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Abstract

Most general rasterization algorithms in computer graphics are based on point
sampling of the image to be rendered. One peculiarity of computer graphics
is that irregular sampling patterns are widely used, mainly to prevent moiré
artifacts in rendered images. The best irregular sampling patterns have a blue
noise characteristic in the spectral domain: such patterns attain a particularly
good tradeoff between moiré prevention and noise-free rendition of low image
frequencies.

Despite considerable research on blue noise sampling over the last 30 years,
several important questions have not been answered completely so far: What
is the most desirable irregular sampling pattern? To what extent can such
a sampling pattern be realized in practice? What geometric properties of a
sampling pattern are especially desirable? Some progress towards answering
these questions has been made during the last few years. This thesis continues
this line of research and presents new experimental and theoretical results on
irregular sampling patterns. Our focus is on the interaction between geometric
and spectral properties of sampling patterns and their impact on the sampling
process.

The main contributions of this thesis fall broadly into three different ar-
eas. First, we extend previous results on the spectral analysis of irregular
sampling to explain in more detail how the shape of the power spectrum of
a sampling pattern affects the visual appearance of aliasing. We then study
the limiting case of Poisson disk sampling, which is the prevalent form of ir-
regular sampling used in computer graphics, and demonstrate that it leads to
sampling patterns with certain undesirable properties. Finally, we study the
mathematical relationship between spatial statistics and spectral measures to
make two important contributions to the theory of blue noise sampling. First,
we study two realizability conditions, which explain how spatial and spectral
characteristics of a point set constrain each other. And second, we show how
to derive efficient irregular sampling patterns directly from a specification of
their desired spectral properties.
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Zusammenfassung

Die meisten allgemeinen Rasterisierungs-Verfahren in der Computergrafik ba-
sieren auf der punktweisen Abtastung der darzustellenden Bilder. Eine Be-
sonderheit in der Computergrafik ist dabei, dass häufig irreguläre Abtastmus-
ter verwendet werden, in erster Linie um Moiré-Muster in den resultieren-
den Bildern zu unterdrücken. Die besten irregulären Abtastmuster zeichnen
sich durch eine blue noise-Charakteristik im Spektralbereich aus: diese Mus-
ter erreichen einen besonders guten Kompromiss aus Moiré-Vermeidung und
rauschfreier Darstellung niedriger Bildfrequenzen.

Obwohl blue noise in der Computergrafik seit 30 Jahren erforscht wird,
sind einige grundlegende Fragen bisher nur unvollständig beantwortet: Was
ist das günstigste irreguläre Abtastmuster? Wie kann es in der Praxis kon-
struiert werden? Wie korrespondiert das mit geometrischen Eigenschaften der
Punktverteilung? In den vergangenen Jahren wurden deutliche Fortschritte bei
der Beantwortung dieser Fragen erzielt. Diese Arbeit führt diese Forschungs-
ansätze fort und präsentiert neue experimentelle und theoretische Ergebnisse
zu irregulären Samplingmustern. Der Schwerpunkt liegt dabei auf dem Zu-
sammenhang zwischen geometrischen und spektralen Eigenschaft der Samp-
lingmuster und ihrem Einfluss auf den Abtastvorgang.

Die Hauptbeiträge der Arbeit fallen dabei grob in drei Bereiche. Zunächst
verallgemeinern wir frühere Ergebnisse zur spektralen Untersuchung von Samp-
lingmustern, um genauer zu erklären, wie das Leistungsspektrum der Samp-
lingmuster das visuelle Erscheinungsbild von Aliasing beeinflusst. Wir unter-
suchen dann mit Poisson disk -Sampling eine der populärsten Formen von ir-
regulärem Abtastmustern in der Computergrafik, und demonstrieren, dass die
resultierenden Samplingmuster in einem wichtigen Grenzfall unerwünschte Ei-
genschaften annehmen. Zuletzt untersuchen wir den mathematischen Zusam-
menhang zwischen räumlichen Statistiken und Spektralmaßen, um zwei wich-
tige Ergebnisse abzuleiten. Zunächst untersuchen wir zwei Realisierbarkeits-
Bedingungen, welche erklären, wie sich räumliche und spektrale Eigenschaften
von Samplingmustern gegenseitig einschränken. Zuletzt untersuchen wir, wie
effiziente irreguläre Samplingmuster direkt aus den gewünschten spektralen
Eigenschaften abgeleitet werden können.
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Chapter 1

Introduction

One of the main challenges in computer graphics is rasterization, which is the
problem of generating digital images from abstract descriptions of the image
content. Almost all general-purpose rasterization algorithms are based on the
idea of point sampling: During rasterization of an image I, we evaluate I at
a finite set of sample positions and then use these samples to compute the
final pixel colors. Since rasterization algorithms based on point sampling only
require that I can be evaluated at arbitrary positions, they are very general
and widely used, both for real-time and offline rendering.

Since sampling reduces the continuous image I to a finite number of sam-
ples, we may lose information in the process. If we want to ensure that the final
raster image is a faithful representation of I, we have to answer the following
fundamental questions:

• How many samples do we need and where do we place them?

• What image errors result if we sample incorrectly and how can we pre-
vent or reduce such errors?

The famous sampling theorem answers these questions in the special case of
regular sampling patterns: It relates the required sample density to the band-
width of the image being sampled and predicts the occurrence of aliasing
artifacts if the sampling rate is too low.

In still images, aliasing usually manifests as jagged edges or moiré patterns,
both of which can be highly distracting to human observers. Preventing such
artifacts by antialiasing is therefore an integral aspect of all rasterization algo-
rithms. The theoretical solution to antialiasing is prefiltering, which removes
high frequencies from the signal before sampling: In digital audio recording
and digital photography, for example, such a filter can be implemented as an

1



2 CHAPTER 1. INTRODUCTION

analog low-pass filter in the microphone or in front of the image sensor. In
computer graphics, however, exact prefiltering is only possible for very simple
scenes and lighting models. This is a serious limitation because it implies that
aliasing is, to a certain extent, unavoidable in graphics. Often, the best we
can do is to control the amount and visibility of aliasing through the choice
of sampling pattern.

One obvious way to reduce the amount of aliasing is to take more samples.
As can be seen in the top row of Figure 1.1, increasing the sampling rate
reduces aliasing by limiting the range of frequencies that can cause aliasing in
the first place. Unfortunately, oversampling can only guarantee the absence
of aliasing if the bandwidth of the image being sampled is known. Since this
is rarely the case in practice, oversampling is often combined with techniques
that limit the visibility of aliasing.

The easiest way to make aliasing less conspicuous is to use irregular sam-
pling patterns. This replaces strong aliasing patterns with unstructured noise,
as illustrated in the bottom row of Figure 1.1. The main challenge with irreg-
ular sampling is that we can choose from an uncountable number of possible
sampling patterns, which complicates both the theoretical analysis and the
practical implementation. As shown in Figure 1.1, the spatial distribution
of the samples has a significant impact on the final image quality. The best
results are often obtained with so-called blue noise sampling patterns (shown
in the last column) which are tuned to work especially well for natural images
which are dominated by low frequency content.

1.1 Overview of this Thesis

Irregular sampling in general and blue noise sampling in particular have a long
history in computer graphics, and countless algorithms for constructing blue
noise sampling patterns have been proposed over the years. There are two
main approaches to studying blue noise sampling: the geometric viewpoint
focuses on spatial properties of the sample points, and the spectral viewpoint
on the properties of sampling patterns in the Fourier domain. The geometric
approach is often more intuitive and is the basis of almost all algorithms for
constructing blue noise sampling patterns. The spectral approach, however,
gives us a direct link to the behavior of a point distribution during sampling
and is usually used for evaluating sampling patterns.

In most computer graphics research so far, the two approaches have been
complementary. The major goal of this thesis is to study the relationship
between the two. This allows us in particular to make progress in the theo-



1.1. OVERVIEW OF THIS THESIS 3

1 spp 2 spp 4 spp 8 spp

regular (4 spp) stochastic jittered blue noise

Figure 1.1: Sampling images containing regular high-frequency features often leads to
aliasing in the form of moiré patterns. Two ways of dealing with moiré patterns are
shown. (Top) Increasing the number of samples per pixel (spp) reduces the amount of
aliasing, but in general it cannot guarantee the absence to moiré artifacts. (Bottom)
Irregular sampling changes the appearance of aliasing by replacing moiré patterns
with unstructured noise. All images in the bottom row use 4 spp on average.

retical investigation of blue noise sampling. Our research is motivated by the
following fundamental questions that haven’t been answered satisfactorily so
far:

• What exactly is the effect of blue noise sampling on the frequency content
of the sampled image?

• Basically all known blue noise patterns in graphics are Poisson disk pat-
terns, i.e., they are constructed by enforcing a constraint on the minimal
distance of two samples. Is this a necessary prerequisite for efficient sam-
pling?

• Can we derive irregular sampling patterns from a specification of the
desired spectral behavior?

• What is the most desirable blue noise sampling pattern? Under what
circumstances can it be realized?
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Chapter 2 begins with an introduction to sampling theory and its appli-
cation to computer graphics. After briefly introducing the necessary nota-
tion and terms from signal processing, the remainder of this chapter gives an
overview of existing approaches to antialiasing in graphics. The main goal of
this overview is to distinguish easy problems, in which aliasing can be pre-
vented almost completely, from hard problems, in which aliasing can only be
suppressed to some extent. Irregular sampling is most useful in these hard
aliasing problems, where it reduces the visibility of aliasing that cannot be
removed completely by other means. The chapter concludes with a survey of
irregular and blue noise sampling.

In Chapter 3 we study the irregular sampling process in the Fourier do-
main. We first discuss the special case of periodic oversampling, in which the
same arrangement of samples is replicated periodically over the whole image
plane; in this case, the whole image formation process can be described in a
simple mathematical form. In the more general case of non-periodic sampling
patterns, the analysis becomes more involved. In contrast to classical sam-
pling theory, we cannot assume that the signal being sampled is bandlimited;
we therefore put a special focus the visual appearance of aliasing and how it
is related to the power spectrum of the sampling pattern. We use this analy-
sis to discuss the tradeoffs involved in blue noise sampling and introduce two
numerical measures for the shape of a blue noise spectrum.

In Chapter 4 we investigate the most popular paradigm for constructing
blue noise patterns: the Poisson disk criterion. A Poisson disk pattern is an
irregular distribution of points in which the points have a certain minimum
separation. Empirically, it was observed that such patterns have a blue noise
spectrum, and that a higher separation corresponds to better sampling prop-
erties. To test this assumption, we present a new algorithm for constructing
Poisson disk patterns with a much higher separation than previously possible.
Even though the resulting point sets outperform other Poisson disk patterns
in many sampling applications, the requirement of a high separation leads to
strong oscillations in the power spectrum. These oscillations can can cause
strong aliasing artifacts when sampling certain image frequencies.

These results highlight one fundamental limitation of most previous al-
gorithms for constructing sampling patterns: their inability to control the
spectral characteristics of the sampling pattern directly. Chapter 5 therefore
studies the problems involved in deriving sampling patterns directly from their
spectral properties. The key to this study is the mathematical relationship
between the power spectrum and a spatial statistics called the radial distribu-
tion function. This relationship allows us to formulate necessary conditions on
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the realizability of power spectra and formulate an algorithm that constructs
point distributions matching a given spectrum. We use these tools to design
two new forms of blue noise patterns: step blue noise, which has a power
spectrum shaped like a step function, and single-peak blue noise, which has
only a single peak in the spectrum but is otherwise flat. Both blue noise pat-
terns outperform many existing sampling patterns and guarantee the absence
of aliasing artifacts for a wide frequency range.

Chapter 6 concludes the thesis with a discussion of open questions. Ap-
pendix A summarizes the mathematics behind the energy and power spectral
density, and Appendix B reviews the main properties of several important
classes of sampling patterns used in graphics.

1.2 Summary of Contributions

The main contributions of this thesis can be summarized as follows:

• We extend previous studies on irregular sampling in the Fourier domain
to study how blue noise sampling affects non-constant images and influ-
ences the visual appearance of aliasing.

• We introduce two measures to quantify the shape of power spectra, the
effective Nyquist frequency νeff and the oscillation Ω. In contrast to
previous attempts to quantify irregular sampling patterns, the proposed
measures are directly related to the sampling behavior and the visual
appearance of aliasing.

• We extend the analysis of Poisson disk patterns to much higher disk radii
than was possible before. We demonstrate that it is possible to achieve
such radii without converging towards regular arrangements, which is a
common problem with previous optimization algorithms such as Lloyd’s
method.

• We relate the spatial distribution of a point set to its spectral properties
by studying the relationship between the autocorrelation and the power
spectrum. This generalizes previous results in a similar direction by
Wei and Wang [2011] and puts them on a more solid mathematical
foundation.

• This relationship allows us to formulate realizability conditions, i.e., nec-
essary conditions for the realizability of a power spectrum by a point
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distribution. This is a crucial missing link between spatial and spec-
tral properties of point distributions. We show how these conditions
constrain the range of power spectra that are achievable.

• We propose a new iterative algorithm for constructing point distributions
from a given power spectrum.

• We use all of the preceding results to design new blue noise sampling
patterns by specifying their desired spectral properties. We use the
realizability conditions to find suitable parameters and construct the
associated point distributions.

• Finally, we show that the sampling patterns we obtain in this way in
fact have desirable properties when applied to image-plane sampling.

This thesis is primarily based on the following publications:

Thomas Schlömer, Daniel Heck, and Oliver Deussen. Farthest-point
optimized point sets with maximized minimum distance. In High
Performance Graphics 2011, pages 135–154. Eurographics Association, 2011.

For this paper I was the co-author, but the work was divided
evenly. I was primarily responsible for the research that also ap-
pear in this thesis, namely, the idea of moving points to the far-
thest point, the analysis of runtime and convergence, and writing
the corresponding sections of the paper. Compared to the original
publication, this thesis adds a discussion of two additional geomet-
ric criteria, namely the coverage radius and the maximality of the
resulting point sets.

Daniel Heck, Thomas Schlömer, and Oliver Deussen. Blue noise sam-
pling with controlled aliasing. ACM Trans. Graph., 32(3), 2013.

For this paper I was the principal researcher and author. Com-
pared to the original publication, this thesis significantly expands
on the theoretical analysis of blue noise sampling, discusses nu-
merical issues in more depth, and extends the original evaluation.



Chapter 2

Sampling, Aliasing and
Antialiasing

This chapter serves as a brief introduction to sampling, aliasing, and antialias-
ing in graphics. We first review important definitions and terms from classical
sampling theory and discuss how they relate to graphics. We then survey
the problem of antialiasing. For a few simple graphical primitives, such as
polygons or image textures, antialiasing can be performed accurately and at
relatively low cost. These specialized antialiasing methods do not generalize
to more complex rendering problems such as ray tracing, however. Most gen-
eral antialiasing techniques are based on oversampling, either using regular
or irregular sampling patterns. We discuss the necessary modifications to the
standard signal processing pipeline and survey previous research on blue noise
sampling, which is one of the standard forms of irregular sampling in graphics.

2.1 Fundamentals of Sampling Theory

Sampling theory studies the problem of representing analog signals by a dis-
crete set of coefficients so that the original signal can be recovered exactly
from the coefficients [Shannon, 1949a, Oppenheim and Schafer, 2009]. The
classical signal processing pipeline is shown in Figure 2.1: A continuous sig-
nal f is reduced to a countable set of point samples taken at a fixed, regular
distance T .

To understand under which conditions is it possible to reconstruct f ex-
actly from these samples, the sampling process can be modeled mathematically
as follows. The sampling step converts the input signal into a discrete repre-
sentation by evaluating f at all integer multiples of the sampling interval T .

7
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Original
Signal f

Discrete
Signal

fs = f · III
Reconstruction
fr = fs ? r

Sampling Reconstr.

Figure 2.1: Sampling theory considers a processing pipeline in which a continuous
signal f is first sampled and then reconstructed into a continuous signal fr. The goal
is to have the reconstructed signal match the original signal fr = f .

This discretized signal can be represented either as the set of discrete samples
{f [n] = f(nT )}n∈Z or as a time-continuous signal fs that is zero everywhere
except at the sample locations:

fs(x) =
∑
n∈Z

f [n]δ(x− nT ). (2.1)

The reconstruction step converts the sampled signal fs back into a contin-
uous function. The reconstruction amounts to an interpolation of the samples
and is performed by convolving fs with a reconstruction filter r(x)

fr(x) = fs ? r(x). (2.2)

The reconstruction is said to be perfect if fr ≡ f , i.e., if the original signal
can be recovered exactly from the samples. The sampling theorem [Shannon,
1949b] states that perfect reconstruction is possible if f contains no frequen-
cies higher than 1/2T and reconstruction is performed using a sinc function
r(x) = sinc(x/T ). The critical frequency νc = 1/2T is known as the Nyquist
frequency of the sampling grid. Signal frequencies above the Nyquist fre-
quency cannot be represented accurately by the discrete set of samples and
are mapped (“aliased”) to low frequencies in the reconstructed signal.

The emergence of aliasing is easy to understand in the Fourier domain.
Eq. (2.1) can be written more concisely using the comb function IIIT (x) =∑

n∈Z δ(x− nT )
fs(x) = f(x) · IIIT (x). (2.3)

The Fourier transformation of IIIT (x) is another comb function III1/T (ν)/T ,
so the Fourier transform of the sampled signal fs is

f̂s(ν) =
1

T
f̂ ? III1/T (ν) =

1

T

∑
n∈Z

f̂(ν + n/T ). (2.4)

This equation has and interesting interpretation: sampling in the spatial do-
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ν ν ν

ν

Original spectrum

ν

Sampled spectrum

ν

Reconstructed spectrum

Figure 2.2: Visualization of sampling and reconstruction in the frequency domain.
The spectrum of the original signal is replicated in the sampled spectrum, and its
bandwidth determines whether perfect reconstruction is possible. (Top) If the band-
width is smaller than the Nyquist frequency (indicated by the gray bar) the replicated
spectra do not overlap, and the original signal can be recovered by using a lowpass
filter that cuts out the central copy of the spectrum. (Bottom) If the bandwidth is
too large, the replicated spectra overlap and distort the sampled spectrum. In this
case, the original spectrum cannot be recovered by lowpass filtering.

main corresponds to replicating the spectrum f̂ across the whole frequency
axis and summing the result. If f̂ contains frequencies above the Nyquist
frequency νc = 1/2T , these replicated spectra overlap and cause aliasing: fre-
quencies |ν| > νc wrap around and show up as spurious low-frequency content.
This is visualized in Figure 2.2.

Aliasing can be prevented by using a lowpass filter to remove frequencies
above the Nyquist frequency before sampling.

fp(x) = p ? f(x), (2.5)

The lowpass filter p(x) = sinc(xT ) ≡ sincT (x) ensures that the bandwidth
of fp matches the Nyquist frequency, so the sampling theorem guarantees
that this prefiltered signal fp can be perfectly reconstructed. (The fact that
the sinc function is used for both prefiltering and reconstruction is a coinci-
dence; in more general formulations of the sampling theorem the two filters
are distinct [Unser, 2000].)

But what if the distortion due to the prefilter is more severe than the dis-
tortion due to aliasing would be? In theory this can never happen: It can be
shown that prefiltering with an ideal lowpass filter is equivalent to performing
an orthogonal projection of f onto the space of bandlimited functions [Unser,
2000]. This means that, among all bandlimited functions, fp is the best ap-
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proximation to f in the L2 sense. Prefiltering with a perfect lowpass filter
therefore guarantees that the reconstructed signal is as close to the original
signal as possible.

Sampling and Reconstruction of Images The preceding discussion can
be easily generalized from time-continuous signals f(t) to signals in higher
dimensions. In the case of images, the signal being sampled is a function I(x, y)
of two continuous variables and the samples are arranged in a rectangular grid
so that the samples are placed at a distance T both horizontally and vertically.
For simplicity, we restrict our discussion to grayscale images and assume that I
measures brightness only. With these conventions, the sampled image I[i, j]
can be written as

I[i, j] = I(iT, jT ), or I[n] = I(nT ). (2.6)

Again, the representation in terms of scaled Diracs is useful for many calcu-
lations

Is(x) =
∑
n

I[n]δ(x− n) = I(x) · IIIT (x).

The two-dimensional Dirac and comb functions are defined as follows

δ(x) = δ(x1)δ(x2), IIIT (x) = IIIT (x1) IIIT (x2). (2.7)

Other functions such as sinc(x) or rect(x) are likewise generalized to two
dimensions by separation of variables.

The two-dimensional sampling theorem states that the function I(x) can
be reconstructed from its samples I[n] if the support of its spectrum Î(ν)
is contained in [−1/2T, 1/2T ]2. In analogy to the one-dimensional case, this
reconstruction is performed by convolving the sampled image Is with a two-
dimensional sinc function:

I(x) = Is ? sinc1/T (x) =
∑
n∈Z2

I[n] sinc1/T (x− n). (2.8)

Regular sampling and reconstruction of images is treated in more detail by
Gonzalez and Woods [2008] and the survey paper by Dubois [1985].
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2.2 Sampling in Computer Graphics

Even though the image-formation process in computer graphics is governed
by the rules of sampling theory, several adjustments are necessary in practice.
In particular, the implementation of the prefiltering and reconstruction steps
differs significantly from the theoretical idealizations discussed in the previous
section.

2.2.1 Image-Plane Sampling

The most common form of sampling in graphics and the main focus of this
thesis is image-plane sampling; the term refers to the two-dimensional plane
onto which 3D scenes are projected in computer graphics. How are prefiltering,
sampling and reconstruction performed in this case?

