
UNIT – I BASIS .NET . NET PROGRAMMING

1

P. GOPINATH M.C.A.,

Dot Net

 Dot net is not a language.

 It is a platform or collection of different programming support.

 That helps us to develop rich websites, applications and other computer devices and also

to make the activities more of a web browser-oriented.

.NET Framework

 .NET is a framework which is used to develop software applications.

 It is designed and developed by Microsoft and first beta version released on 2000.

 It is used to build applications for web, Windows, phone and provides broad range of

functionalities and support for industry standards.

 This framework contains large number of class libraries known as Framework Class

Library (FCL).

 The software programs written in .NET are execute in execution environment that is

called CLR (Common Language Runtime).

 These both are core and essential parts of the .NET Framework.

 This Framework provides various services like: memory management, networking,

security and memory safety. It also supports numerous programing languages like: C#,

F#, VB etc.

Following is the .NET framework Stack that shows the modules and components of the

Framework.

CLR (Common Language Runtime)

 It is a program execution engine that loads and execute program.

 It acts as a interface between framework and operating system.

FCL (Framework Class Library)

 It is a standard library that is collection of thousands of classes and used to build

application.

 The BCL (Base Class Library) is the core of the FCL and provides fundamental

functionalities.

WinForms

UNIT – I BASIS .NET . NET PROGRAMMING

2

P. GOPINATH M.C.A.,

 Windows Forms is a smart client technology for the .NET Framework, a set of managed

libraries that simplify common application tasks such as reading and writing to the file

system.

ASP .NET

 ASP .NET is a web framework designed and developed by Microsoft.

 It is used to develop websites, web applications and web services.

 It provides fantastic integration of HTML, CSS and JavaScript.

 It was first released in January 2002.

ADO .NET

 ADO .NET is a module of .Net Framework which is used to establish connection

between application and data sources.

 Data sources can be such as SQL Server and XML. ADO .NET consists of classes that

can be used to connect, retrieve, insert and delete data.

WPF (Windows Presentation Foundation)

 Windows Presentation Foundation (WPF) is a graphical subsystem by Microsoft for

rendering user interfaces in Windows-based applications.

WCF (Windows Communication Foundation)

 It is a framework for building service-oriented applications. Using WCF, you can send

data as asynchronous messages from one service endpoint to another.

WF (WorkFlow Foundation)
 Windows Workflow Foundation (WF) is a Microsoft technology that provides an API, an

in-process workflow engine, and a rehostable designer to implement long-running

processes as workflows within .NET applications.

LINQ (Language Integrated Query)

 It is a query language, introduced in .NET 3.5 framework.

 It is used to make query for data sources with C# or Visual Basics programming

languages.

Entity Framework

 It is an ORM based open source framework that is used to work with a database using

.NET objects.

 It eliminates lots of developer effort to handle the database.

 It is Microsoft's recommended technology to deal with database.

Parallel LINQ

 Parallel LINQ or PLINQ is a parallel implementation of LINQ to objects.

 It combines the simplicity and readability of LINQ and provide power of parallel

programing.

 It can improve and provide fast speed to execute the LINQ query by using all available

computer capabilities.

.Benefits of .NET

 It allows the use of multiple languages

 It has horizontal scalability

 .NET creates a unified environment that allows developers to create programs in C++,

Java or Virtual Basic

 Interfaces easily with Windows or Microsoft

 All tools and IDEs have been pre-tested and are easily available in the Microsoft

Developer Network.

 UI best practices are more consistent

 Language integration is seamless, as you can call methods from C# to VB.NET

.NET Common Language Runtime (CLR)

UNIT – I BASIS .NET . NET PROGRAMMING

3

P. GOPINATH M.C.A.,

 .NET CLR is a run-time environment.

 That manages and executes the code written in any .NET programming language.

 It converts code into native code which further can be executed by the CPU.

.NET CLR Functions

Following are the functions of the CLR.

 It converts program into native code.

 Handles Exceptions

 Provides type safety

 Memory management

 Provides security

 Improved performance

 Language independent

 Platform independent

 Garbage collection

 Provides language features such as inheritance, interfaces, and overloading for object-

oriented programming.

Features of CLR

Following is the component features of Common language Runtime.

1. Base Class Library Support
It is a class library that provides support of classes to the .NET application.

2. Thread Support
It manages parallel execution of the multi-threaded application.

3. COM Marshaler
It provides the communication between the COM objects and the application.

4. Type Checker
It checks types used in the application and verify that they match to the standard provided

by the CLR.

5. Code Manager
It manages code at execution run-time.

6. Garbage Collector
It releases unused memory and allocate that to a new application.

7. Exception Handler
It handles exception at runtime to avoid application failure.

8. