
http://thatjsdude.com/interview/

https://ashleynolan.co.uk/blog/a-guide-to-front-end-interviews

https://github.com/johnpolacek/Front-end-Developer-Interview-

Questions/blob/master/README.md (quite old!)

HTML

Doctype – instruction to browser to inform about html version and how to render.

Data-* - allows for data to be stored in DOM which can be accessed later using JS.

Loading CSS/JS – CSS in header as you don’t want to restyle HTML content again after it has loaded

(prevents FOUC flash of unstyled content). JS in bottom of body as you want all the DOM to load

before using.

HTTP Requests

https://www.smartlabsoftware.com/ref/http-status-codes.htm

Accessible Website

Use headings correctly in layout (h1 only for main title and don’t skip from h1 to h3 as it can confuse

screen reader users.)

Use of semantic HTML tags in order to be more descriptive:

http://thatjsdude.com/interview/
https://ashleynolan.co.uk/blog/a-guide-to-front-end-interviews
https://github.com/johnpolacek/Front-end-Developer-Interview-Questions/blob/master/README.md
https://github.com/johnpolacek/Front-end-Developer-Interview-Questions/blob/master/README.md
https://www.smartlabsoftware.com/ref/http-status-codes.htm

Alt text for images.

Descriptive and unique link names.

Use colour with care!

Allow for use of keyboard in a logical way.

CSS

Display: inline – default value. Don’t break flow (like ,). Only allows adjoining elements

to be spaced horizontally not vertically.

Display: inline-block – like inline except you can space horizontally and vertically.

Display: block – usually container elements (<div>, <section>). Take up as much horizontal space as

possible.

Position: absolute, relative, fixed –

Absolute position themselves exactly relative to their parent element (has to be defined or is body

by default).

Fixed stays in fixed position on viewport even if scrolled. Good for parallax.

BEM

JS

Null and undefined -

==, == and ===

= assigns value

== checks for same value

=== checks for same value and type

Let keyword

‘this’ keyword

1. The *this* keyword always refers to the owner of scope from which it is

executing.

Closures

A "closure" is an expression (typically a function) that can have free variables together
with an environment that binds those variables (that "closes" the expression).

The simple explanation of a Closure is that ECMAScript allows inner functions; function
definitions and function expressions that are inside the function bodes of other functions.
And that those inner functions are allowed access to all of the local variables,
parameters and declared inner functions within their outer function(s). A closure is
formed when one of those inner functions is made accessible outside of the function in
which it was contained, so that it may be executed after the outer function has returned.
At which point it still has access to the local variables, parameters and inner function
declarations of its outer function. Those local variables, parameter and function
declarations (initially) have the values that they had when the outer function returned
and may be interacted with by the inner function.

Such as using IIFE in loops.

Call-back function (aka Higher Order Functions)

 A higher-order function is a function that can take another function as an argument, or that

returns a function as a result.

I have used this in React in terms of .map. In algorithms, .reduce and .filter. Also, have used

functions which then callback other functions after relevant parameters are created.

Window.onLoad()

The handler window.onload and iframe.onload triggers when the page is fully loaded with all

dependent resources including images and styles.

window.onload is rarely used, because no one wants to wait until all resources load, especially

for large pictures.

DOMContentLoaded

The DOMContentLoaded event triggers on document when the page is ready. It waits for the full

HTML and scripts, and then triggers.

- Node? What is it? Problems you faced with it? What is Node good for?

 Problems I faced were keeping my Node and NPM version up to date and

configuring/sorting any errors related to running on Windows. Also, tempting to use lots of

node packages but mindful that need to stick to quality ones, tried and tested with good

docs.

 Took JavaScript which normally confined to browser, allowed it to run on computer. Works

using Google’s V8 engine. Can now access files on computer, listen to network traffic, listen

to http requests, can access databases directly (anything you can do with PHP or Ruby-on-

rails you can now do with Node JS).

 Allows you to build and use: (a) utilities for everyday development like

Gulp/Grunt/Yeoman/Webpack, listen to file changes and hot reload, convert SASS to CSS (b)

building a web server using express/koa type framework.