Prefiltering is synonymous with antialiasing and covered in detail in the
remainder of this chapter. In graphics, prefiltering is generally challenging
since we only have incomplete knowledge about the image being rendered, es-
pecially when the image, or parts of it, are generated procedurally. Common
examples of procedural content in images are procedural textures and mate-
rials and most non-trivial forms of light simulation. In such cases, sampling
is often the only way to gain information about the image being rendered, so
filtering before sampling is practically impossible.

Sampling is typically performed by computing the color at a position x in
the image plane. Exactly how this computation is performed depends on the
rendering algorithm being used and the scene being rendered and can be as
simple as returning the color of the geometric primitive at x or as complex as
performing complex light simulation in a path tracer.

In some rendering scenarios, it is possible to combine prefiltering and
image-plane sampling with other computations (such as temporal antialias-
ing and light simulation) into one large multidimensional integral that can
be evaluated by efficient numerical methods [Cook et al., 1984, Hachisuka
et al., 2008]. While this approach can reduce rendering times significantly by
exploiting spatial and temporal coherence in the scene, the influence of the
sampling patterns on the final image quality becomes much harder to analyze.
For this reason, we will consider the consequences of sampling in the plane
independently from all other rendering aspects.

Reconstruction of digital images, finally, is either performed computation-
ally or using physical devices such as projectors, monitors, or printers. Compu-
tational reconstruction follows Eq. (2.8) and is most often used for resampling
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tasks such as resizing or warping [Wolberg, 1990]. For practical computations,
ideal reconstruction using the sinc function is unsuitable since it has infinite
support and decays slowly; instead, specially designed reconstruction kernels
with finite support are used. The search for reconstruction kernels that are
easy to calculate and yield accurate and good-looking results has received a lot
of attention both in image processing [Thévenaz et al., 2000] and computer
graphics [Mitchell and Netravali, 1988].

Alternatively, reconstruction of digital images can also be performed by
physical output devices such as monitors or projectors which generate an ana-
log image from the pixel values. Most devices can be modeled as a linear
process in which each pixel I[i, j] is transformed into a continuous light dis-
tribution of the form I[i, j]h(x− i, y − j). The function h is the point-spread
function (PSF) of the output device and describes the spatial distribution
of light for a single pixel. Informally spoken, the PSF models the shape of
the pixels displayed by the device. The whole reconstruction process by the
output device can be described mathematically by a convolution with h as
follows

Ir(x) =
∑
i

I[i]h(x− i) = Is ? h(x). (2.9)

The exact shape of the PSF can vary from device to device and may even
depend on the spatial position on the display, but it is often sufficient to
assume a fixed, homogeneous PSF. All physically realizable PSFs differ sig-
nificantly from the sinc function: for CRT displays the PSF can be modeled
as a Gaussian and for LCD displays as a box kernel [Foley et al., 1996]. Per-
fect reconstruction in the signal processing sense therefore is not possible with
physical devices, and even perfectly bandlimited functions may not be recon-
structed exactly on the display. In principle it would therefore be desirable
to take the PSF of the output device into account when preparing an image
for display, especially when the goal is to obtain the highest possible image
quality. For most applications this isn’t done; the only attempt we are aware
of is Kajiya and Ullner’s paper on font rendering [1981].

The effect of imperfect reconstruction by PDF viewers, printers and pro-
jectors should be taken into account when studying most example images in
this thesis. PDF viewers perform low-quality resampling, which often leads
to additional aliasing and moiré patterns, and printers and projectors tend to
blur the output. Images that illustrate aliasing artifacts such as Figure 1.1
are often best viewed on a monitor at 100% magnification.



2.3. SPECIALIZED ANTIALIASING TECHNIQUES 13

2.2.2 Temporal Sampling

In addition to image-plane sampling, another important form of sampling oc-
curs when dealing with animated images such as movies or interactive applica-
tions, where continuous motion is represented by a discrete set of intermediate
images or frames. Typical frame rates are 24 Hz for movies and 30–100 Hz for
interactive graphics. Rasterizing individual frames can be interpreted as a
sampling operation, where each sample in time corresponds to a full 2D im-
age. Like all sampling operations, this can cause aliasing, known as temporal
aliasing, which maps high frequencies (fast movement) to low frequencies (slow
movement). Common examples of temporal aliasing are rotating helicopter
blades which appear to rotate very slowly or backwards, and CRT monitors
which appear to flicker heavily.

Temporal antialiasing aims to prevent such artifacts by filtering out image
changes that are too fast for the chosen frame rate. The predominant effect
of this filtering is motion blur. Mathematically, it corresponds to filtering the
time-dependent image I(x, t) using a temporal low-pass filter w(t):

I(x) =

∫ ∞
−∞

I(x, t)w(t) dt (2.10)

The most general way to perform temporal antialiasing is to evaluate Eq. (2.10)
numerically, for example using Monte Carlo integration [Cook et al., 1984].

In contrast to image-plane sampling, ideal prefiltering in the signal-process-
ing sense is often not necessary or even desirable when performing temporal
antialiasing. The reason is that the visual appearance of motion blur is often
an artistic decision, for example to simulate the “look” of certain analog film
cameras or to exaggerate motion blur. We will not cover temporal antialiasing
in this thesis; for an overview and pointers to relevant research see the article
by Sung et al. [2002].

2.3 Specialized Antialiasing Techniques

Most images in computer graphics are not bandlimited since hard edges, pro-
cedural detail, and detail due to perspective compression can produce arbi-
trarily high image frequencies. Antialiasing is therefore required to prevent
aliasing artifacts when rendering or sampling such images. Mathematically,
antialiasing corresponds to filtering the image with a lowpass filter h before
sampling

Ip(x) = I ? h(x). (2.11)
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To evaluate this convolution analytically, we obviously require an analytical
expression for the image I as well. But a simple mathematical description of I
is only possible in a few special cases which we discuss in this section.

2.3.1 Edge and Polygon Antialiasing

Much of the early work on antialiasing focused on simple geometric objects
such as lines, circles, and polygons. When drawing such shapes on a raster
display, aliasing primarily takes the shape of jagged edges; this effect is also
referred to as jaggies or staircasing. For monochrome displays, such jaggies
are unavoidable, but grayscale and color displays allow smoother edges by
using intermediate color values.

The simplest approach to smoothing hard geometric edges is based on the
idea of pixel coverage (Figure 2.3 (a)). When rendering a polygon, each pixel
is treated as a little square and the fraction of this square covered by the
polygon is used as a grayscale value [Catmull, 1978]. Even though this simple
idea is intuitive and gives reasonable results for polygon edges, it performs
badly for more complex antialiasing problems such as texture filtering [Smith,
1995]. The underlying problem is that pixel coverage corresponds to filtering
with a box filter, which is only a crude approximation to the ideal lowpass
filter in Eq. (2.11) and produces stronger aliasing and blurring than better
filters.

A better approximation to Eq. (2.11) is illustrated in Figure 2.3 (b), in
which the grayscale value of the pixel is obtained by calculating the weighted
average of the polygon with a filter kernel placed at each pixel. An analytic
way to compute the necessary integrals was presented by Duff [1989], who
considered the convolution integral along scanlines and decomposed it accord-
ing to the edges of the polygon; these partial integrals can then be solved in
closed form if the filter is piecewise polynomial and the polygon is flat-shaded
or Gouraud-shaded. Two generalizations of Duff’s integration approach based
on geometric decomposition of polygons have been proposed by Lin et al.
[2005] and Auzinger et al. [2012].

If the polygon is large compared to the pixel, we see in Figure 2.3 (b) that
the integral doesn’t depend on the shape of the polygon or its orientation,
but only on the distance from the pixel center to the edge. If this pixel-to-
edge distance can be computed efficiently, edge antialiasing can be performed
without 2D filtering. This approach is especially viable for lines [Gupta and
Sproull, 1981, McNamara et al., 1998] and fixed shapes such fonts and vector
textures for which distance fields can be precalculated [Frisken et al., 2000,
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(a) (b)

Figure 2.3: Different ways to compute the pixel intensity in edge antialiasing. The
square represents a single pixel and the rotated box the edge being drawn. (a) Pixel
coverage measures the fraction of the pixel covered by the polygon being rendered. (b)
Convolution-based antialiasing computes the integral of the polygon weighted with
the filter kernel.

Green, 2007]. For small geometric features, distance-based antialiasing gives
incorrect results, however.

One final approach to edge antialiasing called morphological antialiasing
has recently become popular in real-time rendering [Jimenez et al., 2011]. The
general idea is to remove jagged edges by postprocessing: we first identify edges
in the rendered image using morphological operators and then smooth them
using directional filters. Combined with texture filtering, this can prevent
the two most common sources of aliasing in real-time graphics. The main
advantage of this approach is that it works better with complex pixel shaders
than other antialiasing methods and has a predictable per-frame cost. Its main
disadvantage is that it only reduces the visibility of jagged edges and ignores
aliasing due to geometric detail and moiré patterns. Morphological antialiasing
is a useful approximation in certain interactive applications such as computer
games, but it is generally not suitable for high-quality rasterization.

2.3.2 Texture Filtering

To increase the realism of rendered scenes, surface detail can be simulated by
mapping textures to the polygons being rendered [Heckbert, 1986b]. Due to
perspective projection, textures appear warped on the display, so the frequency
content of the final image depends not only on the texture image, but also
on the distance from the camera, the viewing angle, and the geometry of the
scene. Exact antialiasing of textures is therefore significantly more difficult and
computationally demanding than antialiasing of colored polygons [Heckbert,
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1986a]. Texture lookup refers to the tasks of deriving the antialiased color
value at a particular position inside a textured polygon.

If the texture is viewed head-on, the only effect of the camera transform is
to change the apparent size of the texture, and texture mapping is equivalent
to magnification or minification of the texture image. Most graphics hardware
uses bilinear filtering, but significantly higher quality can be obtained using
higher-order filters [Thévenaz et al., 2000].

If the texture is viewed at an angle, perspective compression must be
taken into account. A simple way to do this is mip-mapping : the strength of
perspective compression is measured for each pixel by a single scaling factor,
which is then used to resample the texture during texture lookup. To make
this more efficient, the texture is stored as a pyramid and the scaling factor
is only used to select an appropriate pyramid level [Williams, 1983]. Mip-
mapping works well for close-up textures that aren’t heavily distorted, but
in general is a poor approximation to correct antialiasing: Since perspective
compression is stronger in one direction than the others, using only a single
scaling factor necessarily leads to blurry results in the distance.

Anisotropic filtering achieves sharper results by allowing axis-specific scal-
ing factors. Efficient implementations of anisotropic filtering have been pro-
posed based on summed area tables [Crow, 1984] and elliptically weighted
averaging [Greene and Heckbert, 1986]. Even though these advanced texture
filters are still approximations, they are widely used both for real-time and
offline rendering. In principle it would be possible to achieve even more exact
antialiasing of textures, but at a certain point we lose the performance benefits
compared to solutions based on oversampling.

The filtering approaches discussed so far require that the texture is speci-
fied as a raster image, so they don’t work for procedural textures. Antialiasing
of procedural textures is a challenging problem and must either be performed
manually by the programmer [Ebert et al., 2002] or using general antialias-
ing algorithms based on oversampling. One important exception is procedural
noise, which is commonly used in shaders to simulate detail [Lagae et al., 2010].
In recent years, several procedures for procedural noise have been devised that
allow the bandwidth of the produced noise to be controlled directly [Cook and
DeRose, 2005, Lagae et al., 2009, 2011]. Filtering such noise functions can be
performed by adjusting the frequency range.
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2.4 Antialiasing by Oversampling

As discussed in the previous section, there are basically only two kinds of image
features that can be antialiased by prefiltering: hard edges and image-based
textures. This limits analytical antialiasing to scenes consisting of textured
polygons with simple lighting. More realistic graphics require non-analytical
approaches to antialiasing, most of which are based on oversampling combined
with numerical evaluation of the prefilter in Eq. (2.11). Antialiasing based
on oversampling is extremely general since it doesn’t make any assumptions
about the scene content, such as whether it is composed of triangles, what the
lighting model is, or what the lens or camera parameters are. It only requires
that the scene can be sampled by evaluating the image function I at arbitrary
positions.

Oversampling implies that we take more samples than there are pixels in
the final image. As a final step we therefore need to perform resampling, which
translates the original samples S to the final pixel grid P . Resampling can be
decomposed into three separate steps, shown schematically in Figure 2.4:

1. Reconstruction interpolates the initial samples S to form the recon-
structed image Ir.

2. Lowpass filtering removes frequencies that cannot be represented by final
sampling pattern.

3. Downsampling evaluates the filtered image at the new sample posi-
tions P .

The third step is usually trivial, but reconstruction and lowpass filtering must
be chosen carefully to obtain good antialiasing results.

This means that there are now two separate sampling steps, and there-
fore two possible sources of aliasing. Mitchell and Netravali [1988] proposed
the terms prealiasing and postaliasing for aliasing that is introduced during
the oversampling and the downsampling steps respectively. The amount of
postaliasing depends primarily on the quality of the reconstruction and low-
pass filters and can be controlled relatively well. Prealiasing, however, orig-
inates in the oversampling step and can (only!) be influenced by the initial
sampling pattern. Since we are primarily interested in the sampling step, we
will ignore postaliasing in this thesis and use the terms prealiasing and aliasing
interchangeably.
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Original
Image I

Sampled
Image Is

Reconstructed
Image Ir

Filtered
Image If

Final
Pixels If [n]

0. Oversampling

1. Reconstruction

2. Lowpass Filter

3. Downsampling

Resampling

Figure 2.4: Resampling consists of three main steps: reconstruction, filtering, and the
actual resampling step.

2.4.1 Regular Oversampling

In the simplest form of oversampling, the samples are positioned on a regular
grid. Conceptually, regular oversampling is the same as rendering a high-
resolution image without antialiasing first, and then downsampling this image
to the output resolution. Regular oversampling directly affects the Nyquist
frequency νc of the sampling grid. To double νc, we also have to double
the vertical and horizontal sampling rates, so the cost of oversampling grows
quadratically with the bandwidth of the image being sampled. For this reason
oversampling is often more expensive than specialized antialiasing techniques.

One advantage of regular oversampling is that resampling to the final pix-
els is straightforward. Let Ts and Tp denote the sample spacings of the over-
sampling grid S and the pixel grid P . Both the reconstruction and lowpass
filter steps from Figure 2.4 can be performed by convolving with differently
scaled sinc functions. Following Eq. (2.8), the sinc for reconstruction is scaled
according to the original sample spacing

Ir(x) = Is ? sincTs(x),

but the sinc used for lowpass filtering is scaled according to sample distance
Tp of the target grid

If (x) = Ir ? sincTp(x)

Both filter operations can be combined into a single convolution with the wider
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sinc, so we finally obtain

If (x) = Is ? (sincTs(x) ? sincTp(x))

= Is ? sincmax(Tp,Tp)(x)

= Is ? sincTp(x).

(2.12)

The last step follows only if we are oversampling, which implies that the
original samples are more finely spaced, i.e., Tp ≥ Ts.

The final pixels are obtained by evaluating Eq. (2.12) at the pixel posi-
tions P . In practice, the convolution reduces to a sum since the sampled
signal Is is non-zero only at the positions of the original samples S and the
sinc function is replaced by a kernel with finite support. This is the standard
resampling process used in signal and image processing applications [Thévenaz
et al., 2000].

Regular oversampling is simple and well-understood, but it is rarely used in
graphics. Since the frequency content of most images isn’t known beforehand,
there is always a risk that the chosen sampling rate is too low and the rendered
image contains aliasing. The most visually distracting form of aliasing in
graphics is the moiré pattern (Figure 2.5). Dealing with moiré patterns is
non-trivial due to the way they are perceived by the human visual system,
which especially sensitive to low-frequency signals and structured patterns.
In practice, even low-contrast moiré patterns are easily visible, as can be seen
in Figure 2.5. For this reason, simply increasing the sampling rate is often not
the most effective way to combat moiré patterns.

2.4.2 Irregular Oversampling

The standard approach to dealing with moiré patterns in graphics is irregular
sampling, which exploits the fact that moiré patterns result from the interac-
tion of periodic image features with a periodic sampling pattern. By sampling
with an irregular sampling pattern, the structured moiré patterns are replaced
with unstructured noise. The details of this process are described in the next
chapter.

One direct consequence of irregular sampling is that the reconstruction
process must be modified. A simple convolution such as

If (x) = Is ? sincTp(x) (2.13)

performs badly in the case of irregular samples since the nonuniform sam-
ple density leads to a nonuniform intensity distribution in the reconstructed
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1 spp 2 spp

4 spp 8 spp

Figure 2.5: Moiré patterns remain distracting even as we increase the sampling rate.
On a computer screen, structured patterns are still clearly visible at 8 spp.

image. The standard reconstruction method used in graphics includes an ad-
ditional normalization term to remove the influence of the non-uniform sample
density [Dippé and Wold, 1985]:

If (x) =
Is ? sincTp(x)

S ? sincTp(x)
(2.14)

The denominator is basically a density map of the sample points. It is easy
to see that this normalization ensures that if the original signal I is constant,
the final image If will be constant as well.

Dividing by the normalization term in Eq. (2.14) means that the recon-
struction step is no longer equivalent to a simple low-pass filter, and can no
longer be analyzed using standard Fourier theory. For theoretical investiga-
tions, it is therefore customary in graphics to ignore the normalization step and
assume that reconstruction is performed using a convolution as in Eq. (2.13)
[Mitchell, 1991]. Although this means that our mathematical model of recon-
struction is not entirely correct and will usually make pessimistic predictions,



2.5. BLUE NOISE SAMPLING 21

it is still possible to derive important insights about the influence of sampling
patterns.

Resampling from irregular samples is still an active area of research, and
better mathematical and algorithmic reconstruction methods have been pro-
posed in the literature [Gröchenig, 1992]. So far, these reconstruction methods
have not found their way into computer graphics; this is an important open
question, which we discuss in some more detail in the conclusion.

Eq. (2.14) can be rewritten in the following form which is easier to imple-
ment

If (x) =
1

N(x)

∑
xi∈S

r(x− xi)I(xi), N(x) =
∑
xi∈S

r(x− xi). (2.15)

Here, we have replaced the sinc function with a general reconstruction kernel r.
This reformulation shows that it is possible to compute If (x) for fixed x
incrementally by accumulating the effect of each sample xi. This is important
because it means that it is not necessary to keep all samples I(xi) in memory.

Irregular sampling is widely used in graphics, primarily because it effec-
tively prevents moiré patterns. There are several disadvantages that have to
be kept in mind, however:

• Irregular sampling patterns are less efficient, i.e., a higher sampling rate
is required to obtain the same image quality.

• Most irregular sampling patterns are more expensive to compute, which
makes them less suitable for real-time applications.

• Theoretical analysis is more difficult since the results from classical sam-
pling theory rely on regular samples and don’t generalize easily. Defining
how a good irregular sampling pattern should look like is therefore a sig-
nificant challenge.

2.5 Blue Noise Sampling

The ability of irregular sampling patterns to suppress moiré artifacts was first
observed by Yellot [1983], who studied the spatial distribution of receptor
cells on the retina of monkeys and humans. Close to the fovea, the receptors
are arranged on a closely packed hexagonal grid and aliasing is prevented by
optical blurring in the eye [Williams, 1985]. In the periphery of the retina,
however, the receptor density decreases, so we would expect aliasing to become
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Figure 2.6: Spatial arrangement of extrafoveal receptors in monkey eyes (left) and
their spectrum (right). Source: [Yellot, 1983].

an issue. But the receptor distribution in the periphery is not only more
sparse but also irregular (Figure 2.6). Yellot argued that this irregularity is
responsible for preventing strong aliasing effects in human vision.

The distribution of these outer receptors isn’t completely random since the
size of the cells imposes a constraint on their minimum separation. Mathe-
matically, this can be modeled as a Poisson disk pattern, which is a random
arrangement of non-overlapping disks with a prescribed radius R. Obviously,
two points in such a distribution cannot be closer than 2R. Poisson disk pat-
terns have a characteristic shape in the Fourier domain, consisting of a single
peak at the origin surrounded by an empty low-frequency region. The remain-
ing energy is smoothly distributed in the high-frequency region, as shown in
Figure 2.6

Around 1985, the idea of suppressing aliasing using irregular sampling,
and in particular Poisson disk sampling, was picked up in the graphics com-
munity [Dippé and Wold, 1985, Cook, 1986]. The original focus was on ray
tracing and the ability of irregular sampling patterns to mask aliasing effects,
but Ulichney [1988] observed that halftoning benefits from the same kind of
irregularity (Figure 2.7). Ulichney’s introduced the term blue noise for spectra
that are zero in the low-frequency region. Today, such blue noise patterns have
found application in many other areas of computer graphics such as stippling
[Deussen et al., 2000, Secord, 2002], general object distribution [Hiller et al.,
2003, Lagae and Dutré, 2005], and improved photon mapping [Spencer and
Jones, 2009].

For a long time, Poisson disk patterns were the only known point dis-
tributions with a blue noise spectrum, and the two terms were used almost
interchangeably. The first algorithm for constructing Poisson disk patterns
with a given disk radius R was proposed by Cook [1986]. This “dart throw-
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Figure 2.7: Ulichney’s original characterization of blue noise [Ulichney, 1988]. Note
that this profile is purely empirical: for example no justification for the small peak in
the transition region is given.

ing” approach incrementally constructs the point set by generating random
candidate points that are accepted if their distance to all existing points is at
least R and are rejected otherwise.

