

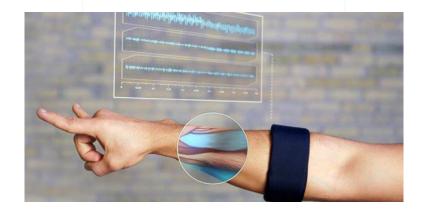
ЦЕЛЬ И ЗАДАЧИ

ЦЕЛЬ:

• разработать программное обеспечения, с помощью которого можно преобразовать видеопоток с общением на русском языке жестов в текст

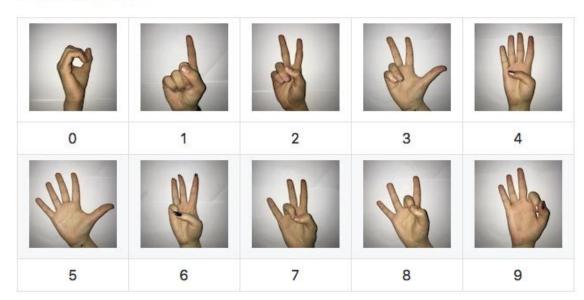
ЗАДАЧИ:

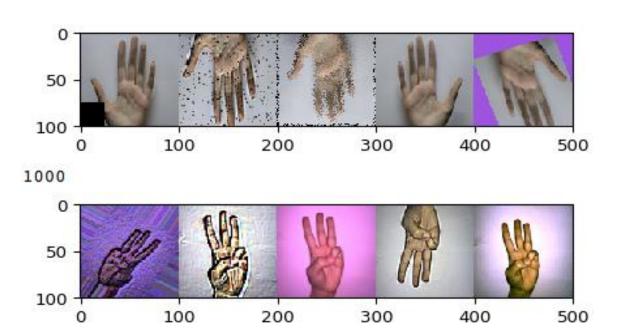
- выбрать архитектуру нейронной сети
- обучить выбранную модель на открытом датасете;
- разработать собственный датасет.
- добиться удовлетворяющего перевода видеопотока в текст за счет подбора гиперпараметров;
- провести тестирование получившегося программного продукта на глухих людях;


ПРОБЛЕМА ГЛУХОНЕМЫХ

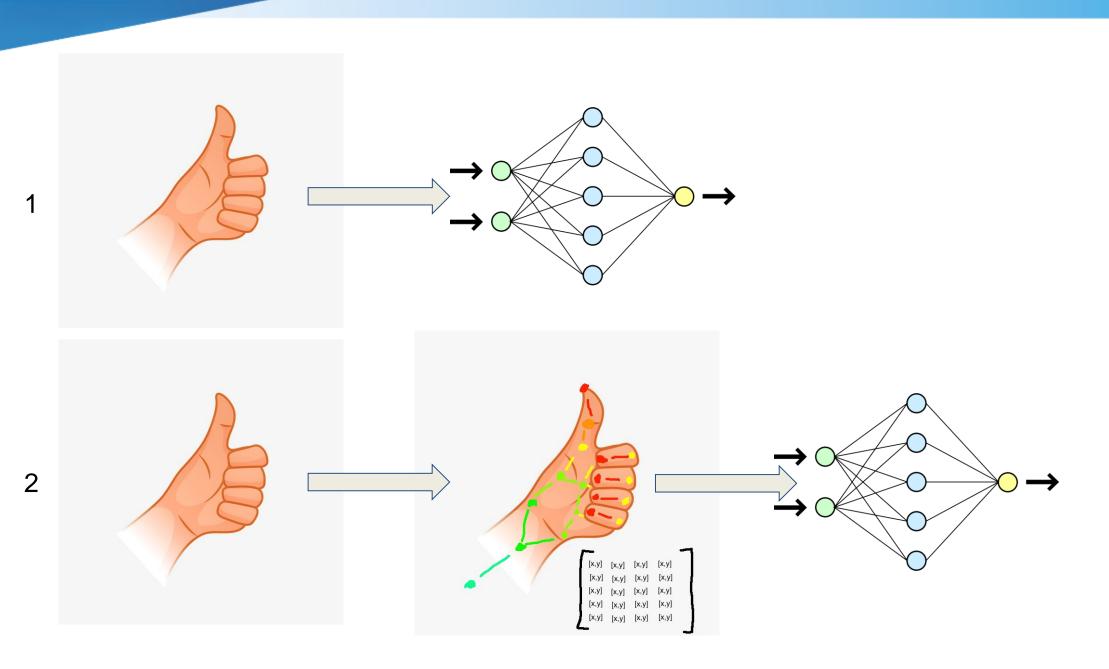
На данный момент глухонемые обслуживаются по средствам видеосвязи, что не всегда удобно и порождает накладные расходы.

СУЩЕСТВУЮЩИЕ РЕШЕНИЯ


ДАТАСЕТ


Датасет

- Размер изображений
- Пространство цветов: RGB
- Количество классов: 10
- Различных людей 218


Аугментированные изображения

Dataset Preview:

Предобработка данных

ТЕСТИРОВАНИЕ

VGG16

Hyperparam							Time			Val Loss			Train Loss			Val Acc		Train Acc			Test Acc		
Доп. слои			0														0,8145						
Learning rate		0.001					17m 6s			0,5269		0,1374											
Loss func			CrossEntropyLoss											ss		0,9667			(209 / 210) 0,9952				
Optimizer			SGD																				
Batch size			86																				
Confusing map													Loss										
8 7 6 5 4 3 2 1 0	0 0 0 0 0 0 0	0 21 0 0 0 0 0	0 0 0 0 0 0 0	0 0 21 0 0 0	0 0 0 21 0 0 0	0 0 0 0 21 0 0	0 0 0 0 0 21 0	0 0 1 0 0 0 21	0 0 0 0 0 0	0 0 0 0 0 0 0		- 20 - 16 - 12 - 8 - 4	ssol	2.0 1.5 1.0 0.5							_	- va	al ain
6	0	1	2	3	4	0 5	0	7	8	9		-0			0		5	10 ep	och	15		20	25