 Modules are basically loading one file into another. NPM downloads and manages packages

using package.json which saves all dependencies.

 Uses:

o I believe Node.js is best suited for real-time applications: online games,

collaboration tools, chat rooms, or anything where what one user (or robot? or

sensor?) does with the application need to be seen by other users immediately,

without a page refresh.

o If your server side code requires very few CPU cycles. In other world you are doing

non-blocking operation and do not have heavy algorithm/Job which consumes lots

of CPU cycles.

o If you are from JavaScript back ground and comfortable in writing Single Threaded

code just like client side JS.

o Not to use for: Your server request is dependent on heavy CPU consuming

algorithm/Job.

- What do you like about ES6 and React?

 Modular structure when combined with ES6.

 1. Your view is composed of components.

2. Components are rendered using the `props` passed to them from parent components.

3. A component will be completely re-rendered when the props passed to it change.

4. Top level components can also maintain `state` to let the re-render themselves and their

children dynamically based on user interaction.

 It makes writing JavaScript easier - Being able to drop a bit of HTML in your render function

without having to concatenate strings is fantastic, and after a while it feels very natural.

React turns those bits of HTML into functions with a special JSXTransformer.

 Components are the future of web development - gives you the ability to create your own

components that you can later reuse, combine, and nest to your heart’s content. I've found

this to be the single-biggest productivity boost because it’s so easy to define and manipulate

your own components.

 React is extremely efficient - React creates its own virtual DOM where your components

actually live. This approach gives you enormous flexibility and amazing gains in performance

because React calculates what changes need to be made in the DOM beforehand and

updates the DOM tree accordingly. This way, React avoids costly DOM operations and makes

updates in a very efficient manner.

- What do you for styling your pages?

 SASS. Like the ability to embed styles, use mixins (grid, media queries), assign variables.

 Bootstrap for responsive.

- What do you do in able to have websites show on different browsers/devices?

 Autoprefixer as part of PostCSS loader in Webpack (Autoprefixer is a PostCSS plugin). May

use CSSnext as it contains autoprefixer and transforms new spec CSS into more compatible

CSS.

 Have to test on different devices and use Stack Overflow etc. For example, the Flickr task, I

was having issues with the font-weight: bold for the heading as this was causing rendering

issues on the iPad. Looked into it and seems it is an issue in using font-weight so took the

advice and imported both font-weights of Montserrat font and used bold for the heading

and this solved the issue.

 Aware that there are services that allow you to test on multiple browsers but I don’t have

access. Recently used http://responsiv.eu/.

- Class based component?

 My understanding is JavaScript classes provide a much simpler and clearer syntax to create

objects and deal with inheritance.

 The extends keyword is used in class declarations or class expressions to create a class as a

child of another class. The super keyword is used to call functions on an object's parent. The

constructor initializes this object and can provide access to its private information. The

concept of a constructor can be applied to most object-oriented programming languages.

Essentially, a constructor in JavaScript is usually declared at the instance of a class.

The ‘SearchBar’ class is a child of the React component class (extends) and is able to call all

the parent functions (super), such as render(), when the class is created (instantiated).

- Webpack? Task runners?

 Module bundler (Webpack) - module bundlers are used to splice various assets and produce

bundles to implement a structure into these giant piles of unreadable code.

 Task Runners (Gulp/grunt) - Bundling all your assets into one or even several files and

including them to every part of your application means loading a ton of assets that aren’t

required most of the time. task runners to automate everything that can be automated (i.e.

compile css/sass, optimize images, make a bundle and minify/transpile it)

 Simply put, Webpack is such a powerful tool that it can already perform the vast majority of

the tasks you’d otherwise do through a task runner. For instance, Webpack already provides

options for minification and sourcemaps for your bundle. In addition, Webpack can be run as

middleware through a custom server called webpack-dev-server, which supports both live

reloading and hot reloading (we’ll talk about these features later). By using loaders, you can

also add ES6 to ES5 transpilation, and CSS pre- and post-processors. That really just leaves

unit tests and linting as major tasks that Webpack can’t handle independently. Given that

we’ve cut down at least half a dozen potential gulp tasks down to two, many devs opt to

instead use NPM scripts directly, as this avoids the overhead of adding Gulp to the project

(which we’ll also talk about later).