The performance of dart throwing depends directly on the rejection rate, so
the algorithm becomes significantly slower as more and more points are added.
Most attempts to speed up dart throwing do so by employing various data
structures to reduce the rejection rate [Jones, 2006, Dunbar and Humphreys,
2006, White et al., 2007, Gamito and Maddock, 2009, Kalantari and Sen,
2011]. Several alternative approaches to speed up dart throwing have been
proposed, such as parallelization [Wei, 2008] and dynamically adjusting the
Poisson disk radius [McCool and Fiume, 1992].

Even with these improved algorithms, constructing large Poisson-disk pat-
terns often remains too costly for real-time applications. To speed up the
creation of large point sets, tiling methods can be used to put together large
patterns from a set of small patterns. Several different kinds of tilings have
been used, such as Wang tilings [Cohen et al., 2003], Penrose tilings [Os-
tromoukhov et al., 2004] and corner tiles [Lagae and Dutré, 2005, Schlömer,
2012]. In addition, tile-based methods have been extended to non-uniform
sample densities [Ostromoukhov et al., 2004, Kopf et al., 2006].

McCool and Fiume [1992] were the first to use Lloyd’s method [Lloyd, 1982]
to improve the spatial distribution of dart throwing points to distribute them
more evenly in the plane. Lloyd’s methods iteratively moves each point to the
centroid of its associated Voronoi region, which slowly spreads out the points.
The main problem with Lloyd’s method is that it converges towards regular
point sets. Attempts have been made to stop Lloyd’s algorithm prematurely
before regular patterns are formed (McCool and Fiume used 10 iterations for
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their experiments), but so far no reliable stopping criterion has been found
that guarantees uniform point distributions but also prevents regular patterns.

Researchers have therefore tried to devise alternatives to Lloyd’s algorithm.
Balzer et al. [2009] propose a modification of the usual Lloyd iteration that uses
power diagrams instead of Voronoi diagram to compute the centroids. These
diagrams are endowed with the additional property that all cells have the
same capacity (area). Like Lloyd’s methods, the algorithm leads to spatially
uniform point distributions, but the constraint on cell areas prevents conver-
gence to hexagonal arrangements. Unfortunately, the underlying algorithm
for constructing power diagrams is very slow since it requires discretization
of the underlying domain [Balzer and Heck, 2008]. Several algorithmic im-
provements to the original method have been proposed by Li et al. [2010], and
de Goes et al. [2012] present a new mathematical formulation for Balzer’s ap-
proach that avoids the discretization and thereby allows a much more efficient
numerical solution.

The main effect of Lloyd’s method is a relaxation: as the points are moved
to the centroid of the Voronoi regions, they spread out and move away from
each other. This is similar to the way a set of mutually repulsive particles
behaves. Two recent papers have used this analogy to generate uniform point
distributions. Fattal [2011] takes his inspiration from statistical mechanics
and defines an energy that depends on all particle positions and is minimal
if the points have maximal separation. This energy is then used to define a
Boltzmann distribution parametrized by a temperature parameter that con-
trols the amount of disorder in the system: A temperate T = 0 corresponds
to a hexagonal grid, and T = ∞ to a random distribution of points. The
paper then proposes an efficient Monte Carlo algorithm for drawing samples
from this distribution, where each sample corresponds to a set of points in the
plane. Schmaltz et al. [2010], on the other hand, model a set of points in the
plane as charged particles that move under the effect of electrostatic forces.
In this model, disorder is not introduced by a temperature parameter but by
defining a global force field that jitters the point positions. The algorithm
proposed in the paper evolves the point distribution to a stable equilibrium.

2.6 Discussion

Raster graphics and raster displays are one of the corner stones of modern
computer graphics, but their discrete nature means that image artifacts due
to aliasing can occur [Crow, 1977]. To this day, preventing or reducing aliasing
artifacts remains a lively research area.
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Research on specialized antialiasing algorithms has subsided in the last
years, primarily due to the difficulty of finding problems that allow analytical
prefiltering. The rise of highly parallel graphics processors, however, has made
several new antialiasing schemes such as morphological antialiasing possible
that would have been too expensive for normal CPUs.

Research on general antialiasing based on oversampling has primarily fo-
cused on blue noise sampling, which attempts to marry the advantages of
irregular sampling (its resilience to aliasing) and regular sampling (the clean
representation of low image frequencies). Most algorithms for constructing
blue noise sampling patterns are based on geometrical constraints that lead to
a uniform but irregular distribution of points in the plane. The spectral char-
acteristics, which actually underly the definition of blue noise, are usually only
considered as an afterthought. We will give a more precise definition of blue
noise in the next chapter and then study the relationship between geometrical
and spectral properties of sampling patterns in the following chapters.





Chapter 3

Fourier Analysis of Irregular
Sampling

The previous chapter motivated irregular sampling simply by noting that it
prevents moiré patterns when sampling regular periodic image features. In this
chapter, we explain this process in more detail by studying irregular sampling
in the frequency domain.

We start with a with the special case of periodic supersampling in Sec-
tion 3.1, which is a form of oversampling that is commonly used in graphics
hardware. We show that in this special case the effect of oversampling and
resampling can be described as a prefilter operation, and how the low-pass
characteristics of this filter depend on the spatial arrangement of the sample
points.

If the sampling pattern isn’t periodic, we describe the sampling process
using a more general formalism, namely by considering the interaction between
the power spectra of the original image I, the sampling pattern S, and the
sampled signal Is. We are particularly interested in the effect of the sampling
pattern S. The analysis is particularly simple if the power spectrum of S can
be expressed in closed form; this is the case for regular, stochastic and jittered
sampling. For other irregular sampling patterns it is only possible to study
how sampling affects individual frequency components. We therefore study
test signals with a fixed frequency to understand how other irregular sampling
patterns influence the sampled signal and affects the visual appearance of
aliasing. We use these insights to explain the effect of blue noise sampling in
detail.

Contributions: The analysis of periodic supersampling is a new result,
and we aren’t aware of any prior attempts to analyze this in the Fourier

27
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Figure 3.1: Three examples of periodic oversampling. A fixed sampling pattern
(shown on the left) is repeated periodically over the whole image plane. Each square
on the right-hand side corresponds to one pixel in the final output, and the size of
the points is proportional to the weight it is assigned during resampling.

domain. The relationship between the power spectra of the sampling pattern
and the sampled image is a standard result in the theory of random signals
but doesn’t seem to be widely known in the graphics community. We use this
relationship to extend the analysis of irregular sampling by Dippé and Wold
[1985] and Mitchell [1991] to non-constant images. The main contribution of
this chapter is the detailed discussion of the effect of the sampling pattern on
the visual appearance of aliasing, which was ignored in previous publications.
This chapter is partially based on [Heck et al., 2013].

3.1 Periodic Oversampling

There is one case of irregular oversampling in which the whole processing
pipeline including resampling can be analyzed in the Fourier domain. In many
applications of oversampling in real-time graphics, a fixed arrangement of
samples is used for each pixel and replicated over the whole image plane (see
Figure 3.1). We will refer to this as periodic oversampling.

In this section we use a slightly different notation than in the remainder
of this chapter. Instead of considering the sampling patterns as a single set
S = {xi} of points distributed in the image plane, we group all samples that
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affect a pixel at position n together into one set {xk,n}. The coordinates
xk,n measure the sample positions relative to the pixel center. For example,
the following image shows the relative coordinates of the Quincunx sampling
pattern that consists of five samples for each pixel.

x0 = (0, 0)

x2 = (0.5, 0.5)(−0.5, 0.5) = x1

(−0.5,−0.5) = x3 x4 = (0.5,−0.5)

For the moment, we still allow arbitrary irregular sampling patterns, so the
relative sample positions xk,n can depends on the pixel n.

With this notation for the samples, we can write each pixel in the final
image If [n] as a weighted sum of the samples in its neighborhood

I[n] = If (n) =
∑
k∈N

wk,nI(n+ xk,n). (3.1)

It can be seen that this is simply a rearrangement of Eq. (2.15) in which we
have subsumed the effect of the reconstruction filter r(x) and the normaliza-
tion N(x) into a set of reconstruction weights wk,n. For convenience, the sum
extends over all k ∈ N; we assume that the weights wk,n are non-zero only for
a finite number of samples. Again, the subscript n emphasizes that weights
and sample positions can change from pixel to pixel. In real-time graphics,
the combination of sample positions and weights is sometimes referred to as a
supersampling pattern.

For each pixel n, Eq. (3.1) averages close-by samples—its local action is
therefore comparable to that of a low-pass filter. In fact, it is possible to write
I[n] as a convolution of the original signal I with a suitable filter hn followed
by point-sampling at the pixel center:

I[n] = hn ? I(n) = [hn ? I(x)]x=n . (3.2)

As we will prove below, the impulse response hn of the filter is a superposition
of scaled Diracs

hn(x) =
∑
k∈Z

wk,nδ(x+ xk,n). (3.3)
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This formulation of resampling is valid for all possible sample weights and
sample positions, even if the points xk,n are distributed irregularly. We can
interpret each hn as a local prefilter in the neighborhood of pixel n.

The proof that Eqs. (3.2) and (3.3) are equivalent to Eq. (3.1) is a straight-
forward calculation. We write out the convolution to obtain

hn ? I(n) =

[∫
R2

hn(u)I(x− u) du

]
x=n

=

[∑
k∈Z

wk,n

∫
R2

δ(u+ xk,n)I(x− u) du

]
x=n

=

[∑
k∈Z

wk,nI(x+ xk,n)

]
x=n

= I[n].

(3.4)

The last line elucidates why the combination of sampling and weighted aver-
aging of the samples is shift-invariant even though point sampling in general
is not: in the last line the positions xk,n no longer determine the positions at
which I is evaluated but the distance by which copies of I are shifted in the
weighted superposition. The only sampling operation takes place afterwards
and evaluates this superposition at the pixel center n.

In principle, each pixel n can have a different filter hn. This is the case,
for example, when stochastic sampling is used. Each filter tells us how the
image function I is filtered, but only in the neighborhood of the corresponding
pixel. To study the global influence of oversampling we would like to describe
its effect on the image as a whole. In the general case of arbitrary irregular
sampling patterns this doesn’t seem to be possible, but for periodic sampling
patterns there is a simple, intuitive relationship between the input image, the
supersampling pattern, and the final image.

Periodic supersampling uses the same set of sample positions xk and
weights wk for each pixel. In this case we can drop the index n from all
formulas and obtain

If [n] = h ? I(n), with h(x) =
∑
k

wkδ(x+ xk). (3.5)

What this means is that the total effect of oversampling and weighted averag-
ing can be described as a global prefilter h that is applied to the input image
If (x) = h ? I(x), followed by sampling at the pixel coordinates n. In the
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Fourier domain, Eq. (3.5) can be written as

Îf (ν) = ĥ(ν)Î(ν), ĥ(ν) =
∑
k

wke
+2πiν·xk .

When dealing with images, we are primarily interested in the attenuation of
the signal, so we consider the modulus of Îf

|Îf (ν)| = M(ν) · |Î(ν)|, M(ν) = |ĥ(ν)|

The function M(ν) is the modulation transfer function (MTF) and depends
only on the sample positions and sample weights. Ideally, we would like M to
attenuate all frequencies above the Nyquist frequency νc of the pixel grid.

3.1.1 Visualization of Supersampling Patterns

Over the years, a large number of fixed supersampling patterns have been
proposed, especially for antialiasing in real-time rendering [Akenine-Möller
et al., 2008]. The results from the previous section can be used to visualize the
effect of those sampling patterns in the Fourier domain. In previous studies on
periodic oversampling, the behavior of different sampling patterns could only
be described in terms of their geometric arrangement [Goss and Wu, 1999,
Beets and Barron, 2000], so the frequency viewpoint is a welcome alternative.

The main results are shown in Figures 3.2 and 3.3. The first column shows
the impulse response, the pattern’s name, as well as the average number of
samples per pixel n and the number of samples used in the weighted sum m. In
most cases, increasing n is more costly than increasing m since it determines
how often the image function I must be evaluated. For this reason, hardware-
based oversampling schemes often place samples on the edge between pixels
so that they can be efficiently shared; the best-known example of this strategy
is the Quincunx pattern [NVIDIA, 2001].

The second column shows a 2D representation of the filter’s MTF. The
displayed frequency range is [−4νc, 4νc] along both axes. The red square in
the middle marks the Nyquist region of the pixel grid, the other squares are
those regions of the frequency domain that are folded into the Nyquist region
by the sampling operation.

In the third column we show the result of resampling the well-known Bar-
bara image from its native resolution of 512× 512 pixels to 128× 128 pixels.
The original image and its Fourier transform are shown in the first row. This
is a common test image in image processing since the patterns on trousers,
headscarf, and tablecloth easily lead to strong moiré artifacts. Since we shrink
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Barbara test image
(right)

and its Fourier
transform.

No Oversampling
n = 1
m = 1

Lanczos-2
n = 16
m = 289

Quincunx
n = 2
m = 5

Figure 3.2: Visualization of the frequency behavior of several common 2D supersam-
pling patterns. Continued in Fig. 3.3.
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4x OGSS
n = 4
m = 4

Laine-Aila P(1,1,4)
n = 4
m = 4

9x OGSS
n = 4
m = 9

9x OGSS (weighted)
n = 4
m = 9

Figure 3.3: Visualization of the frequency behavior of several common 2D supersam-
pling patterns.
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the image by a factor of 4 in both directions, we know that there are no fre-
quencies outside [−4νc, 4νc]. Since the stripes are predominantly vertical and
diagonal, the image’s Fourier transform contains a lot of energy in the blocks
to the left and right and diagonal from the Nyquist region. We therefore ex-
pect supersampling patterns that don’t attenuate these regions to cause visible
moiré artifacts.

The worst result is obtained when using no supersampling at all, as shown
in the second row. As expected, this results in strong moiré artifacts and jag-
gies. In contrast, almost optimal results are obtained by using a large number
of samples per pixel and weights derived from a Lanczos-2 filter (row 3). Since
we know that the highest frequency in the Barbara image is 4νc we have used
a sampling rate of n = 16 samples per pixel. The resulting supersampling
pattern suppresses aliasing in the Barbara image almost completely.

The last row in Figure 3.2 shows the so-called Quincunx pattern mentioned
earlier [NVIDIA, 2001]. It can be seen that it causes heavy moiré patterns.
The main selling point of the Quincunx pattern is that only two samples have
to be taken per pixel, since the three others can be shared with neighboring
pixels. This is an important aspect for hardware implementations.

The first two rows in Figure 3.3 compare two sampling patterns with 4 sam-
ples per pixel. The first is a simple regular grid with n = 2. Even though the
MTF shows a fair amount of energy outside of the Nyquist region, the results
are acceptable for the resampling task since the filter’s energy is concentrated
in areas where the spectral energy of the test image is low. The second sam-
pling pattern is one of the “optimal” sampling patterns determined by Laine
and Aila’s optimization approach [Laine and Aila, 2006]. The four samples
form a rotated square. Since the MTF is high in the squares diagonal from the
Nyquist region, heavy aliasing results for diagonal patterns, especially those
in the trousers.

In the last two rows we show two regular grid patterns; in real-time graph-
ics these are commonly referred to as ordered-grid supersampling (OGSS).
The two sampling patterns differ only in the weights wk: The first pattern
uses constant weights whereas the second pattern derives its weights from the
Lanczos-2 filter. The differences in the two examples are subtle, but the sec-
ond pattern yields sharper result and less aliasing for horizontal and vertical
patterns.
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3.2 Fourier Analysis of Irregular Sampling

We now turn to the more difficult problem of describing the sampling process
in the case of non-periodic, irregular sampling patterns. The mathematical
analysis of irregular sampling is more challenging since individual sampling
patterns cannot be expressed in closed form. It is possible, however, to to
study the overall effect of irregular sampling by averaging over whole classes of
sampling patterns. In graphics, this kind of analysis was pioneered by Yellot
[1983] and Mitchell [1991]. This section collects and explains the relevant
mathematical concepts. Since we are not aware of a clear exposition of these
topics in the computer graphics literature, and since we will use the results
extensively in the remainder of this thesis, we have chosen a relatively detailed
exposition.

Similar to the description of regular sampling in Section 2.1, we can model
irregular sampling as multiplication of the image I(x) with the sampling pat-
tern S(x). To simplify the notation in the following, we will denote the sam-
pled image by J(x) instead of Is(x):

J(x) =
∑
i

I(xi)δ(x− xi) = I(x) · S(x). (3.6)

The sampling function S consists of Dirac peaks at the sample positions

S(x) =
∑
i

δ(x− xi) (3.7)

and replaces the sampling comb III(x) from regular sampling.

3.2.1 Power Spectrum of Sampled Signals

To understand the effect of irregular sampling on the frequency distribution,
we need to study the spectrum of the sampled image J . We model both
the image being sampled and the sampling pattern as infinite signals; in this
case, we can characterize the frequency content using the power spectra of
the involved signals. The mathematical definition of the power spectrum and
its most important properties are reviewed in Appendix A. Figure 3.4 shows
three common sampling patterns and their power spectra.

The power spectrum of the sampled image PJ is obtained by convolving
the power spectra of the sampling pattern PS and the original image PI :

PJ(ν) = PI ? PS(ν), (3.8)
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Regular grid Random Dart Throwing

Figure 3.4: (Top) Empirical power spectra for several common sampling patterns.
The random and dart throwing spectra were estimated from ten periodograms each.

provided the sampling pattern is statistically independent of the image I (see
Eq. (A.5)). This relationship is visualized in Figure 3.5. As we have indicated
in this figure, PJ always contains one copy of original spectrum PI at the
origin. The goal of the reconstruction process is to recover this copy by lowpass
filtering.

Mathematically, the central copy of PI is due to the non-zero mean of PS :
According to Eq. (A.6), the power spectrum of a signal with non-zero mean
can be written as

PX(ν) = |mX |2δ(ν) + P̌X(ν).

For a sampling pattern S, the mean mS is the expected number of samples
per unit area, i.e., the sampling density n. In this case, we therefore have
PS(ν) = n2δ(ν) + P̌S(ν). (Conversely, P̌S is the standard power spectrum
without the DC peak.)

This yields the main expression for the spectrum of a sampled signal as a
sum of two components:

PJ(ν) = n2PI(ν) + PI ? P̌S(ν) (3.9)

The first term, n2PI(ν), is simply a scaled copy of the original spectrum. This
term is independent of the actual sampling pattern and depends only on the
sample density n. The spatial arrangement of the sample points affects only
the second term PI ? P̌S(ν). Since this term reflects the distortion introduced
by sampling, we refer to it as the sampling error ε(ν)

ε(ν) =
1

n2
PI ? P̌S(ν). (3.10)
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Regular
Sampling

? =

Stochastic
Sampling

? =

Blue Noise
Sampling

PI PS PJ = PI ? PS

? =

Figure 3.5: The spectrum of the sampled signal PJ is obtained by convolving the
original spectrum PI with the spectrum of the sampling pattern PS . One copy of PI
is always placed at the origin, which is due to the first term in Eq. (3.9) Aliasing occurs
when the surrounding copies of PI overlap the central spectrum. The illustrated power
spectra are the same as in Figure 3.4.

(The 1/n2 term is a normalization factor which ensures that the magnitude of ε
is comparable to the magnitude of PI .) Note that ε(ν) is not an absolute error
but a function of frequency. We are primarily interested in the low-frequency
region of ε(ν) which measures the amount of aliasing that reaches into the
central copy of the image spectrum. Recovering PI from PJ by lowpass filtering
is only possible if PI and ε do not overlap; otherwise the resulting image
will contain aliasing. The functional shape of ε(ν) determines the spectral
composition of this aliasing. We will illustrate this in the following sections.
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3.2.2 Simple Sampling Patterns

We can derive and study the sampling error ε(ν) analytically if either the
sampled signal or the sampling pattern has a simple mathematical form. In
this section we discuss three cases in which PS can be expressed in closed form.

Regular Sampling In the case of regular sampling with spacing T , the
sampling pattern is S(x) = IIIT (x) and the corresponding power spectrum is
also a comb function

Pregular(ν) =
1

T 2T 2
III1/T (ν) = n2 III1/T (ν). (3.11)

This follows from the fact that the Fourier transform of IIIT is III1/T (see
[Mallat, 2009, Theorem 2.4] for a proof), and the relation n = 1/T 2 for the
sample density of a regular grid.

The sampling error therefore consists of replicates of PI placed at the
regular grid III1/T except at the origin

εregular(ν) =
∑

k∈Z2\{0}

PI(ν − k/T ) (3.12)

This is the first case illustrated in Figure 3.5: as long as the copies of PI do not
overlap, no aliasing can occur. This is exactly the case if the bandwidth of X
is less than 1/2T , which, of course, is simply the classical sampling theorem.

Note that all copies of PI have the same strength as the central copy,
so the strength of aliasing is comparable to the original signal. This is the
reason regular sampling is primarily useful in situations in which aliasing is
impossible or can be prevented by other means.

Stochastic Sampling If the sample positions S are chosen completely at
random, we are dealing with stochastic sampling, which was proposed for sam-
pling in graphics by Dippé and Wold [1985] and Cook [1986]. Mathematically,
stochastic sampling can be modeled as a Poisson process, whose autocorrela-
tion and power spectrum are given by

CPoisson(τ) = nδ(τ) + n2, PPoisson(ν) = n2δ(ν) + n. (3.13)

(See [Daley and Vere-Jones, 2002].) Combining this with Eq. (3.10) we obtain

ε(ν) =
1

n2
n ? PI(ν) =

1

n

∫
R2

PI(ν) dν =
PI
n
.
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The symbol PI denotes the total power of the image I. This tells us that the
sampling error is constant for all image frequencies, so the noise has white
noise characteristics—in other words, stochastic sampling adds a constant
“noise floor” to the sampled image. This is the main advantage of stochastic
sampling: since the sampling pattern has no structure at all, aliasing always
has the appearance of broadband noise, and moiré patterns cannot occur.

