. In 
dementia, for example, neurologists are 
collaborating with psychiatrists and geri­
atric specialists to determine how to dis­
tribute the workload of clinical research, 
intervention and care,77 and how to prepare 
our ageing societies for this major socio­
economic challenge. Neuro-oncology is a 
prototypical multidisciplinary discipline, 
in which we anticipate major advances in 
technical (in particular, neurosurgical) and 
immunological interventions.78

Future challenges for the neurology 
field include a balanced focus on research, 
education and patient care, and the inevi­
table re-definition of the main duties of 
neurologists. We need to evaluate the 
importance of clinical examination skills, 
and technical expertise in neurology-
associated techniques, such as ultrasound, 
EEG and electroneuromyography. In 
addition, we must weigh up the costs and 
benefits of the increasing repertoire of 
diagnostic resources.

‘‘Future challenges for the 
neurology field include a balanced 
focus on research, education and 
patient care…’’

PERSPECTIVES
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