 The major drawback to using Webpack is that it is rather difficult to configure, which is

unattractive if you’re trying to quickly get a project up and running.

- Post CSS?

 PostCSS is a tool for transforming styles with JS plugins. Such as Autoprefixer.

- MongoDB? SQL/NoSQL? Express?

- Unit Testing/TDD/BDD?

 Unit Testing gives you the what. Test-Driven Development gives you the when. Behavior

Driven-Development gives you the how.

 A unit test focuses on a single “unit of code” – usually a function in an object or module.

Individual tests, which test one thing, and they are isolated from each other.

 TDD or Test-Driven Development is a process for when you write and run your tests. Test-

coverage refers to the percentage of your code that is tested automatically, so a higher

number is better. TDD also reduces the likelihood of having bugs in your tests, which can

otherwise be difficult to track down. Start by writing a test

o Run the test and any other tests. At this point, your newly added test should fail. If it

doesn’t fail here, it might not be testing the right thing and thus has a bug in it.

o Write the minimum amount of code required to make the test pass

o Run the tests to check the new test passes

o Optionally refactor your code

o Repeat from 1

 When applied to automated testing, BDD is a set of best practices for writing great tests.

BDD can, and should be, used together with TDD and unit testing methods. One of the key

things BDD addresses is implementation detail in unit tests. A common problem with poor

unit tests is they rely too much on how the tested function is implemented. This means if

you update the function, even without changing the inputs and outputs, you must also

update the test. This is a problem because it makes doing changes tedious. Behavior-Driven

Development addresses this problem by showing you how to test. You should not test

implementation, but instead behavior.

 The difference between BDD and TDD is that BDD begins with a B and TDD begins with a T.

But seriously, the gotcha with TDD is that too many developers focused on the "How" when

writing their unit tests, so they ended up with very brittle tests that did nothing more than

confirm that the system does what it does. BDD provides a new vocabulary and thus focus

for writing a unit test. Basically it is a feature driven approach to TDD. BDD is TDD done right.

 Mocha is the library that allows us to run tests, and Chai contains some helpful functions

that we’ll use to verify our test results.

- CORS? Same origin policy?

 From my understanding, To make an AJAX request using CORS, the server needs to be

configured to accept cross-origin requests. From my research, Flickr does not support CORS

headers on api.flickr.com, so fetch and XMLHttpRequest will not work.

 Same origin policy - is a security concept for the web. Sounds sophisticated, but only makes

sure a web browser permits scripts, contained in a web page to access data on another web

page, but only if both web pages have the same origin. In other words, requests for data

must come from the same scheme, hostname, and port. If http://player.example tries to

request data from http://content.example, the request will usually fail.

 CORS (Cross-Origin Resource Sharing) - If you want to store content on a different origin

than the one the player requests, there is a solution – CORS. In the context of

XMLHttpRequests, it defines a set of headers that allow the browser and server to

communicate which requests are permitted/prohibited. It is a recommended standard of

the W3C. In practice, for a CORS request, the server only needs to add the following header

to its response: Access-Control-Allow-Origin: *

 Used jsonp by adding '?jsoncallback=?’ to the url. This tell jQuery to make a JSONP request in

which it creates a new script which embeds Flickr JSON data in a Javascript function call

(hence the padding). Since the data will be called via the ‘script’ tag, it is no longer in

violation of same-origin policy. JSONP is convenient and served a potentially business

purpose, although it has no built in security and this has to be manually enforced by the

developer, which is where possible security issues occur.

- what is Lodash?

 Lodash is a toolkit of JavaScript functions that provides clean, performant methods for

manipulating objects and collections. It is a "fork" of the Underscore library.

- Bash?

 Console emulator (Cmder). Able to use all the bash commands as on OSx.