The primary disadvantage of stochastic sampling is that the sampling error
is non-zero for all frequencies, so even low image frequencies are contaminated
with noise. Perfect reconstruction therefore isn’t possible for any input signal
with reconstruction methods based on lowpass filtering.

A second disadvantage is the slow decrease of the sampling error as we
increase the sampling rate. Since ε(ν) measures the squared error, the absolute
error only decreases as 1/

√
n. (This is to be expected, since this is also the

convergence rate of Monte Carlo integration.) We therefore need four times
the number of samples to halve the error; in practice, this means that we
require an inordinate number of samples to get rid of all noise.

Jittered Sampling Jittered sampling derives its name from the process
used to construct the sampling pattern. The starting point is a regular sam-
pling pattern S = {xi}, the points of which are “jittered” by displacing them
by a random offset

x′i = xi +U ,

where U is a random variable with a certain distribution. In the most common
form of jittered sampling, U is chosen randomly from the square [−T/2, T/2)2.
This form of jittered sampling is also called stratified sampling, since it is
equivalent to subdividing the image plane into square “strata” of size T × T
and placing one random sampling point into each of them.

The power spectrum of a jittered sampling pattern can be written in closed
form [Dippé and Wold, 1985, Brémaud et al., 2005]

Pjitter(ν) = |P̂U (ν)|2PS(ν) + n
(
1− |P̂U (ν)|2

)
, (3.14)

where PU is the probability density of U and P̂U its Fourier transform. PS
denotes the spectrum of the original unjittered sampling pattern.

In the case of stratified sampling, the probability density of U is

PU (x) = n · rectT (x), P̂U (ν) = sinc1/T (ν),

and the first term in Eq. (3.14) simplifies to |P̂U (ν)|2PS(ν) = n2δ(ν) since for
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all ν 6= 0 one of the factors is always zero. We therefore have

Pstratified(ν) = n2δ(ν) + n
(
1− | sinc1/T (ν)|2

)
. (3.15)

For all ν 6= 0 we have Pstratified ≤ n = Pstochastic, which means that strat-
ified sampling is always at least as good as stochastic sampling. (Again, a
similar result is also known in the theory of Monte Carlo integration [Veach,
1997].) This guarantee, combined with the ease of constructing jittered sam-
pling patterns on the fly, is one of the main reasons for their continued popu-
larity in graphics.

3.3 Blue Noise Sampling

The previous section focused on examples of irregular sampling in which the
power spectrum of the sampling pattern PS could be expressed analytically.
In this section we study the converse situation in which the spectrum of the
image PI has a closed-form expression. This helps us to get a better under-
standing of blue noise sampling—in particular how the shape of the power
spectrum affects the visual appearance of aliasing. This section generalizes
results by Dippé and Wold [1985] who primarily studied the effect of irregular
sampling on constant signals.

3.3.1 Irregular Sampling of Constants

In some cases the image spectrum can be written in closed form. The simplest
example is a constant image with average power α:

Iconst(x) = α, Pconst(ν) = α2δ(ν)

In this case, the sampling error evaluates to

ε(ν) =
α2

n2
P̌S ? δ(ν) =

α2

n2
P̌S(ν). (3.16)

In other words: For constant functions, the sampling error is proportional to
the power spectrum of the sampling pattern. This is the “flat field response”
studied by Dippé and Wold [1985].

If the sampling pattern has a blue noise spectrum, like the dart throwing
pattern in Figure 3.4, the sampling error is concentrated in high frequencies,
whereas the low-frequency region of the sampled signal is clean. This observa-
tion is the source of the widely held misconception that “blue noise sampling
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shifts aliasing into the high frequencies”. While this is true in the case of
constant images, we will see in the next section that low-frequency aliasing is
very well possible for certain signals, even when using an irregular sampling
pattern.

3.3.2 Irregular Sampling of Sinusoidals

A second, more general class of signals that can be expressed in closed form
are plane waves of the form

If (x) = α · cos(2πf · x). (3.17)

(For f = 0 we obtain the constant signals from the previous example.) Study-
ing signals of this shape is especially interesting since they are periodic, so they
help us understand how moiré patterns occur and how they are influenced by
the power spectrum of the sampling pattern.

The power spectrum corresponding to such an image If is

Pf (ν) =
α2

4

(
δ(ν − f) + δ(ν + f)

)
(3.18)

and the sampling error ε follows directly from Eqs. (3.10) and (3.17)

εf (ν) =
α2

4n2

(
P̌S(ν − f) + P̌S(ν + f)

)
. (3.19)

This equation tells us that the distortion due to sampling is proportional to the
sum of two shifted copies of P̌S , the power spectrum of the sampling pattern.
The spectral distribution of the sampling error ε depends on the way the two
copies of P̌S overlap.

3.3.3 Blue Noise Sampling

What this means in practice is illustrated in Figure 3.6. The first column
shows the spectrum of the signal Pf for different frequencies f , which consists
of two Dirac peaks at distance 2f . We focus on the results shown in the last
column, which illustrates how the sampling error of a blue noise sampling
pattern varies with the signal frequency f . We have assumed an idealized
blue noise spectrum as in Figure 3.5 with a zero-region, a broad peak at the
transition (the black ring), and a constant level in high frequencies.

For f = 0 and f = 0.1, the low-frequency region remains empty, so the
sampled signal can be reconstructed exactly using a lowpass filter. For f = 0.3
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the non-zero parts of PS start overlapping the original spectrum, which will
manifest as high-frequency noise in the resampled image. The least favorable
results are obtained for f = 0.5: The peaks in the power spectrum PS overlap
close to the origin, which results in low-frequency noise. Above f = 0.7, the
sampling error has the appearance of broadband noise.

To visualize the appearance of low-frequency noise at certain image fre-
quencies, we sample the so-called zone plate using different blue noise sampling
patterns. The zone plate is a synthetic image Izone(x) which oscillates more
rapidly as |x| increases

Izone(x) =
1

2

(
cos(|x|2) + 1

)
. (3.20)

In fact, the local frequency of Izone is proportional to x, so aliasing artifacts
in the zone plate can be easily related to spectral properties of the sampling
pattern.

If we could prefilter this signal correctly before sampling, the high-frequency
region would appear as flat gray. Without perfect filtering, the best we can
hope for is white, unstructured noise in the high frequencies. Instead, as can
be seen in Figure 3.7, peaks in the power spectrum PS result in low-frequency
noise with a random, “blotchy” appearance. Even though this low-frequency
noise does not form regular geometric patterns as moiré artifacts do, its low
frequency and high contrast make it undesirable for the same reasons.

The above observations about the influence of PS when sampling a periodic
signal with frequency f can be summarized as follows:

• If PS(ν) is flat in the neighborhood of f , the error εf is also flat around
the origin, i.e., the sampling error is rendered as broadband or white
noise.

• If PS(ν) has a peak around f , copies of this peak overlap at the origin
of εf . The width of this peak then determines the appearance of this
aliasing: A broad peak leads to broadband noise, whereas a narrow peak
produces low-frequency aliasing that appears as structured noise. The
height of the peak determines the variance and therefore the visibility
of the aliasing.

3.3.4 Measuring Blue Noise

We have discussed in the previous section how the shape of the power spectrum
influences the spectral distribution of the sampled image. Blue noise patterns
therefore aim to achieve a good tradeoff between the following demands:
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f = 0

f = 0.1

f = 0.3

f = 0.5

f = 0.7

Signal Pf Regular Sampling Stochastic S. Blue Noise S.

Figure 3.6: Illustration of the sampling error ε(ν) when sampling sinusoidals of differ-
ent frequencies f . The first column shows the spectrum of the signal which consists
of two Dirac peaks (red and blue) at distance 2f . The remaining columns illustrate
the sampling error for different sampling patterns. (Regular Sampling) The sampling
error consists of Dirac peaks distributed in the frequency plane; aliasing appears at
discrete frequencies, which can lead to moiré patterns. (Stochastic Sampling) The
sampling error is independent of the signal frequency and always appears as a con-
stant layer of white noise. (Blue Noise Sampling) For low signal frequencies, an
aliasing-free low frequency region remains. At f = 0.5, aliasing takes the form of
low-frequency noise since the rings of the spectrum overlap near the origin.
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Figure 3.7: A bird’s eye view of a sampled zone plate reveals low-frequency aliasing
for blue noise patterns that have peaks in their power spectrum. Ideally, we would
like to turn all aliasing into featureless white noise. Instead, high and narrow peaks
in the spectrum lead to high-contrast, structured noise, not unlike the moiré patterns
of regular sampling.
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• The low-frequency region of PS should contain as little energy as possible
so that low image frequencies can be sampled without aliasing. Obvi-
ously, this region should also be as wide as possible to allow error-free
reconstruction for wide range of frequencies.

• The high-frequency region of PS should be flat so that high image fre-
quencies are mapped to broadband noise. Peaks in the high-frequency
region should be as flat and as wide as possible to prevent high-contrast,
low-frequency aliasing in the sampled image.

In this section we introduce two numerical measures that characterize the
shape of the power spectrum: the effective Nyquist frequency νeff measures
the size of the zero region and indicates the range of frequencies that can be
represented with almost no aliasing and the oscillation Ω measures the amount
of oscillation in the power spectrum, and therefore the risk of low-frequency,
structured aliasing.

In the theory of uniform sampling, the range of frequencies that can be
reconstructed without aliasing is given by the Nyquist frequency νc = 1/2T ,
where T is the sample spacing. This direct relationship between sample dis-
tances and frequencies that can be reconstructed unfortunately breaks down
for non-uniform sampling. As an alternative, we define the equivalent of the
Nyquist frequency directly in the frequency domain. Figure 3.8 illustrates the
definition of the effective Nyquist frequency νeff. The visualization of blue noise
sampling in Figure 3.8 (a) suggests that the range of aliasing-free frequencies
roughly equals half the radius of the zero-region in the power spectrum.

Actually measuring this radius is not quite as easy as the illustration sug-
gests because we are dealing with stochastic sampling patterns, and the spec-
trum is therefore never exactly zero. We therefore define the effective Nyquist
frequency as follows. We consider the average energy in the power spectrum
up to a certain frequency ν

Pavg(ν) =
1

πν2

∫
|ν′|<ν

P (ν ′) dν ′

and define the effective Nyquist frequency νeff as the largest frequency so that
Pavg(2νeff) stays below a given threshold

νeff = max{ν : Pavg(2ν) ≤ Eτ}. (3.21)

Ideally, we would like to set Eτ = 0 to determine which frequencies can be rep-
resented without any aliasing, but this is impractical since stochastic sampling
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Figure 3.8: (a) The spectrum of the sampled signal PJ is obtained by convolving
the original spectrum with the spectrum of the sampling pattern. Aliasing occurs
when the replicated spectra PI overlap the central spectrum on the right-hand side.
(b) The effective Nyquist frequency is a measure for the size of the zero region in the
power spectrum. It is chosen so that 2νeff roughly corresponds to the radius of the
circle representing PS in (a).

patterns always introduce some noise into the low-frequency region. Our refer-
ence for choosing Eτ is dart throwing, which has more noise in low-frequency
region than other blue noise patterns. We chose Eτ = 0.1, which is the lowest
threshold for which dart throwing with a dart throwing radius of dmin = 0.75
(see Section 4.1.1) consistently yields a non-zero value for νeff.

To measure the amount of oscillation of the power spectrum, we use the
standard deviation of P (ν) from the 1-level

Ω = 10

(
1

|R|

∫
R
|P (ν)− 1|2 dν

)1/2

.

Here, R is the integration domain and |R| its area. We exclude the zero-region
of the power spectrum by integrating over the ring R = {ν : ν0 ≤ |ν| ≤ ν1}.
The inner radius ν0 is the lowest frequency for which P (ν0) = 1; the outer
radius ν1 = ν0 + 10νhex is chosen to cover approximately the first 10 peaks in
the power spectrum.

The effective Nyquist frequency is similar to the conventional Nyquist fre-
quency in the sense that frequencies below νeff can be sampled and recon-
structed with little error. Frequencies above νeff, on the other hand, are re-
placed by aliasing. In this case, the magnitude of Ω determines whether this
aliasing is, on average, closer to white noise (Ω small) or colored noise (Ω
large).

Table 3.1 lists the values of νeff and Ω for several classes of sampling pat-
terns used in graphics. It is obvious that a larger zero region (high νeff)



3.4. DISCUSSION 47

Method νeff Ω davg

Random 0 0.05 0.47

Jittered Grid 0.24 0.06 0.59

Dart Throwing 0.58 1.52 0.80

Kernel Density 0.88 2.14 0.86

CCCVT Centroids 0.89 2.34 0.88

El. Halftoning 0.89 2.49 0.88

Regular grid 0.95 14.77 0.93

CVT Centroids 0.98 5.35 0.94

Hexagonal grid 1.01 12.38 0.99

Table 3.1: The effective Nyquist frequency and oscillation for a selection of common
sampling patterns in graphics. For reference, we have also included davg, the average
distance from a point to its nearest neighbor. Compare also the detailed information
in Appendix B.

correlates with more oscillation in the high-frequency region. This interde-
pendence was sometimes referred to as the noise-aliasing tradeoff Dippé and
Wold [1985], Glassner [1995]. Note that practical values for νeff are slightly
larger than theoretical values due to the tolerance introduced by Eτ . The
practical limit for irregular sampling patterns seems to be around νeff ≈ 0.9.
Note also that for the patterns listed in this table, the effective Nyquist fre-
quencies increases as we increase the spacing between the points, which we
measure using davg, the average nearest-neighbor distance. This observation
is the starting point for our study of Poisson disk sampling in the following
chapter.

3.4 Discussion

The way in which the sampling pattern affects the visual appearance of alias-
ing is easy to describe using the power spectrum, but the details of the analysis
aren’t widely understood in graphics—despite the fact that the main formu-
las, namely Eqs. (3.8) and (3.9), were already used in one of the earliest
publications on irregular sampling in graphics [Dippé and Wold, 1985]. The
most common misunderstanding, which is repeated by almost every paper on
blue noise sampling published during the last years, is that blue noise sam-
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pling replaces aliasing with high-frequency noise.1 In reality, the goal of blue
noise sampling is to replace aliasing with broadband noise while keeping low
frequencies as clean as possible. This improves the perceived image qual-
ity in undersampled images since broadband noise is visually more neutral
than low-frequency artifacts. Compared to stochastic sampling, blue noise
sampling guarantees the correct reconstruction of low frequencies. This is
particular relevant for natural images, which are dominated by low-frequency
content [Burton and Moorhead, 1987].

Obviously, the perfect blue noise sampling pattern would have an extremely
wide zero region and be completely flat in the high-frequency region. This
would guarantee that the sampling error is zero for low frequencies and fea-
tureless white noise for high frequencies. How close can we get to this ideal?
We will discuss this problem in detail in Chapter 5, where we will see that
such step-like power spectra are in fact realizable, but their zero region is
noticeably smaller than that of conventional blue noise patterns. So some os-
cillation in the power spectrum seems to be unavoidable if we want to increase
the effective Nyquist frequency above a certain limit, but the details aren’t
understood so far.

.

1If this were the case, then removing all aliasing would be a simple matter of low-pass
filtering the sampled signal!



Chapter 4

Irregular Sampling with
Maximized Spacing

As we have seen in Table 3.1, a wide separation of the sample points corre-
lates with better blue noise properties in the sense that the effective Nyquist
frequency becomes higher. But what happens if we spread out the points even
further? Is this even possible?

For a long time, this question could not be answered due to the practical
difficulty of generating irregular point distributions with a high separation.
The few methods that were capable of spreading out the points efficiently,
like Lloyd’s method, also converged towards regular patterns. This is not a
coincidence: the most efficient packing of disks in the plane is a hexagonal grid,
and it is difficult to formulate optimization schemes that consistently converge
towards the “suboptimal” results that are desirable for irregular sampling. All
the methods that achieve davg > 0.8 in Table 3.1 are recent optimization
methods that designed to retain some irregularity in the final point set [Balzer
et al., 2009, Fattal, 2011, Schmaltz et al., 2010].

Contributions: In this chapter we present a new optimization scheme that
spreads out point in the plane without converging towards regular arrange-
ments. The resulting point sets achieve extremely high nearest-neighbor dis-
tances, but in contrast to other methods the results remain irregular and
isotropic. We analyze the spectral behavior of the resulting point sets to study
their suitability for sampling applications. Even though they are isotropic and
therefore show no rotatinoal order, it turns out that the strong constraint on
the minimal distance leads to a noticeable translational order, which can lead
to visible aliasing artifacts. This chapter is based on [Schlömer et al., 2011].

49
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4.1 Geometric Measures of Uniformity

The key to constructing blue noise patterns geometrically is finding geometric
properties of point distributions that correlate with a blue noise spectrum.
Most research has focused on the empirical observation that the following two
properties usually yield a blue noise spectrum:

1. Uniformity. The points are distributed uniformly in the sense that sam-
ple density is approximately equal everywhere.

2. Irregularity. The point set has little translational or rotational symme-
tries. This also implies isotropy.

These conditions also make intuitive sense for sampling applications: Unifor-
mity implies a good coverage of the sampling domain, and irregularity prevents
moiré patterns in the sampled image. It is important note that there is no
one-to-one correspondence between the above geometrical criteria and good
sampling properties, as we will see in this chapter and the next. In most
algorithms for constructing sampling patterns, uniformity is the primary con-
straint, and irregularity is introduced by some form of randomization.

As a simple characterization of uniform, well-distributed points, we de-
mand that the point set contains neither clusters (regions where points clump
up) nor holes (regions that are empty). This section discusses two simple but
widespread geometric measures to quantify this idea of uniformity.

4.1.1 Nearest-Neighbor Distance

The simplest and most common measures for the uniformity of point sets are
based on the pairwise distance between points. Given a set of points S, the
nearest-neighbor distance (NND) of any point x ∈ S is the Euclidean distance
to its nearest neighbor in S. We denote this distance by dmin(x):

dmin(x) = min
x′∈S
|x− x′| (4.1)

We can derive two summary statistics from the NND:

dmin = min
x∈S

dmin(x), davg = E[dmin(x)]. (4.2)

We call dmin the global NND because it measures the minimal separation
between any two points in S and davg the average NND because it measures
the expected distance from a point to its nearest neighbor.
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Since the nearest-neighbor distance depends on the density of points n, it
is customary to normalize it as follows

dmin(x) =
minx′∈S |x− x′|

dhex
, dhex =

(√
3/2n

)1/2
. (4.3)

The normalization factor dhex denotes the spacing in a hexagonal lattice at
point density n, so we always have 0 ≤ dmin ≤ davg ≤ 1.

The NND has a long history as a measure for characterizing point distri-
butions, both in graphics and outside [Clark and Evans, 1954]; it is also a
common measure for point distributions used in quasi-Monte-Carlo integra-
tion [Grünschloß et al., 2008]. In graphics, an irregular point set with NND
dmin corresponds to a Poisson disk pattern with radius R = dmin/2: if any two
points are at least dmin apart, disks of radius R placed at the points cannot
overlap and vice versa.

By prescribing a minimum distance dmin on a set of points, we impose a
certain level of uniformity on the point set since we prevent groups of points
from clustering up. Point sets with dmin < 0.8 are relatively easy to generate,
and even rejection sampling (the well-known “dart throwing” approach) works
very well. Higher values of dmin are considerably more difficult to achieve and
often require optimization approaches or iterative algorithms. For a long time,
the only known point sets with dmin > 0.85 suffered from regularity artifacts
since they were based on optimization methods that converge to hexagonal
structures. Lagae and Dutré [2008] even conjectured that this is a necessary
consequence of a high NND and recommended the range 0.65 ≤ dmin ≤ 0.8 for
obtaining a good tradeoff between irregularity and uniformity. We will return
to this conjecture later in this chapter.

For comparing different point distributions, the average NND davg is a
more useful quantity than dmin since it isn’t affected by individual outliers. In
general, davg measures how well the points in S are spread out. If davg is low,
the points are clustered and the local point density fluctuates; if davg is high,
the points are spread out and the point density is more homogeneous.

4.1.2 Coverage Radius

In addition to the absence of point clusters, we also expect uniform distribu-
tions to have no “holes”. One measure to quantify the largest hole in a point
distribution is the coverage radius [Mitchell et al., 2012].

If we are given a point set S and place a disk of radius r on every point
x ∈ S, the coverage radius is the smallest r so that the disks cover the whole
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domain, i.e.,
Rc = min{r : R2 ⊂ ∪x∈SDr(x)}, (4.4)

where Dr(x) denotes a disk of radius r centered at x. Obviously, the cov-
erage radius grows with the largest hole in the point set. Like the NND, we
normalize Rc to the point density by dividing by dhex.

The coverage radius is easy to calculate using the Voronoi diagram of S.
For each point x ∈ S, the Voronoi cell Vx consists of all points that are closer to
x than to any other point. To cover Vx completely with the smallest possible
disk Dr(x) centered at x, the radius r must be set to the largest distance from
x to the corners of Vx. This is the local coverage radius. Since the Voronoi
partitions the plane, the global coverage radius Rc is the maximum of all local
radii.

There is an interesting alternative interpretation of the coverage radius
that we will return to later in this chapter. The largest empty circle of S is
the largest circle that does not contain any point from S. The center of this
largest empty circle is also called the farthest point of S, and its radius is equal
to the coverage radius Rc, since any set of disks with a smaller radius would,
by definition, not cover the farthest point.

A few algorithms for generating blue noise patterns have been proposed
that take the coverage radius into account.

The farthest point strategy by Eldar et al. [1997] is an efficient, non-iterative
technique for generating Poisson disk patterns. Given a few randomly dis-
tributed seed points, Eldar’s algorithm deterministically adds new points to
a given set by inserting them at the farthest point of the current points. The
algorithm we will propose in the next section extends this idea.

Gamito and Maddock [2009] and Ebeida et al. [2011, 2012] consider a
related problem. Their goal is to construct maximal Poisson disk patterns.
The constructed point set is a Poisson disk pattern with a prescribed ra-
dius R = dmin/2, and it is maximal in the sense that no additional point can
be added to the set without violating the Poisson disk criterion. In other
words, in a maximal Poisson disk pattern the largest empty circle must have a
diameter smaller than R, or Rc < dmin. (As can be seen in Table 4.2, several
sampling patterns proposed in graphics are maximal in this sense, although
this is rarely formally proven.) The relationship between the coverage radius,
the nearest-neighbor distance and the farthest point is illustrated in Figure 4.1.
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Rc
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f

Figure 4.1: Illustration of the coverage radius. The square cannot be covered with
smaller disks because this would leave the farthest point f uncovered. In this case,
it is obvious that Rc < dmin, so the point distribution is maximal.

4.2 Farthest-Point Optimization

This section presents a novel algorithm for generating Poisson disk patterns
which we call farthest point optimization (FPO). Our algorithms builds on
the farthest point strategy mentioned in the previous section, but instead of
inserting new points at the position of the farthest point, we iteratively move
existing points to the farthest point. We will see that this produces irregular
point sets with an extremely high NND that are also maximal.

4.2.1 Main Algorithm

The main idea behind our algorithm is to iteratively increase the spacing of
a given point set. Each step takes a single point from a set of points X and
attempts to move it to a new position that is as far away from the remaining
points as possible, i.e., the farthest point. One full iteration consists of moving
each point in X once. As we will see, this iteration scheme converges, and
each full iteration increases davg.

Geometrically, the farthest point fY of a set of points Y is the center of the
largest circle that can be placed in the domain under consideration without
covering any of the points in Y . This largest empty circle can be computed
efficiently using the Delaunay triangulationD(Y ): it corresponds to the largest
circumcircle of the triangles in D(Y ). An equivalent formulation in terms of
the Voronoi diagram of Y was used by Eldar et al. [1997].

In our case, to move a point x, we need to inspect the Delaunay triangula-
tion (DT) of the remaining points X\{x}. Instead of calculating the full DT
for each point x, we build a full DT once and update it dynamically during the
iteration: before we move x, we remove it from the DT, inspect the remaining
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Farthest-Point-Optimization(X)

1 D = Delaunay(X)
2 repeat
3 foreach vertex x in D
4 (f, rmax) = (x, dmin(x))
5 Delaunay-Remove(D, x)
6 foreach t in D
7 (c, r) = center and radius of t’s circumcircle
8 if r > rmax

9 (f, rmax) = (c, r)
10 Delaunay-Insert(D, f)
11 until converged
12 return vertices of D

Figure 4.2: A naive implementation of farthest point optimization.

triangles to find the farthest point f , and finally reinsert f as a new point into
the DT. The full algorithm can be formulated as shown in Figure 4.2.

We make sure that a point is only moved to a new position if its new local
NND, namely rmax, would be larger than its old local NND dmin(x); otherwise,
we simply reinsert it at its old position.

Figure 4.3 illustrates how the method successively distributes five points
X = {x1, . . . , x5} in the unit torus. Panels 1a and 1b show how the target po-
sition for the first point x1 is chosen: we search for the triangle in D(X\{x1})
that has the largest circumcircle and move x1 to the circle’s center. The dis-
tance map in the background indicates that this is indeed the farthest point.
We proceed in the same way for x2, . . . , x5, as shown in the remaining panels.
A few intermediate steps during the optimization of a larger set consisting of
1024 points are shown in Figure 4.4.

4.2.2 Runtime Complexity

To derive the runtime complexity of Farthest-Point-Optimization, we
consider one full iteration through the inner loop. We denote the average
degree of a point (i.e., its average number of neighbors in the Delaunay trian-
gulation) by g and the number of points by n := |X|. The runtime of lines
4–10 can now be broken down as follows:
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Figure 4.3: Geometrical illustration of one full iteration applied to 5 points in the unit
torus. Each point is successively moved to the center of the largest empty circle of
the remaining points. The grayscale image in the background represents the distance
map of X\{xi} and reflects the toroidal metric. The dotted circle is the largest
empty circle, and the highlighted triangle the corresponding face in the Delaunay
triangulation of X\{xi}.

dmin=0.009,
davg=0.469

input

dmin=0.049,
davg=0.645

1/4 iteration

dmin=0.079,
davg=0.756

1/2 iteration

dmin=0.772,
davg=0.865

1 iteration

dmin=0.814,
davg=0.905

2 iterations

dmin=0.925,
davg=0.932

63 iterations

dmin=0.929,
davg=0.932

419 iterations

Figure 4.4: Farthest-point optimization of a random point set with 1024 points. Both
the global minimum distance dmin and the average minimum distance davg increase
rapidly using our optimization technique. After only one iteration the point set is
already well-distributed.
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4: O(g) since we have to inspect the Delaunay neighbors of x to determine
dmin(x).

5: between O(g) and O(g2), depending on the algorithm used [Devillers,
2002].

6–9: O(n) since there are O(n) triangles in D(X).

10: O(g) if we already know the triangle that contains the point; otherwise,
between O(

√
n) and O(log n), depending on the algorithm used to locate

the triangle [Devroye et al., 2004].

We assume that g = O(1) which is true or conjectured to be true for large
classes of well-distributed point sets [Erickson, 2005]. In this case, the overall
runtime is O(n) for a single movement and O(n2) for a full iteration of the
inner loop.

Two algorithmic improvements allow us to reduce the runtime to approx-
imately O(n log n) per full iteration.

First, we can speed up the process of inserting the farthest point f into
the triangulation (line 10). The farthest point f is the circumcenter of the
triangle t corresponding to the largest empty circle. In practice, f almost
always lies inside t, and since we already know t from lines 6–9, the farthest
point can usually be inserted in constant time. The fact that f tends to
lie inside t follows from a general property of Delaunay triangulations: they
maximize the number of acute triangles in the triangulation [Fortune, 1995],
and the circumcenter of acute triangles always lies inside the triangle itself.

Second, we can speed up the search for the farthest point in lines 6–9 by
using a binary search tree to keep track of the largest empty circle. This lets us
find the farthest point in O(log n), but increases the time required for lines 5
and 10 also to O(log n) since structural changes to the Delaunay triangulation
must be reflected in the tree. Taken together, this means that the running
time is dominated by the tree operations, and the time required for a full
iteration is O(n log n).

4.2.3 Convergence

It is easy to see that this farthest-point optimization always converges and
yields arrangements with a high average NND. The key observation is that
moving a point x to the farthest point ofX\{x} never decreases dmin(x). In the
worst case, no better position can be found and x remains at its old position.
Because davg ∝

∑
x dmin(x), the average NND must increase during a full
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iteration, so the optimization can never return to a previous point distribution
or get stuck in cyclic configurations. We stop the iteration as soon as the
increase of davg falls below a threshold ε, i.e., as soon as d new

avg − d old
avg < ε; this

must happen eventually since davg is bounded for points in the unit torus.
Convergence is fast enough that we can use the machine precision for ε.

Only the average nearest-neighbor distance is guaranteed to increase—for
dmin we can only be sure that it is non-decreasing. In fact, it is possible to
construct point sets that remain mostly stable for several iterations (a regular
grid with a few defects, for example). In this case, dmin may also remain
constant. But dmin is strictly increasing as long as all points are still moving.
For randomly distributed point sets we found this to be always the case.

4.2.4 Variants

The algorithm presented in the previous section works well, but it has a few
disadvantages:

• The final O(n log n) algorithm from the previous section is efficient, but
since two interacting data structures (the Delaunay triangulation and
the tree for the empty circles) must be updated dynamically and kept
in sync, its implementation is non-trivial.

• If the points are already well distributed, the algorithm works harder
than necessary to find the farthest point; we will see that the search can
often be simplified radically.

• The algorithm relies on the Delaunay triangulation as its data structure.
Since the Delaunay triangulation depends on all point positions, its use
is problematic when attempting to parallelize the algorithm.

In the following, we will address these three problems with two different vari-
ants of the main algorithm.

Local FPO

The variant discussed in this section builds on the naive O(n2) algorithm
shown in Figure 4.2, but uses a simple heuristic to speed up the search for the
farthest point to O(1). Instead of searching for the largest empty circle when
moving a point x, we contend ourselves with finding a large empty circle in the
neighborhood of x. In other words, instead of checking the circumcircle of all
triangles in D(X\{x}), we restrict the search to a neighborhood of triangles
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x

flocal

Figure 4.5: A local variant of the FPO can be obtained by moving a point x to local
instead of the global farthest point. This can be done by searching for the largest
empty circle in the neighborhood of x.

T ⊂ D(X\{x}) that is in some sense “close” to x. If the expected size of T is
independent of n, each point can be moved in O(1).

There are many possible strategies for choosing the neighborhood T . In
our experience, the choice of T does not influence the quality of the resulting
point sets, only the number of iterations required to distribute the points.
Here, we discuss only one strategy that has proven to be a good compromise
between iteration and convergence speed: we include in T all triangles that
are incident with the neighbors of x in D(X) (see Figure 4.5). Since there are
O(g2) such triangles, moving a single point can indeed be done in constant
time. We will refer to this variant as local FPO, in contrast to the global FPO
from Section 4.2.1.

Since our discussion of convergence from Section 4.2.3 only relied on the
fact that the dmin(x) doesn’t decrease for any point x, it remains valid in the
case of the local FPO. But since points aren’t moved to the largest empty circle
anymore, davg increases more slowly. Nevertheless, both methods converge
towards point sets that are indistinguishable. In fact, once the points are
sufficiently well distributed, local and global FPO are equivalent, since the
farthest point of X\{x} is almost always located inside the hole that resulted
from removing x.

This suggests a hybrid algorithm that uses the global O(n log n) algorithm
for the first few iterations and then switches to the more efficient O(n) algo-
rithm for the remainder of the optimization. In practice, this has turned out
to be the fastest variant of farthest point optimization.
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Constrained FPO

The second variant of the original farthest-point optimization tackles the prob-
lem of parallelization. We only briefly sketch the main idea and refer to the
original paper [Chen and Gotsman, 2012] for details.

Chen and Gotsman propose an algorithm they call constrained farthest
point optimization (CFPO). Similar to the local FPO discussed in the previous
section, it speeds up the search for the farthest point. In the case of CFPO,
the plane is subdivided into small squares, and the search for the farthest
point of X\{x} is restricted to blocks of 3× 3 squares in the neighborhood of
x. The authors prove that if certain conditions on the initial distribution of
the points X are fulfilled, the farthest point of X\{x} always lies inside this
3× 3 block, and that this procedure will converge similar to the original FPO
and the local FPO. No global Delaunay triangulation is needed since a local
triangulation can be computed on-the-fly for each block.

The main advantage of this approach is that non-overlapping blocks can
be processed in parallel, so substantial performance improvements over the
original sequential algorithm are possible. Since it only affects the performance
but not the final results, we won’t discuss constrained FPO further in this
thesis.

4.3 Evaluation

In this section we empirically study the main properties of the proposed op-
timization scheme and the point sets it generates. We discuss two different
aspects: first, the overall runtime and speed of convergence; and second, the
geometrical and spectral properties of the resulting point sets.

4.3.1 Convergence and Runtime

We implemented the global and local FPO using the dynamic Delaunay trian-
gulations from CGAL [CGAL], which we extended to handle toroidal bound-
ary conditions. Despite their iterative nature, both algorithms are reasonably
fast. For 4096 points, one iteration takes an average of 39 ms for the global
FPO and 25 ms for the local FPO. Performance measurements were obtained
using a single core of a Xeon processor with 2.8 GHz. Starting with a random
point distribution, the full optimization until dmin ≥ 0.925 takes on average
4.7 s (122 iterations) using the global FPO and 8.8 s using the local FPO (348
iterations).
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Method dmin = 0.75 0.775 0.8 0.825 0.85 0.875 0.9 0.925

[Lloyd, 1982] 70 113 425* - - - - -
[Balzer et al., 2009] 111 357* - - - - - -
Local FPO 3 4 6 8 14 27 64 352
Global FPO 1 2 2 3 4 6 13 118

davg = 0.75 0.775 0.8 0.825 0.85 0.875 0.9 0.925

[Lloyd, 1982] 2 3 4 5 8 13 29 122
[Balzer et al., 2009] 2 2 2 4 10 50 414* -
Local FPO 1 1 1 1 1 2 3 10
Global FPO 1 1 1 1 1 2 2 6

Table 4.1: Number of iterations needed to achieve a certain NND dmin (top) and
average NND davg (bottom). The results are averaged values from optimizing 10 sets
of 4096 random points. (*) indicates that the prescribed NND could not always be
achieved.

If the original points are randomly distributed, farthest-point optimization
converges towards distributions with dmin ≈ 0.93. Since convergence becomes
slower as we approach the maximum, we have found it useful to stop the
iteration earlier. In our experience, a threshold of dmin = 0.925 is a good
compromise between high-quality results and reasonable computation times.

The convergence speed of the global and local FPO variants is compared
in Figure 4.6. Both dmin and davg increase rapidly at first and then converge
more slowly towards a maximum around 0.932. The achieved maximum isn’t
the same for each point set but consistently lies between 0.93 and 0.933. For
both algorithms, the three curves for davg (dashed lines) lie almost on top
of each other. This means that convergence of davg is mostly independent of
the number of points, which underlines how effectively FPO distributes the
points. The convergence of the dmin (solid lines) depends more strongly on
the input size, especially for the local FPO.

Finally, Table 4.1 compares the number of iterations required to obtain
well-distributed point sets with Lloyd’s method and the algorithm by Balzer
et al. It is obvious that both FPO variants are far more effective than the
other methods at spreading out the points: a handful of iterations are typi-
cally sufficient to obtain point sets with very high Poisson disk radii. These
improvements are even more significant considering that state-of-the-art tech-
niques [Balzer et al., 2009, Schmaltz et al., 2010] require O(n2) per iteration.

Influence of Initialization In all of our experiments, we started with a
random distribution of points. Of course, one obvious question is whether we
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Figure 4.6: Average convergence of dmin (solid lines) and davg (dashed lines) for
random sets of 512, 4096, and 32768 points, from left to right. The right column
magnifies the region 0.75 ≤ dmin ≤ 0.95.

can improve the convergence rate by choosing a better initialization such as
a Poisson disk or jittered grid pattern. Overall, we have not found this to
noticeably improve the runtime. Even though a better initialization would
allow us to start at a higher average NND, say davg ≈ 0.9, we see in Figure 4.6
that this would shave off only a handful of iterations from the total runtime,
since most of the time is spent at davg > 0.9. Since the FPO is so efficient at
redistributing the points, there is hardly a penalty for starting with a random
initialization.

Even though most input point sets converge towards irregular arrange-
ments, some stable configurations are regular, such as the following three:
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Sampling Pattern dmin davg Rc Notes Page

Stochastic Sampling 0.01 0.47 1.73 p. 107
Jittered Grid 0.05 0.59 1.08 p. 108
Dart throwing 0.77 0.81 1.07 p. 109
Best Candidate / Farthest Point Strat. 0.75 0.84 0.76 p. 110
Kernel Density 0.43 0.86 0.78 I p. 111
Electrostatic Halftoning (% = 0.002) 0.74 0.88 0.77 I p. 112
CCCVT Centroids 0.75 0.90 0.74 I p. 113
Farthest-Point Optimization 0.93 0.93 0.86 I p. 118

Low discrepancy 0.90 0.92 0.66 R p. 115
Lloyd’s method 0.80 0.94 0.67 I, R p. 114
Rectangular grid 0.93 0.93 0.66 R p. 116
Hexagonal grid 1.00 1.00 0.58 R p. 117

Table 4.2: Geometric measures of uniformity for common irregular sampling patterns.
The patterns are sorted by increasing values of davg, the expected nearest-neighbor dis-
tance. The sampling patterns are presented in more detail in Appendix B.

When removing a point x from any of these patterns, the largest empty cir-
cle in the remaining point set has its center precisely at x, so moving single
points leaves the point set unchanged. If there are defects in the regular ar-
rangements, however, FPO quickly breaks up the regularity. In this sense,
FPO doesn’t actively randomize its input, but it amplifies irregularities; this
intuitively explains why the algorithm doesn’t converge towards regular ar-
rangements.

4.3.2 Geometric Properties

How do point distributions constructed with FPO behave with respect to the
two measures of uniformity we introduced in Section 4.1, the nearest-neighbor
distance and the coverage radius?
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Nearest Neighbor Distance The most obvious feature of point sets gen-
erated using FPO is that they have a very high nearest-neighbor distance: as
shown in Table 4.2, both dmin and davg are often significantly higher than with
previous algorithms for generating Poisson disk patterns.

The classical non-iterative method for generating Poisson-disk patterns is
the dart throwing algorithm proposed by Cook [1986]. With dart throwing
and related methods, the best NND we can achieve is around dmin ≈ 0.75.
The farthest point strategy [Eldar et al., 1997], which is the non-iterative al-
gorithms on which FPO is based, also produces results around dmin ≈ 0.75.
The main limitation of non-iterative algorithms seems to be their inability to
undo previous suboptimal decisions.

Do iterative methods fare better? Several iterative methods for construct-
ing blue noise patterns have been proposed in recent years, in particular Fat-
tal’s kernel density method [2011], electrostatic halftoning by Schmaltz et al.
[2010] and CCCVT by Balzer et al. [2009]. It can be seen in Table 4.2 that
these methods consistently produce higher davg than non-iterative methods for
generating blue noise patterns. The global NND dmin, however, is comparable
to dart throwing.

The only sampling patterns that consistently achieve higher values for
dmin and davg than FPO are regular grid or semi-regular point distributions
like low-discrepancy sequences or the result of Lloyd’s method. But due the
regular patterns that occur in the final distributions, these are not as resilient
to aliasing.

Coverage Radius The second spatial statistic we are interested in is the
coverage radius Rc. As can be seen in Table 4.2, for FPO we obtain an
average value of Rc = 0.86. We always have Rc < dmin, so FPO point sets are
maximal. Nevertheless, compared to other iterative construction algorithms,
the coverage radius of FPO is relatively high. The effect can actually be seen
when visualizing the resulting point distributions: Figure 4.7 demonstrates
that FPO has a tendency to arrange points in such a way that small holes
form that are surrounded by a ring of points. The appearance of these holes
is somewhat surprising: Since the FPO algorithm moves points to the largest
empty region, we would expect the coverage radius to decrease during the
optimization.

The existence of these holes does not seem to have a significant impact on
other spatial and spectral properties of the point sets, however. We exper-
imented with different ways to avoid the holes during construction or plug-
ging them afterwards. This makes it possible to reduce the coverage radius to
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Figure 4.7: Point sets generated by FPO have a slightly non-uniform appearance due
to the existence of small “holes” in the point set. These holes have almost no influence
on the geometric and spectral properties of the point set, however.

Rc ≈ 0.76 without affecting other statistics except for dmin, which goes slightly
down to 0.9. The small holes in FPO point sets may be visually conspicuous,
but they have little impact on the statistical and spectral behavior of the point
set.

4.3.3 Spectral Properties

Figure 4.8 shows the standard spectral measures—power spectrum, radially
averaged power spectrum, and anisotropy—based on ten FPO point sets with
4096 points (for each set dmin ≈ 0.93). We compare the results to pure dart
throwing (dmin ≈ 0.77).

We see in Figure 4.8 that there is almost no energy around the origin and
no discernible anisotropy for FPO points. In the introduction to this chapter
we mentioned the conjecture by Lagae and Dutré [2008] that for dmin > 0.85
point sets become anisotropic. The point sets generated by FPO demonstrate
that this is not the case, and that isotropic point sets are possible at least
up to dmin ≈ 0.932. It is not clear whether this bound can be improved even
further.

The effective Nyquist frequency of FPO is approximately νeff ≈ 0.9, which
is slightly higher than that of other irregular sampling patterns (cf. Table 3.1.
This wide zero-region around the origin is what we hoped for, since prior
experience suggested that a high Poisson disk radius leads to a wider and
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Figure 4.8: Common spectral measures for point sets generated by pure dart throw-
ing (left) and our optimization method (right). Both of our algorithms consistently
converge towards anisotropic point sets almost no energy around the origin of the
power spectrum.

cleaner zero region.

What is remarkable, however, is the strong increase of the oscillation of the
power spectrum: for FPO points we have Ω ≈ 4.6, which is almost twice as
high as other blue noise patterns with a high νeff. This is evident in Figure 4.8:
the peaks in the power spectrum of FPO are more pronounced than for dart
throwing and fall off much more slowly. In fact, the power spectrum falls off
more slowly than any other blue noise pattern we are aware of: traditional
blue noise patterns such as the dart throwing patterns have a single wide peak
after the zero region and a few small oscillations afterwards. For sampling
these peaks in the power spectrum are of course undesirable: As explained in
Chapter 3, each peak in the spectrum can introduce low-frequency noise into
the sampled image.

4.4 Discussion

This chapter discussed a new iterative algorithm for constructing Poisson disk
patterns which we call farthest point optimization. The algorithm is geometri-
cally intuitive and fairly efficient, in particular compared to previous methods
for constructing Poisson disk patterns. The resulting point distributions are,
in a sense, the “perfect” Poisson disk patterns: they are completely isotropic,
but have a much higher Poisson disk radius than point sets achievable with
other algorithms. In the original publication on FPO [Schlömer et al., 2011]
we concluded as follows:

The main feature of the resulting point sets is that they are prac-
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tically optimal blue noise samples under the assumption that such
point sets should be both irregular and of high minimum distance.
This re-raises the question of ideal image plane sample points as
we suspect that it will be hard to increase the minimum distance
further without introducing regular structures.

In retrospect, it is easy to see the fallacy behind this statement: for sampling
applications the spectral and not the geometric properties are of primary im-
portance. As we have seen in this chapter, good Poisson disk properties do
not automatically translate into good blue noise properties. This was a silent
assumptions in previous research on blue noise which focused on increasing
the Poisson disk radius.

It is therefore important to clearly distinguish between “blue noise” and
“Poisson disk” patterns. This seems obvious, since blue noise refers to fre-
quency characteristics whereas Poisson disk is a spatial property, but for a
long time, it made sense to use the two terms interchangeably, primarily be-
cause Poisson disk patterns were the only way to construct point distributions
with a blue noise spectrum.

In a sense, FPO may mark the end of the long-going quest for higher
and higher Poisson disk radii. Enforcing a wide separation of sample points
was a heuristic that has served the graphics community well for many years,
but it is no guarantee for good sampling patterns. Better sampling patterns
in the future will therefore require either additional geometric constraints,
such as Balzer’s capacity constraints [Balzer et al., 2009], or a focus on the
spectral properties during construction. We will cover the latter approach in
the following chapter.



Chapter 5

Spectral Construction of Blue
Noise

The FPO algorithm presented in the previous chapter follows the standard
approach for constructing sampling patterns that has been pursued in graphics
over the last 30 years: some geometric insight or constraint is used to arrange
points in the plane, and afterwards, Fourier analysis is used to evaluate the
spectral properties of the point set. This approach to constructing blue noise
sampling patterns has three major disadvantages.

1. Finding geometric properties that correlate with a good blue noise spec-
trum and can be turned into efficient construction algorithms is highly
nontrivial.

2. The range of sampling patterns that can be studied in the first place is
limited by the geometric constraints we can come up with. For example,
basically all blue noise sampling patterns that have been constructed os-
cillate in the high-frequency region, but geometric considerations cannot
tell us whether this is necessary or merely a side effect of the construction
algorithm.

3. For image-plane sampling we are particularly interested in the power
spectrum of the resulting point set, but geometric methods give us no
direct control over this spectrum.

It would therefore be desirable to be able to “design” sampling patterns by
specifying their spectral properties and then deriving their spatial distribution
automatically. This is the topic of this chapter.

67
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Contributions. The key to linking the spectral and geometrical views of
sampling patterns lies in the mathematical relationship between the power
spectrum, which is defined in the Fourier domain, and the autocorrelation,
which is defined in the spatial domain. From a theoretical perspective, this
allows us to answer the question which power spectra can actually be realized
by point distributions. From a practical perspective, this leads to an iter-
ative algorithm for constructing point distributions matching a given power
spectrum.

We apply this algorithm to two different applications. First, we demon-
strate that it is possible to simulate other algorithms for generating blue noise
patterns simply by imitating their power spectrum, but without knowing any-
thing about the underlying geometric constraints. The second application is
to design new blue noise patterns with particular spectral behavior. To this
end we consider two classes of functions which are idealizations of typical blue
noise spectra. The spectrum of step blue noise is a step function, and we de-
termine the highest possible position of the step. The spectrum of single-peak
blue noise is similar to a step function, but has one single configurable peak
in the transition region. We show that both types of blue noise have favorable
sampling properties. This chapter is based on [Heck et al., 2013].

5.1 Autocorrelation and Pair Correlation

We explained the importance of the power spectrum for analyzing irregular
sampling in Chapter 3. Since the power spectrum is defined in the Fourier
domain, there is no simple geometric relationship between the point positions
and the spectrum. As a consequence, there is no way to influence the spectrum
directly, and no way to actually design sampling patterns with particular
spectral properties. This restriction has held back research on blue noise
for a long time.

The first step towards tackling this problem was made by Wei and Wang
[2011], who were looking for a geometric alternative to the power spectrum
that is more intuitive and easier to analyze. They observed that for a suffi-
ciently large sampling pattern S(x) =

∑
i δ(x − xi) in the unit square, the

power spectrum can be approximated by the so-called periodogram

PS(ν) ≈
∣∣F[S(x)

]∣∣2 =
∑
i

e−2πixi·ν
∑
j

e2πixj ·ν

=
∑
i,j

e−2πirij ·ν
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Here, rij = xi−xi denotes the distance vectors between two points xi and xj .
We can replace the sum with an integral by introducing a density function ρ(r)

PS(ν) =

∫
R2

ρ(r)e−2πir·ν dr

Written in this way, the power spectrum is basically the Fourier transform
of the function ρ(r), which measures distribution of distance vectors and was
therefore called the “differential distribution function” [Wei and Wang, 2011].

It turns out that this differential distribution function is actually a well-
known quantity, namely the autocorrelation function of the sampling pattern
CS(r). For general signals, the autocorrelation measures the self-similarity of
a signal under translation and is defined as

CX(r) = E
[
X(x)X(x+ r)

]
.

The most important property of the autocorrelation is that its Fourier trans-
form is equal to the power spectrum

PX(ν) = F
[
CX(r)

]
. (5.1)

The autocorrelation and its relation to the power spectrum are explained in
more detail in Appendix A. Figure 5.1 shows the autocorrelation compared to
the power spectrum for a few common sampling patterns; more examples can
be found in Appendix B.

Wei and Wang [2011] were primarily interested in using the autocorrelation
as an analysis tool, since CS(r) reflects both the radial and the translational
symmetry of a point set. Traditionally, the power spectrum has been used
to measure these two aspects of a point set [Ulichney, 1988], but using the
autocorrelation instead has several immediate advantages:

• It is easy to calculate, since it can be approximated by a 2D histogram
of pairwise distances. In particular, no Fourier transforms are necessary.

• It is easy to interpret, since it is a function of spatial distances, not
frequency.

• It can be generalized to non-Euclidean spaces, as long as a suitable
metric can be defined, so it allows the analysis of point distributions on
surfaces, for example.

• It is easy to influence by adjusting the relative positioning of points. For
the purposes of this chapter, this is the main advantage.
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(a) Jittered grid

(b) Dart Throwing

(c) Farthest Point Optimization

Figure 5.1: A few examples of autocorrelation functions of sampling patterns, com-
pared to their power spectra. (Left) Point set. (Center) Autocorrelation. (Right)
Power spectrum. A high (bright) value in the autocorrelation indicates a strong
correlation between two points at that distance. For dart throwing and FPO, for
example, there is a very strong, clean peak at the Poisson disk radius.
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Of course, the power spectrum remains crucial for interpreting the sampling
process, since the autocorrelation does not directly predict the amount and
appearance of aliasing.

For point distributions, it is common to use a quantity known as the pair
correlation function (PCF) instead of the autocorrelation [Illian et al., 2008].
It is closely related and defined as

g(r) =
1

n2
CX(r)− 1

n
δ(r). (5.2)

Basically, the PCF is a renormalized version of the autocorrelation with the
Dirac peak at the origin removed. The magnitude of g(r) measures the amount
of correlation between points at distance r: g(r) < 1 indicates a negative
correlation, g(r) > 1 a positive correlation and for g(r) = 1 there is no cor-
relation. The radius beyond which g(r) ≈ 1 measures the correlation length,
which can be thought of as the distance below which the points “interact”.
For irregular point sets g(r)→ 1 as r →∞ since the points are uncorrelated
at long distances.

5.1.1 Radial Distribution Function

We are primarily interested in isotropic point distributions to avoid directional
bias when sampling. For isotropic point distributions, the power spectrum,
the autocorrelation, and the pair correlation are radially symmetric, so

P (ν) = P (ν), CS(r) = CS(r), g(r) = g(r).

P (ν) is known as the radial power spectrum and g(r) the radial distribution
function. For isotropic point sets they obviously contain the same informa-
tion as their two-dimensional counterparts, but since they are one-dimensional
functions, they are often easier to handle mathematically. Lau et al. [2003]
used RDF diagrams to qualitatively illustrate the spatial distribution of points,
but we aren’t aware of other applications in computer graphics.

Just as the autocorrelation is related to the power spectrum by a Fourier
transform, the RDF g(r) is related to the radial power spectrum P (ν) by a
Hankel transform

P (ν) = 1 + nH[g(r)], g(r) =
1

n
H[P (ν)− 1]. (5.3)

(Compared to Chapter 3, this definition of the power spectrum differs by a
factor of 1/n.) The Hankel transform is the special case of a Fourier transform



72 CHAPTER 5. SPECTRAL CONSTRUCTION OF BLUE NOISE

0 2.0 4.0 6.0 8.0
0

1

2

3

4

5

rd
f

distance

Dart Throwing

0 2.0 4.0 6.0 8.0
0

1

2

3

4

5

rd
f

distance

CCCVT Centroids

0 2.0 4.0 6.0 8.0
0

1

2

3

4

5

rd
f

distance

FPO

0 2.0 4.0 6.0 8.0
0

1

2

3

4

5

rd
f

distance

CVT Centroids

Figure 5.2: Radial distribution functions for several blue noise patterns. The plots
have been obtained by averaging the RDFs of 10 realizations of each point set.

for radially symmetric functions; we will briefly discuss its main properties in
the next section. The RDF and its relation to the radial power spectrum will
be used extensively in the remainder of this chapter.

Figure 5.2 shows the RDFs of several different point distributions. Several
important properties can be read off directly from the RDF. The nearest-
neighbor distance, for example, is the radius at which the RDF becomes non-
zero, and the average NND corresponds roughly to the first peak in the RDF.

5.1.2 Hankel Transform

In Eq. (5.3) we used the Hankel transform H to describe the relationship
between the radial power spectrum and the radial distribution function. In
principle, the Hankel transform is the equivalent of a two-dimensional Fourier
transform of a spherically symmetric function f(r) = f(r, θ) [Bracewell, 1999].
If we rewrite the standard Fourier transform in polar coordinates, we obtain

F (u, φ) =

∫ ∞
0

rf(r)

∫ 2π

0
e−2πiru cos(θ−φ) dθ dr.
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Function Hankel Transform Notes

af(r) + bg(r) aF (u) + bG(u) Linearity

f(ar) a−2F (u/a) Scaling

disk(r) 2π jinc(2u) Unit disk

H(r − a) δ(u)/2πu− 2πa2 jinc(2ua) Step function

1 δ(u)/2πu Constant

Table 5.1: Common Hankel transform pairs used in the text.

The inner integral can be rewritten using the definition of the Bessel function

J0(a) =
1

2π

∫ 2π

0
e−ia cos θ dθ, (5.4)

which yields

F (u) = H[f(r)] = 2π

∫ ∞
0

rf(r)J0(2πru) dr. (5.5)

The right-hand side does not depend on φ, which implies that the Fourier
transform of a circularly symmetric function is also circularly symmetric. This
integral transform is the Hankel transform. The inverse Hankel transform is
identical to the forward transform, so

f(r) = H[F (u)] = 2π

∫ ∞
0

uF (u)J0(2πru) du.

The main properties of the Hankel transform follow from the properties
of the two-dimensional Fourier transform; we list the most important ones in
Table 5.1. The unit disk disk(r), the Heaviside step function H(r), and the
jinc function are defined as follows

disk(r) =

{
1 r ≤ 1

0 r > 1
, H(r) =

{
0 r ≤ 0

1 r > 0
, jinc(x) =

J1(x)

x
.

5.2 Spectrum Matching Algorithm

The standard approach to constructing sampling patterns is to specify the
desired geometric properties first, then construct a matching point distribu-
tion, and finally analyze the spectral behavior of the resulting point set. In
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this section we study how to reverse this process by specifying the desired tar-
get spectrum Pt, derive from this spectrum the required geometric constraints
and use these to construct a suitable point distribution. We do this by using
the relationship between the radial power spectrum and the radial distribu-
tion function from the previous section to translate the problem of matching
a target spectrum Pt to the problem of matching a target RDF gt. This is
significantly easier since the RDF is defined in the spatial domain and can
therefore be influenced directly by adjusting the relative positioning of the
points.

Similar algorithms have also been proposed by other researchers. Rintoul
and Torquato [1997] studied a similar problem to simulate the microstructure
of disordered materials in physics. Their algorithm is based on simulated an-
nealing, but we have found the convergence to be very slow and unreliable
for reasonably large point sets. Two recent papers by Zhou et al. [2012] and
Öztireli and Gross [2012] propose spectrum matching algorithms for computer
graphics. Because these papers were published while our work was still un-
der review, we haven’t been able to evaluate them in detail. We perform a
preliminary comparison with Zhou et al.’s algorithm in Section 5.4.4.

5.2.1 Main Algorithm

From an algorithmic point of view, our method is very similar to that of Zhou
et al.: Both algorithms synthesize point sets with a specified spectral behav-
ior by reformulating the problem in the spatial domain, and both iteratively
update the positions of all points by applying a force to each point

x′i = xi + h · F i, (5.6)

where h is a step size parameter and F i is a force that depends on the current
point positions. The main difference between both algorithms is how they
calculate the forces in Eq. (5.6): Zhou et al. propose a force based on gradient
descent, whereas ours is motivated geometrically.

Our algorithm works as follows. First, the “target” power spectrum Pt(ν)
is transformed into an equivalent RDF gt(r) by numerically evaluating the
Hankel transform; we will discuss this numerical integration in more detail in
the following section. Since both functions are one-dimensional, our approach
can only synthesize isotropic point sets.

The current point set is initialized with a random distribution of points.
To evolve the point set towards the target distribution, we let all points attract
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or repel each other using forces of the form

F i =
∑
j 6=i

f(|xi − xj |)
xi − xj
|xi − xj |2

. (5.7)

The function f(r) determines the strength of attraction or repulsion and is
defined as follows:

f(r) =

∫ r

0
g(x) dx︸ ︷︷ ︸
G(r)

−
∫ r

0
gt(x) dx︸ ︷︷ ︸
Gt(r)

. (5.8)

This choice of f can be motivated as follows: Since the RDF measures the
density of points at a certain distance, G(r) measures the average point density
in disks of radius r. For some fixed radius r0, G(r0) > Gt(r0) indicates that
the current point distribution contains more point pairs that are closer than r0

than the target distribution. In this case the point set as a whole has to spread
out and f(r0) should be repulsive to make room. Conversely, ifG(r0) < Gt(r0),
too many pairs have a distance greater than r0 and the points have to move
closer together; in this case, f(r0) should be attractive. In both cases, the
choice f(r) = G(r)−Gt(r) fulfills this condition.

In each iteration, we first calculate all the forces F i and then update the
positions according to Eq. (5.6). Moving the points can be easily parallelized
since we use a global force and because the new position of each point only
depends on the old position of all other points.

The main parameter during each iteration is the step size h, which is
chosen adaptively depending on the largest force as in Zhou et al. We use
an additional temperature parameter T to reduce the step size whenever the
optimization gets stuck

h = T
Fmax√
n
, Fmax = max

i
‖F i‖.

The
√
n term ensures that the step size is independent of the number of points.

To track the progress of the optimization, we use an energy

E = ‖g(r)− gt(r)‖2

that measures the difference between the current and the target RDF. The
optimization is considered stuck if E hasn’t decreased during the last 20 iter-
ations; in this case, the temperature is reduced by a constant factor α. The



76 CHAPTER 5. SPECTRAL CONSTRUCTION OF BLUE NOISE

choice of α is a tradeoff between accuracy (high value) or faster termination
(low value); we used a factor of α = 0.9 for our experiments. The algorithm
starts with T = 1 and terminates once the temperature has fallen below 10−3.

We assume that the points lie in the unit torus and calculate the RDF for
absolute distances in the interval [0, 0.5). Using smaller intervals can speed
up some of the computations by reducing the number of point pairs that must
be considered. This optimization was proposed by Wei and Wang [2011], but
we have found that it reduces the quality of the results for RDFs that decay
slowly. RDFs are approximated using histograms of pairwise distances, and
since the force f(r) is derived from the RDFs, we discretized it using the same
bin width. The number of bins is a tradeoff: large bins lower the resolution
of f(r) which limits the precision with which points can be moved, but small
bins lead to noisy RDF estimates which also leads to inaccurate results. In
our experiments, using as many bins as there are points nbins = n has proven
to be a good compromise.

Since a certain amount of noise is inevitable when estimating RDFs from
finite point sets, we optionally smooth the histograms using a Gaussian kernel.
There is no simple rule for choosing the optimal width σ of the Gaussian, since
this involves a tradeoff between reducing noise vs. keeping relevant information
in the RDF. In our experiments, good values for σ were between 0 and 16/nbins.
All of our results have been generated with σ = 8/nbins, and no parameters
had to be adjusted manually.

5.2.2 Numerical Hankel Transform

The original formulation of the relationship between power spectrum and RDF
in Eq. (5.3) aimed for mathematical simplicity

P (ν) = 1 + nH[g(r)], (5.9)

but for numerical computations, a different notation is preferable. Since
g(r) → 1 as r → ∞, the Hankel transform becomes easier to evaluate if
we rewrite Eq. (5.3) as

P (ν) = 1 + nH
[
g(r)− 1 + 1

]
= 1 + nH

[
g(r)− 1

]
+ n

δ(ν)

2πν
. (5.10)

The main advantage of this notation is that g(r) − 1 vanishes as r → ∞, so
the integral underlying the Hankel transform can be evaluated more easily.
Incidentally, this representation also emphasizes the main components of a
typical power spectrum, namely the DC peak at ν = 0 and the oscillation
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around 1, which is due to the Hankel transform of g(r)− 1.

We can compute the radial power spectrum numerically by integrating
g(r)− 1 over a finite interval [0, r1)

P (ν) = 1 + 2πn

∫ r1

0
r
[
g(r)− 1

]
J0(2πrν) dr + n

δ(ν)

2πν
.

There are two remaining problems with this formulation. The first is that we
are effectively cutting off g(r)− 1 at the upper limit of the integral r1, which
can lead to Gibbs artifacts in the calculated P (ν). To solve this problem, we
use a window function to smoothly reduce g(r)− 1 to zero:

P (ν) = 1 + 2π

∫ r1

0

[
g(r)− 1

]
J0(2πrν)w(r) dr + n

δ(ν)

2πν
.

We have used a standard Blackman window of width r1 for w(r).

The final issue is that g(r) is usually obtained from a histogram of pairwise
point distances, which is necessarily noisy. For high values of ν this is not
problematic: The Bessel function J0 oscillates quickly, so the effect of noise
in the data averages out. For low frequencies ν, however, the noise leads
to systematic errors. We solve this problem by integrating over a smoothed
version of g(r) for low frequencies.

The preceding observations applied to calculating the power spectrum from
the RDF, but the same ideas are also valid for the inverse transformation which
computes g(r) from P (ν).

5.2.3 Simulating Blue Noise Construction Methods

The simplest way to obtain realizable power spectra is to derive them from
known point distributions. Even though this is a trivial solution, it is an
interesting one, since there is a wide range of blue noise distributions we can
use as a model and simulate. It also allows us to compare the results of our
algorithm to the original point sets.

A few examples from this approach are shown in Figures 5.3 and 5.4. In all
examples we compare the original point distribution to the simulated result.
It is obvious that the RDFs and power spectra of the simulated distributions
are very similar. The main difference is that sharp features in the RDFs are
smoothed out during the optimization process, which is most obvious in the
case of dart throwing and Lloyd’s method.

The general shape of the power spectra is retained, however. This is in-
teresting and somewhat unexpected, especially in the case of CCCVT and
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Lloyd’s method. As we explained in Section 2.5, both methods involve a fairly
sophisticated geometric construction, so it is not at all obvious that the re-
sulting point distributions can also be constructed—at least to a reasonable
accuracy—from summary statistics like the RDF or power spectrum alone.
This illustrates that P (ν) and g(r) contain a lot of information about the
overall distribution of points.

It is worth noting that specifying P (ν) or g(r) generally does not uniquely
determine the resulting point distributions. This is illustrated by the result for
jittering in Figure 5.3, in which the simulated point sets are spectrally indis-
tinguishable but are visually distinct: the simulated points show a tendency
to arrange in short strings, whereas the original points are distributed more
uniformly. In this case, the RDF/spectrum puts only a mild constraint on the
overall distribution of points. The fact that the RDF doesn’t always uniquely
characterize the distribution of points was already observed by Rintoul and
Torquato [1997].

5.3 Designing Low-Oscillation Blue Noise

The algorithm discussed in the previous section assumes that we already know
the target spectrum Pt(ν). It turns out, however, that finding suitable spectra
itself is a challenging problem. The main difficulty is that not all spectra are
realizable by point distributions.

In this section we first discuss two necessary conditions which describe
when a power spectrum is realizable. We then consider two ways to design
“new” power spectra for blue noise sampling. We specifically aim to design
power spectra with a low amount of oscillation in the high-frequency region
while keeping the zero region as wide as possible. We do this by explicitly con-
structing the desired power spectra in functional form and then constructing
point sets matching these spectra. We consider two classes of blue noise spec-
tra: step blue noise has the shape of a step function, whereas single-peak blue
noise contains an additional peak at in the transition region but is otherwise
flat. We will see how the realizability conditions lead to a tradeoff between
the size of the zero-region in the spectrum and the amount of oscillation in
higher frequencies.

5.3.1 Realizability Conditions

There are two necessary conditions a power spectrum P (ν) must fulfill to be
realizable by a point process [Crawford et al., 2003, Uche et al., 2006]. The
first necessary condition is P (ν) ≥ 0, which follows directly from the definition
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Figure 5.3: Simulating jittered grid and dart throwing.
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Figure 5.4: Simulating CCCVT and Lloyd’s method.
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of the power spectrum as an energy average. Likewise, we must have g(r) ≥ 0,
since the RDF can be interpreted as the probability of finding another point
at a certain distance r from a reference point. We therefore have the following
necessary conditions for the realizability of a power spectrum or RDF:

g(r) ≥ 0,

P (ν) ≥ 0.
(5.11)

Because the two functions are linked via a Hankel transform, these two condi-
tions severely limit the range of realizable power spectra. Whether these two
conditions are not only necessary but also sufficient is still an open question,
but no counterexamples are known [Torquato and Stillinger, 2002]. We refer
to Eq. (5.11) as the realizability conditions.

Because the space of functions that obey the realizability conditions is
not easy to parametrize [Giraud and Peschanski, 2006, Uche et al., 2006],
constructing realizable power spectra is a nontrivial problem. In the following
sections we discuss two experiments that show how to find realizable blue noise
power spectra with a simple mathematical form.

5.3.2 Step Blue Noise

The effect of the realizability conditions is best visualized using a concrete
example. We therefore study an idealization of blue noise which we call step
blue noise: The power spectrum of step blue noise is zero in low frequencies
and constant in high frequencies, i.e.,

Pstep(ν; ν0) = n
δ(ν)

2πν
+H(ν − ν0). (5.12)

Here we have included the DC peak at the origin and used the Heaviside step
function H (cf. Figure 5.5(a)). A point distribution with a step-like power
spectrum was already constructed by Zhou et al. [2012], but it seems their
result was obtained by trial and error. In contrast, the realizability conditions
allow us to derive the largest possible frequency for the step position νmax.

The RDF associated with the step blue noise spectrum (5.12) can be de-
rived using Eq. (5.10) and the Hankel transforms in Table 5.1:

gstep(r) = 1− 2πν2
0

n
jinc(2ν0r).

The realizability conditions require that gstep ≥ 0. Using the fact that the jinc
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Figure 5.5: Radial power spectra, corresponding RDFs, and cutouts from correspond-
ing points sets for step blue noise. A radial power spectrum that is a perfect step
is only realizable up to a maximum frequency νmax. For frequencies ν0 > νmax the
corresponding RDF becomes negative.

function has a maximum of jinc(0) = 1/2, we can solve this inequality for ν0

to obtain νmax

gstep ≥ 0 ⇔ ν0 ≤ νmax =
√
n/π.

Figure 5.5(a) demonstrates that for ν0 > νmax, the RDF gstep becomes nega-
tive. The only way to move the position of the step further to the right is to
increase the sample density n.

Figure 5.5 also shows one resulting point set for ν0 = νmax. Note that
the point distribution differs significantly from usual Poisson disk patterns in
that it contains many closely spaced point pairs. This is noteworthy because
for basically every other known point distribution with a blue noise spectrum,
the points have a certain minimal separation. It also goes against the conven-
tional wisdom that efficient sampling patterns should be spread out as much
as possible. But in this case, the primary goal isn’t efficiency but aliasing pre-
vention. In this sense, the irregular separation of the samples seems to help
decorrelate the sampling pattern as a whole.

5.3.3 Single-Peak Blue Noise

The step blue noise patterns from the previous section prevent coherent alias-
ing by keeping the power spectrum flat, but this comes at a cost: The effective
Nyquist frequency of these patterns cannot be higher than

√
n/4π, which is

56.4% of the maximum Nyquist frequency of the hexagonal lattice νhex. In
this section, we discuss a class of blue noise patterns that offer a much higher
Nyquist frequency (up to 86 % of νhex) by introducing a single peak into an
otherwise flat power spectrum.

The functional form we choose for this single-peak blue noise is a general-



5.3. DESIGNING LOW-OSCILLATION BLUE NOISE 83

1

0

0

p0

ν0

p
ow

er

frequency

0 1.0 2.0 3.0 4.0

distance

-0.5

0

0.5

1

1.5

rd
f

1.4νmax, p0 = 16

1.1νmax, p0 = 8

1.4νmax, p0 = 8

Figure 5.6: To achieve a higher effective Nyquist frequency, we have to allow the
power spectrum to go above 1 by introducing a (potentially smoothed) peak around
ν0 > νmax. To keep the corresponding RDF positive, we have to increase the height
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ization of the step blue noise spectrum

Ppeak(ν; ν0; p0) = n
δ(ν)

2πν
+Gσ ? (p0δ(ν − ν0) +H(ν − ν0)) .

Compared to Pstep, we add a Dirac peak of power p0 at the step frequency ν0

and convolve this peak and the step function with a Gaussian kernel Gσ with
standard deviation σ. Figure 5.6 illustrates the shape of this power spectrum.

This family of blue noise spectra has three interesting properties:

1. Aside from the single peak at ν0, there are no oscillations.

2. The width and height of the peak can be controlled by adjusting the
smoothing radius σ and the peak energy p0.

3. The step spectrum Pstep is included as a special case.

Not all spectra in this family are realizable, however, and due to the realizabil-
ity conditions, the parameters cannot be adjusted independently. The main
challenge therefore is to find combinations of the three parameters ν0, p0, and
σ that are realizable and yield good sampling patterns.

The convolution with a Gaussian makes it harder to analyze Ppeak analyt-
ically. We have therefore restricted ourselves to exploring this family of blue
noise patterns empirically by searching for configurations for which ν0 is as
high as possible, the power spectrum is flat above and below ν0, and struc-
tured aliasing is kept at an acceptable level by appropriate choice of p0 and σ.
Figure 5.7 shows some of the results we generated. We show the result for two
different peak positions: ν0 = 1.33νmax in subfigures (a, b) and ν0 = 1.66νmax

in subfigures (c, d). For each peak position, we show one result with a narrow
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(d) “Single-Peak B.N.”

Figure 5.7: A selection of realizable blue noise patterns with a single peak. (a) We
can increase νeff by moving energy to higher frequencies—in this case a peak of height
P (ν0) = 16—but only at the cost of structured aliasing (visible patterns in the form
of rings around ν0). (b) Smoothing the peak to P (ν0) ≈ 4 yields acceptable aliasing
at the cost of a slightly reduced νeff. (c) The highest effective Nyquist frequency we
can produce without deviating strongly from a flat spectrum in frequencies below
or above ν0. (d) The best compromise we found between a high νeff and structured
aliasing. The stated parameters are for 4096 points; for a different number of points n,
the parameters p0 and σ must be scaled by

√
n/4096.

peak (small σ) and one with a wide peak (large σ). As in all other experiments
in this paper, we generated sets of 4096 points in the unit torus and averaged
the results over ten such sets.

The more we increase the peak height, the further we are able to push
ν0 and thus the effective Nyquist frequency. If we take this too far, however,
strong aliasing can show up in the sampled image. The zone plate renderings at



5.4. EVALUATION 85

the top of Figure 5.7 demonstrate that visible patterns emerge above P (ν0) ≈
4. We can reduce these artifacts by increasing the amount of smoothing σ.
This has two effects: It decreases the height of the peak and increases its
width, which means that aliasing is scattered over a wider range of frequencies.
The highest effective Nyquist frequency we could produce while keeping P (ν)
sufficiently flat above and below ν0 is shown in column (c).

The best compromise we found between a high effective Nyquist frequency
and structured aliasing is shown in (d); this is the spectrum we will use as
the reference for single-peak blue noise. This configuration yields an effective
Nyquist frequency that is comparable to classic blue noise patterns but gets
rid of most of the high-frequency oscillation.

5.4 Evaluation

Our original motivation for blue noise spectra with low oscillation was to
reduce the risk of low-frequency, structured aliasing, as shown in Figure 3.7.

Table 5.2 compares the effective Nyquist frequency νeff, the oscillation Ω
and several spatial statistics of step blue noise and single-peak blue noise with
other sampling patterns used in computer graphics. We have divided the
sampling patterns in the table in three categories

• Low Oscillation for point sets whose power spectrum is relatively flat.

• High Effective Nyquist for point sets with a large zero region and large
values of νeff.

• Regular for regular or semi-regular point distributions.

The effective Nyquist and oscillation measures from Section 3.3.4 are shown
in the first two columns. We already mentioned in Section 3.3.4 that for tra-
ditional blue noise patterns, a high νeff comes at the cost of a high oscillation.
The point sets constructed in this paper demonstrate that it is possible to
achieve high values of νeff with little oscillation, so this “noise-aliasing trade-
off” [Dippé and Wold, 1985, Glassner, 1995] is not strict.

In the following sections we evaluate the performance of step and single-
peak blue noise in three different sampling scenarios. First we consider under-
sampling, i.e., sampling signals with a bandwidth significantly higher than the
effective Nyquist frequency of the sampling pattern. The other case we con-
sider is oversampling : If we increase the sampling rate, all unbiased sampling
patterns should converge to the true image function, but the rate of conver-
gence depends crucially on the spectral behavior of the sampling pattern. To
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Method νeff Ω dmin davg Rc

L
ow

Ω

Stochastic Sampling 0 0.05 0.01 0.47 1.73

Jittered Grid 0.24 0.06 0.05 0.59 1.08

Dart Throwing 0.58 1.52 0.76 0.80 1.07

Step Blue Noise 0.58 0.01 0.09 0.64 0.91

H
ig

h
ν e

ff

Single-Peak Blue Noise 0.86 1.44 0.55 0.80 0.77

Kernel Density 0.88 2.14 0.43 0.86 0.78

CCCVT Centroids 0.89 2.34 0.75 0.88 0.74

El. Halftoning 0.89 2.49 0.74 0.88 0.77

Farthest Point Optim. 0.90 4.64 0.93 0.93 0.86

R
eg

. CVT Centroids 0.98 5.35 0.80 0.94 0.67

Regular grid 0.95 14.77 0.93 0.93 0.66

Hexagonal grid 1.01 12.38 0.99 0.99 0.58

Table 5.2: Comparison of several frequency and spatial statistics of sampling pat-
terns. The last column marks methods that are largely (F)ree of structured aliasing
and methods that are either (R)egular or show strong (O)scillations in their power
spectrum.

measure this difference in residual noise, we study the performance of different
sampling patterns at high sampling rates. Finally, we consider a standard test
scene containing an infinite checkerboard.

5.4.1 Low Sampling Rate

We first evaluate the performance of different sampling patterns when under-
sampling. As a test image, we render a zone plate image; this is preferable
to more realistic test images since it shows the response for a wide range of
frequencies and aliasing effects are not masked by image features.

As a replacement for the standard zone plate function z(r) = [1+cos(αr2)]/2,
we use the following generalized form

z′(r) =
1

2

(
1 + cos[νcut(αr + φ)]

)
,

which allows us to limit the highest frequency νcut that can occur and configure
the position rcut of this cutoff frequency in the final image, by defining the



5.4. EVALUATION 87

parameter α and the phase φ as follows

α := min(r/rcut, 1), φ := max(r − rcut, 0).

Figure 5.8 shows the result of rendering a zone plate image using step blue
noise. For all zone plate renderings in this chapter, we have tiled toroidal sets
of 4096 points over the image-plane and used a Lanczos filter with a support
of width 4 for resampling. We focus on the low-frequency region since this is
where step blue noise differs most from other sampling patterns with a low
amount of oscillation. It is obvious that dart throwing leads to a lot more
noise in the low-frequency region; images sampled with stochastic sampling or
jittered grid would be even noisier. We also see that dart throwing actually
yields better results for the higher image frequencies shown in Figure 5.8. This
is also due to the shape of the power spectrum, which rises only slowly before
the first peak.

Figure 5.9 compare the behavior of single-peak blue noise to FPO as a rep-
resentative of conventional blue noise patterns. We chose FPO to emphasize
the effect of heavy oscillations in the power spectrum; the effect is less severe
but still visible for other blue noise methods with a relatively high amount of
oscillation [Balzer et al., 2009, Schmaltz et al., 2010, Fattal, 2011]. Single-peak
blue noise shows no structured aliasing beyond the narrow range of frequencies
around 2νeff, and even low-frequency image content appears slightly cleaner.

5.4.2 High Sampling Rate

In most of this thesis we focused on undersampling, because the risk of un-
dersampling is the primary reason for using blue noise sampling in the first
place. It is still important to consider the limiting case, i.e., the image quality
as we increase the sampling rate. We expect all sampling pattern to improve
as the sampling rate increases, but there are measurable differences.

For this evaluation we use a more realistic test image of a 3D scene
containing a textured sphere, edges, and smoothly shaded areas [Pharr and
Humphreys, 2010], and used different sampling patterns to downsample a
high-resolution input to a smaller output (see Figure 5.10). This is equivalent
to image-plane sampling in a ray tracer, but easier to control since other error
sources (texture filtering, secondary rays) can be ignored. As a quantitative
error measure we use the peak signal-to-noise ratio (PSNR)

PSNR = 10 · log10

2552

MSE
, MSE = mean square error.
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Figure 5.8: Step blue noise achieves a much cleaner rendition of low frequencies than
dart throwing. Since the power spectrum of dart throwing rises slowly, it gives better
results at intermediate frequencies.
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Figure 5.9: The difference between single-peak blue noise and conventional blue noise
patterns is most obvious in the high-frequency region. Peaks in the power spectrum
lead to moiré-like artifacts at certain image frequencies which can be avoided by
flattening the spectrum. In the case of single-peak blue noise, these artifacts are
therefore restricted to a small range of image frequencies.
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Figure 5.10: The scene used to evaluate the performance of sampling patterns at high
sampling rates. (Left) Original high-resolution image. (Right) Detail. Compare also
with Figure 1.1, which shows the moiré artifacts that occur when subsampling this
image at an insufficient sampling rate.

A PSNR of 50 is comparable to high-quality JPEG compression. At low
sampling rates the PSNR would not be an appropriate error measure since
it only quantifies the total error, not whether it takes the form of moiré,
structured aliasing, or unstructured noise; but in this experiment, we are
intentionally oversampling, and the PSNR is only used to quantify the residual
noise due to irregular sampling.

The main results are shown in Table 5.3. As expected, the best results
are achieved by hexagonal grids, but the price for this performance are severe
moiré artifacts at lower sampling rates, as we already saw in Figure 1.1. The
worst results are obtained by stochastic sampling, which yields visible noise
even at 128 samples per pixel.

In the low oscillation category, jittered grid initially performs worse than
dart throwing but catches up at high sampling rates. Both are outperformed
by step blue noise, however, which produces a significantly higher image qual-
ity at all sampling rates. In the high effective Nyquist category, the best re-
sults are obtained by CCCVT [Balzer et al., 2009] and Electrostatic Halfton-
ing [Schmaltz et al., 2010], followed by our single-peak blue noise pattern.
Both Kernel Density [Fattal, 2011] and FPO (Chapter 4) improve only slowly
above 32 spp and eventually perform even worse than step blue noise. We
have reproduced this behavior for different test scenes but have been unable
to find a good explanation so far.

5.4.3 Checkerboard Sampling

As a final example, Figures 5.11 and 5.12 show the results of sampling an
infinite checkerboard with several different sampling patterns. In each case,
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Method 16 spp 32 spp 64 spp 128 spp

L
ow

O
sc

i. Stochastic Sampling 32.2 35.4 38.5 41.7
Jittered Grid 38.2 43.5 48.9 53.9
Dart Throwing 42.4 45.9 48.9 51.6
Step Blue Noise 44.4 52.2 56.6 58.3

H
ig

h
ν e

ff

Single-Peak Blue Noise 48.4 55.9 60.2 64.2
Kernel Density 50.3 55.9 57 57.7
CCCVT Centroids 51.9 60.8 64.8 69.9
El. Halftoning 51.6 59.6 63 66.2
Farthest Point Optim. 49.2 54.1 56.5 58.3

R
eg

.

CVT Centroids 52.6 57.2 58.3 59.3
Hexagonal Grid 55.2 64.8 66.1 75.1

Table 5.3: PSNR as a function of the number of samples per pixel (spp). The values
are averages over 10 images downsampled to 160 × 160 using the respective class of
sampling pattern. The reference image is downsampled using a hexagonal grid at
512 spp.

the left column shows the rendered result and the right column an error image.
The scene was sampled at 8 samples per pixel for all sampling patterns.

Figure 5.11 shows three sampling patterns that don’t perform well for this
test scene. Both the hexagonal and the rectangular grid result in strong moiré
patterns as we get closer to the horizon. The stochastic sampling pattern in
the last row naturally doesn’t result in moiré patterns, but the whole image
is very noisy.

In Figure 5.12 we compare the two sampling patterns constructed in this
chapter to a CCCVT pattern, which is a state-of-the-art blue noise pattern.
The performance of all three irregular sampling patterns is relatively similar
for this scene and at this sampling rate; this is also reflected in the similar
PSNR values. For CCCVT and single-peak blue noise, the effect of the peak in
the power spectrum is again visible in the sampled image, as a fine horizontal
line close to the horizon; the location is marked with a small arrow. Step blue
noise prevents this artifact at the cost of a slightly higher overall noise level.

5.4.4 Comparison with Related Algorithms

As mentioned in Section 5.2, algorithms for constructing point sets matching a
given spectrum have already been proposed by other researchers. In our tests,
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Hexagonal Grid PSNR=30.6

Rectangular Grid PSNR=25.8

Stochastic Sampling PSNR=25.7

Figure 5.11: Rendering of a checkerboard image (left) and error image (right). The
images are rendered at 8 samples per pixel.
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CCCVT PSNR=30.3

Single-Peak BN PSNR=29.8

Step Blue Noise PSNR=29.8

Figure 5.12: Rendering of a checkerboard image (left) and error image (right). The
images are rendered at 8 samples per pixel.
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the annealing approach by Rintoul and Torquato [1997] converged only slowly
and didn’t give good results for reasonably large point sets. In this section,
we compare our results to those achieved using the algorithm by Zhou et al.
[2012]. But since the primary goal of this chapter is to show that certain types
of blue noise are realizable, not to find the best possible way to construct them,
we restrict ourselves to a brief, qualitative comparison.

Figure 5.13 shows the matching result of our algorithm for the step and
the single-peak blue noise profile in comparison to the result by Zhou et al.’s
algorithm. The step power spectrum is matched slightly better by our algo-
rithm (Ω = 0.01) than by the method by Zhou et al. (Ω = 0.05), which shows
a certain amount of ripple in the high-frequency region.

The single-peak spectrum is more challenging and was matched accurately
by our algorithm whereas the method by Zhou et al. had problems adapting
to the target spectrum. This is easy to see in the radial power spectra in
Figure 5.13: The result by Zhou et al. is non-zero in the low frequencies and
oscillates more strongly in the high frequencies.

The average computation time using the CUDA-based implementation by
Zhou et al. was 15.7 s on an nvidia Quadro 4000, while our CPU implementa-
tion took an average 69.7 s on a quad-core 2.8 GHz CPU.

Judging from the anisotropy plots, it seems as if both methods produce
slightly anisotropic point sets, most noticeably at low frequencies and at the
frequency corresponding to the step in the power spectrum. This behavior can
at least partly be attributed to the standard definition of anisotropy [Ulich-
ney, 1993, Lagae and Dutré, 2008] which measures the relative variance and
therefore includes a division by the radial power. The anisotropy is therefore
ill-defined if the power spectrum is very close to zero, which is the case for our
point sets.

5.5 Discussion

In this chapter we have discussed several contributions to the theory of blue
noise sampling.

The first contribution is a new algorithm for constructing point distribu-
tions matching a given power spectrum or radial distribution function. Similar
algorithms have been proposed while our paper was under review [Zhou et al.,
2012, Öztireli and Gross, 2012], and a detailed comparison is an interesting
open question. We performed a limited comparison to the approach by Zhou
et al. in Section 5.4.4 and were able to demonstrate noticeably better results
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Figure 5.13: Comparison of matching Pstep (left) and Ppeak (right) using the method
by Zhou et al. [2012] and our approach. Our method matches achieves a slightly
cleaner step spectrum and a significantly better single-peak spectrum.

with our algorithm, at least for generating step blue noise and single-peak blue
noise distributions.

The second contribution is a theoretical investigation of blue noise sam-
pling, in particular the question: to what extent can we influence the spectral
properties of a sampling patterns to our advantage? The relationship between
the power spectrum and the radial distribution function leads to a strong con-
straint on the realizability of power spectra and limits the range of spectra
that can be achieved by point distributions.

Finally, we demonstrated as a third contribution how to design blue noise
patterns by prescribing the shape of the power spectrum. The main difficulty
with this approach is to find functional models for blue noise that are easy
to parametrize and can be handled analytically. As two simple examples we
studied step blue noise and single-peak blue noise, and demonstrated that the
resulting sampling patterns outperform many traditional sampling patterns



96 CHAPTER 5. SPECTRAL CONSTRUCTION OF BLUE NOISE

used in graphics. What is remarkable about these results isn’t so much the
performance of the new sampling patterns but the fact that they were obtained
not by placing elaborate geometric constraints on the point set. Instead, we
used a generic construction algorithm to derive them from a specification of
their spectral behavior.

Most research on blue noise sampling has focused on geometric properties
of the sampling patterns: Poisson disk sampling, Lloyd relaxation, jittered
sampling, or more recently maximal Poisson disk sampling are all based on
geometric notions of the sample distributions. We have shown in this chapter
that if we are only interested in image-plane sampling, we can achieve com-
parable, or even better, results by focusing on the spectral properties of the
sampling patterns. We are confident that we have only scratched the surface
of what is possible using this approach, and that further research will lead to
even better results.



Chapter 6

Conclusion and Outlook

For the last 30 years, research on irregular sampling in computer graphics has
focused almost exclusively on geometric methods for constructing sampling
patterns. This approach has been very successful: a variety of efficient al-
gorithms for constructing sampling patterns are now available, some of them
producing sampling patterns with excellent blue noise properties.

One major limitation of this geometric approach remains, however: it
doesn’t allow us to influence the spectral characteristics of sampling patterns
directly. These spectral properties are crucial because they predict the per-
formance of a sampling pattern and allow us to make guarantees about the
visual appearance of aliasing in the sampled image.

In the introduction, we listed open questions regarding irregular sampling.
To what extent did the preceding chapters answer these questions?

What exactly is the effect of blue noise sampling on the sam-
pled image? Classical sampling theory typically simplifies this question by
assuming that the signal being sampled is bandlimited or can be bandlimited
by prefiltering the signal. In graphics, we often have to live with aliasing and
therefore want to control the visual appearance of this aliasing. We discussed
this question in detail in Chapter 3, in particular the relationship between the
shape of the power spectrum and the spectral characteristics and appearance
of aliasing.

Are all efficient sampling patterns also Poisson disk patterns?
We have studied this question from two different angles. In Chapter 4 we
studied the question whether all Poisson disk patterns are also efficient sam-
pling patterns, and found that this is true only to a limited extent: for very
high Poisson disk radii, as achieved by farthest point optimization, the sample
points are coerced into an arrangement with a relatively high amount of trans-
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lational order, which leads to strong oscillations in the power spectrum. In
Chapter 5 we demonstrated that dropping the minimum distance requirement
can be useful to decorrelate the point set: this is how the single-step blue noise
pattern achieves its resilience to aliasing artifacts.

Can we derive irregular sampling patterns from a specification
of their spectral behavior? As we demonstrated in Chapter 5, it is in
fact possible to derive efficient sampling patterns from first principles, by
demanding isotropy and a power spectrum with a blue noise spectrum. In
particular, no assumptions about geometric properties of the final sampling
pattern are necessary.

What is the most desirable blue noise sampling pattern? Under
what circumstances can it be realized? We discussed the question of
realizability in Chapter 5 and have made some progress in the search for the
most desirable sampling pattern. But the final answer to this question remains
elusive. The main difficulty at the moment is the problem of mathematically
modeling suitable power spectra. We have approached this problem mostly
empirically, but even though the “step” and “single-peak” models discussed in
the previous chapter are insightful, they only cover a tiny range of possible
power spectra. Better models of blue noise spectra are one obvious area for
extending the research of this thesis.

We discuss two other interesting research directions in the following para-
graphs.

Adaptive Sampling In many applications, the process of taking samples
is very expensive; in ray tracing, for example, computing the value of a single
sample involves the numerical evaluation of complex integral equation. In such
cases, the goal is often to maximize the final image quality given a certain
computational budget. One way of approaching this problem is to vary the
sampling rate adaptively with the local frequency content, which can improve
the image quality by focusing the sampling effort on difficult parts of the image.
Throughout this thesis we assumed a constant sampling density n, but it is
possible to generalize most of the results to spatially varying densities n(x)
by warping the distance metric according to the desired density [Zhou et al.,
2012]. But this is only the first and easiest step; two harder problems still
await a satisfactory solution.

The desired point density is generally not known a priori, except for a
few special applications such as stippling or halftoning, so adaptive sampling
usually requires that the sampling pattern can be refined on-the-fly. Ideally
we would like to adaptively add new samples to an existing sampling pattern
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while preserving its spectral properties. A few methods for generating irregu-
lar point distributions incrementally are known, for example low-discrepancy
sequences [Niederreiter, 1992] and hierarchical blue noise sampling [McCool
and Fiume, 1992, Ostromoukhov et al., 2004, Kopf et al., 2006]. But how
to construct sampling patterns with arbitrary spectra incrementally is still
unsolved question.

The second problem is specific to image-plane sampling, where the required
sampling rate isn’t known in advance. To prevent aliasing, we would like to
adjust the sampling rate adaptively, based on the local frequency content of
the image. The standard approach to adaptive image-plane sampling is to
start with a low-resolution sampling pattern, which is used to estimate the
local variance of the image, and take additional samples in regions of high
variance. The choice of this initial sampling pattern faces the same tradeoffs
as other sampling tasks: a completely random distribution is bias-free but
leads to unnecessarily high variance estimates; a regular distribution is more
efficient but sensitive to aliasing.

Using blue noise samples for more reliable aliasing detection might be
possible, but hasn’t been studied so far. The main idea behind this approach
would be to exploit the fact that blue noise sampling affects the spectral
distribution of aliasing in a predictable way: since high frequencies are mapped
to broadband noise, local frequency analysis of blue noise sampled images
might give a reliable way to detect aliasing in oversampled images and control
the sampling rate. To our knowledge, no study in this direction has been
performed yet.

Reconstruction As explained in Section 2.4, we assumed that the resam-
pling process that computes pixels from the irregular samples is based on
convolution with a low-pass filter. This is a fundamental assumption that un-
derlies the whole notion of blue noise sampling: we motivated the particular
shape of the blue noise spectrum using the idea of lowpass filtering in Chap-
ter 3. In this sense, blue noise sampling patterns are especially well-tuned for
convolution-based reconstruction.

Over the years, several alternative types of reconstruction and interpola-
tion algorithms have been proposed, most notably the POCS algorithm [Com-
bettes, 1993, Stasiński and Konrad, 2002] and variants of the frame algorithm
[Gröchenig, 1992, Feichtinger and Gröchenig, 1994]. For the frame algorithm
it can be shown that perfect reconstruction of bandlimited functions is possible
from any set of samples that has a sufficiently small coverage radius—so even
random sampling patterns with a white noise spectrum can be used for per-
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fect reconstruction, with the maximum reconstructible frequency depending
on the largest hole in the sampling pattern.

The use of reconstruction algorithms and their interaction with blue noise
sampling is almost completely unexplored in computer graphics. Initial exper-
iments with these reconstruction methods suggests that they perform better
than normalized convolution at low sampling rates and for very irregular sam-
pling patterns, but at higher sampling rates, they are slower and the image
quality is actually worse since their iterative nature easily lead to ringing ar-
tifacts. A critical evaluation of these algorithms for graphics applications is
an important open problem.



Appendix A

Energy and Power Spectrum

There are two common measures to characterize the strength of a signal as a
function of the frequency: the energy spectrum for signals with finite extent
and the power spectrum for signals with infinite extent [Oppenheim and Vergh-
ese, 2010]. Since sampling problems involve infinite signals (sampling combs,
sine waves, etc.), the power spectrum is the natural measure for studying such
problems.

The total energy of a signal x(t) is defined as the integral

Ex =

∫ ∞
∞
|x(t)|2 dt. (A.1)

If Ex < ∞, Parseval’s theorem tells us that the Fourier transform x̂(ν) of x
has the same total energy, i.e.,

Ex =

∫ ∞
−∞
|x(t)|2 dt =

∫ ∞
−∞
|x̂(ν)|2 dν.

It therefore makes sense to call |x̂(ν)|2 the energy spectrum or the energy
spectral density of x

Ex(ν) = |x̂(ν)|2. (A.2)

For many infinite signals such as sine waves and periodic functions the
integral in Eq. (A.1) does not converge, so neither the total energy nor the
energy spectrum are defined. This motivates the definition of the power spec-
trum which is defined for a much wider range of signals. To define the power
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spectrum, we consider the truncated signal

xT (t) =

{
x(t) if |t| ≤ T
0 otherwise

and its Fourier transform

x̂T (ν) =

∫ T

−T
x(t)e−2πiνt dt.

The power spectrum or power spectral density (PSD) is obtained by taking the
limit

Px(ν) = lim
T→∞

1

2T
|x̂T (ν)|2 (A.3)

provided it actually exists. (The notation Sxx is also common for the power
spectrum of x.) This definition makes it clear that the power spectrum mea-
sures the energy per unit time.

Spectrum of Random Signals and Processes In the analysis of sam-
pling, we model both the image being sampled and the sampling pattern as
random signals. In this case, the definition of the power spectrum includes an
additional average over all realizations of the signal

Px(ν) = lim
T→∞

E
[

1

2T
|x̂T (ν)|2

]
. (A.4)

For the signals we are interested in, this limit always exists. This follows from
the Wiener-Kinchin theorem, which guarantees convergence for wide-sense
stationary (WSS) signals. A signal is WSS if its mean mx and autocorrela-
tion Cx are stationary, i.e., if

mx = E[x(t)], and Cx(r) ≡ E
[
x(t)x(t+ r)

]
.

are independent of t. In this case, the Wiener-Kinchin theorem states that Px
exists and equals the Fourier transform of the autocorrelation

Px(ν) = lim
T→∞

E
[

1

2T
|x̂T (ν)|2

]
= F

[
Cx(r)

]
This relationship between the autocorrelation and the power spectrum is often
the easiest way to compute Px analytically.
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Spectrum of Products If we consider the product of two arbitrary signals
Z(t) = X(t) · Y (t), the autocorrelation of Z is

CZ(τ) = E[Z(t) · Z(t+ τ)].

This can be simplified if X and Y are statistically independent

CZ(τ) = E[X(t)X(t+ τ ] · E[Y (t)Y (t+ τ)] = CX(τ)CY (τ),

and since the power spectrum and the autocorrelation form a Fourier trans-
form pair we have

PZ(ν) = PX ? PY (ν). (A.5)

Spectrum of Uncentered Signals For any signal X with mean mX , the
autocorrelation and power spectrum can be decomposed as follows

CX(r) = |mX |2 + ČX(r), PX(ν) = |mX |2δ(ν) + P̌X(ν), (A.6)

where ČX and P̌X denote the autocorrelation and spectrum of the centered
signal X̌(x) = X(x)−mX .





Appendix B

Overview of Sampling
Patterns

This appendix gives an overview and compares several classes of point dis-
tributions that have been proposed for sampling in computer graphics. The
purpose of this comparison is to collect in one place several qualitative and
quantitative measures. Geometrically, the main property of most sampling
patterns is that they are uniform and irregular. Uniformity ensures that the
whole domain is covered with samples, and irregularity reduces the visibility
of aliasing artifacts.

We already introduced three quantities that measure the uniformity of a
point distributions in Chapter 4.1: the nearest-neighbor distance dmin and davg

and the coverage radius Rc. A point distribution can be considered uniform
if dmin and davg are large, which implies that there are no clusters, and Rc is
small, which implies that there are no “holes”.

Irregularity, on the other hand, remains a rather vague term, and no nu-
merical measure for irregularity is widely used in graphics. In the following,
we use an irregularity measure called the bond-orientational order Qn which
measures the local rotational symmetry of a point set. The measure was
originally proposed in the context of disk packings [Kansal et al., 2000], but
we have found this to be a useful geometric way to assess the irregularity of
sampling patterns.

B.1 Bond-Orientational Order

In general, the bond-orientational order Qn measures how close the angles
between neighboring points are to a perfect n-fold symmetry. In the case of
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n-fold symmetry, each point has n neighbors arranged around the point in
360◦/n increments. In two dimensions, the most common choices for n are
n = 3, 4, 6, in which case Qn measures how similar a point set is to a triangular,
rectangular, or hexagonal lattice.

We first define the local bond-orientational order qnj for a single point
xj ∈ S as follows:

qnj =
1

|Nj |

∣∣∣∣∑
k∈Nj

einθjk
∣∣∣∣. (B.1)

The set Nj ⊂ S denotes a suitable neighborhood of xj and θjk = ∠(xk−xj) is
the angle in the direction of xk. The intuition behind the definition of qnj is as
follows: If the neighbors xk ∈ Nj are arranged on a regular n-gon around xj
the complex numbers einθjk add constructively, and qnj attains its maximum
value of 1. Otherwise, they partially cancel each other out and we have qnj < 1.
The global bond-orientational order can then be defined as a simple average
over all N points

Qn =
1

N

N∑
j=1

qnj . (B.2)

Since hexagonal symmetry often occurs when optimization methods are
used to generate point distributions, we use Q6 as our irregularity measure. A
natural choice for the neighborhood Nj are the Delaunay neighbors of xj . As
shown on the following pages, Q6 generally increases as the point distributions
become more uniform, and high values of Q6 indicate the existence of regions
in the point set with hexagonal symmetry. We have found a threshold of
0.5 useful for detecting disordered point sets; for Q6 > 0.5, a more detailed
symmetry analysis using either the power spectrum or the autocorrelation is
useful.
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B.2 Stochastic Sampling

Point Distribution, Autocorrelation, Power Spectrum

Anisotropy, RDF, Radial Power Spectrum
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Statistics

Q6 = 0.36

Rc = 1.73

dmin = 0.01

davg = 0.47

νeff = 0

Ω = 0.05

Notes

See [Cook, 1986, Dippé and Wold, 1985]. Also known as a random or Poisson distri-

bution. Because the point positions are completely uncorrelated, the spectrum and

autocorrelation are constant. The resulting point set contains many clusters of points

( davg is low) and large holes (Rc is high). A low bond-orientational order Q6 reflects

the irregularity of the point set.
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B.3 Jittered Grid

Point Distribution, Autocorrelation, Power Spectrum

Anisotropy, RDF, Radial Power Spectrum
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Q6 = 0.37

Rc = 1.08

dmin = 0.05

davg = 0.59

νeff = 0.24

Ω = 0.06

Notes

See [Cook, 1986, Dippé and Wold, 1985]. The point set is obtained by randomly

perturbing a regular grid. This jitter process prevents large clusters, which leads to

a more uniform point distribution, so davg is higher than for stochastic sampling.

Relatively large empty regions are still possible, so Rc is large compared to other

methods. The orientational order is as low as for stochastic sampling.
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B.4 Dart Throwing

Point Distribution, Autocorrelation, Power Spectrum

Anisotropy, RDF, Radial Power Spectrum
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Q6 = 0.43

Rc = 1.07

dmin = 0.77

davg = 0.81

νeff = 0.59

Ω = 1.52

Notes

See [Cook, 1986, Lagae et al., 2010]. Also known as a Poisson disk pattern, since small

disks placed at the points do not overlap. This constraint on the nearest-neighbor

distance leads to a higher value for davg, but large holes are still possible (Rc high).

The orientational order has increased noticeably compared to stochastic and jittered

sampling.
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B.5 Best Candidate/FPS

Point Distribution, Autocorrelation, Power Spectrum

Anisotropy, RDF, Radial Power Spectrum
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Q6 = 0.47

Rc = 0.76

dmin = 0.75

davg = 0.84

νeff = 0.77

Ω = 1.32

Notes

See [Mitchell, 1991], but almost identical results are obtained by the farthest point

strategy [Eldar et al., 1997, Kanamori et al., 2011]. Similar to dart throwing, but

new points are incrementally added to the largest empty region, which significantly

reduces the coverage radius Rc. Small regular regions can result, which is reflected

by a relatively high value for Q6 and small peaks in the anisotropy.
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B.6 Kernel Density Blue Noise

Point Distribution, Autocorrelation, Power Spectrum

Anisotropy, RDF, Radial Power Spectrum
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Q6 = 0.50

Rc = 0.78

dmin = 0.43

davg = 0.86

νeff = 0.88

Ω = 2.14

Notes

See [Fattal, 2011]. A recent particle-based method for efficiently generating blue noise

patterns. The generated point sets exhibit a slight anisotropy which is not visible in

point distribution but evident in power spectrum and autocorrelation. This seems to

be a side-effect of the hierarchical grid used to generate the point distributions.
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B.7 Electrostatic Halftoning

Point Distribution, Autocorrelation, Power Spectrum

Anisotropy, RDF, Radial Power Spectrum

0 2.0 4.0 6.0 8.0 10.0 12.0
-12

-6

0

6

12

an
is

ot
ro

py

frequency
0 2.0 4.0 6.0 8.0

0

1

2

3

4

5

R
D

F

distance
0 2.0 4.0 6.0 8.0 10.0 12.0

0

1

2

3

4

5

po
w

er
frequency

Statistics

Q6 = 0.52

Rc = 0.77

dmin = 0.74

davg = 0.88

νeff = 0.89

Ω = 2.49

Notes

See [Schmaltz et al., 2010]. Models points as interacting particles and prevents reg-

ularity by adding a random force field that favors irregular point distributions. The

resulting point sets achieve a very good compromise between uniformity and irregu-

larity and excellent blue noise properties. The slight anisotropy is due to non-toroidal

boundary conditions.
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B.8 CCCVT

Point Distribution, Autocorrelation, Power Spectrum

Anisotropy, RDF, Radial Power Spectrum
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Q6 = 0.54

Rc = 0.74

dmin = 0.75

davg = 0.88

νeff = 0.89

Ω = 2.34

Notes

See [Balzer et al., 2009]. The point distribution has the special property that the

points form a centroidal Voronoi tessellation in which all Voronoi regions have the

same area. The results are very similar to Electrostatic Halftoning: the points achieve

a very good compromise between uniformity and irregularity.
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B.9 Centroidal Voronoi Tessellation

Point Distribution, Autocorrelation, Power Spectrum

Anisotropy, RDF, Radial Power Spectrum
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Statistics

Q6 = 0.85

Rc = 0.67

dmin = 0.80

davg = 0.94

νeff = 0.98

Ω = 5.35

Notes

See [Lloyd, 1982, McCool and Fiume, 1992, Du et al., 1999]. An iterative method that

“relaxes” a given input point set. The algorithm converges towards partially regular

arrangements consisting of hexagonal patches. Since the orientation of these patches

is random, the regularity is not immediately in the power spectrum or autocorrelation

which perform global averaging, but is reflected in the raised level of the anisotropy

and the high bond-orientational order.
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B.10 Low Discrepancy

Point Distribution, Autocorrelation, Power Spectrum

Anisotropy, RDF, Radial Power Spectrum
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Statistics

Q6 = 0.66

Rc = 0.66

dmin = 0.90

davg = 0.92

νeff = 0.96

Ω = 6.83

Notes

See [Grünschloß and Keller, 2009]. One example of a low-discrepancy sequence, which

achieves a very low value for a geometrical uniformity measure called the star dis-

crepancy. The points are arranged on parallel, slanted lines, so they are very regular;

this regularity is reflected in the power spectrum and autocorrelation and means that

strong aliasing would occur when sampling regular patterns with a similar angle.

Optimizing purely for low discrepancy values generally cannot prevent such regulari-

ties, which is the reason why this measure is considered unsuitable for measuring the

quality of point sets for image-plane sampling [Dobkin and Mitchell, 1993].
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B.11 Regular Grid

Point Distribution, Autocorrelation, Power Spectrum

Anisotropy, RDF, Radial Power Spectrum
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Statistics

Q6 = 0.33

Rc = 0.66

dmin = 0.93

davg = 0.93

νeff = 0.95

Ω = 14.77

Notes

Q6 detects hexagonal symmetry only, so it doesn’t correctly detect the regularity

of this rectangular grid. Since none of the algorithms for constructing point sets in

graphics converge towards rectangular grids, we have not found this to be a disad-

vantage.
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B.12 Hexagonal Grid

Point Distribution, Autocorrelation, Power Spectrum

Anisotropy, RDF, Radial Power Spectrum
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Q6 = 1.00

Rc = 0.58

dmin = 1.00

davg = 1.00

νeff = 1.02

Ω = 12.38

Notes

Since a regular hexagonal grid cannot completely fill the unit square, we show what

is believed to be the best approximation [Dammertz et al., 2009]. In general, the

hexagonal grid is the most efficient 2D sampling pattern, which achieves the highest

Nyquist frequency for a given sampling density.
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B.13 Farthest Point Optimization

Point Distribution, Autocorrelation, Power Spectrum

Anisotropy, RDF, Radial Power Spectrum

0 2.0 4.0 6.0 8.0 10.0 12.0
-12

-6

0

6

12

an
is

ot
ro

py

frequency
0 2.0 4.0 6.0 8.0

0

1

2

3

4

5

R
D

F

distance
0 2.0 4.0 6.0 8.0 10.0 12.0

0

1

2

3

4

5

po
w

er
frequency

Statistics

Q6 = 0.48

Rc = 0.86

dmin = 0.93

davg = 0.93

νeff = 0.90

Ω = 4.64

Notes

See Chapter 4. Note the strong peak in the autocorrelation and RDF and r = dmin.

This peak causes the slow decay of the power spectrum.



B.14. STEP BLUE NOISE 119

B.14 Step Blue Noise

Point Distribution, Autocorrelation, Power Spectrum
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Q6 = 0.37

Rc = 0.91

dmin = 0.09

davg = 0.64

νeff = 0.59

Ω = 0.01

Notes

See Chapter 5.
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B.15 Single-Peak Blue Noise

Point Distribution, Autocorrelation, Power Spectrum

Anisotropy, RDF, Radial Power Spectrum
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Q6 = 0.41

Rc = 0.77

dmin = 0.51

davg = 0.80

νeff = 0.86

Ω = 1.44

Notes

See Chapter 5.
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L. Grünschloß, J. Hanika, R. Schwede, and A. Keller. (t,m, s)-nets and max-
imized minimum distance. Monte Carlo and Quasi-Monte Carlo Methods
2006, pages 397–412, 2008. (Cited on page 51.)

S. Gupta and R. F. Sproull. Filtering edges for gray-scale displays. Com-
puter Graphics (Proc. of SIGGRAPH 81), 15(3):1–5, Aug. 1981. (Cited on
page 14.)

T. Hachisuka, W. Jarosz, R. P. Weistroffer, K. Dale, G. Humphreys,
M. Zwicker, and H. W. Jensen. Multidimensional adaptive sampling and
reconstruction for ray tracing. ACM Trans. Graph., 27(3):33:1–33:10, Aug.
2008. (Cited on page 11.)
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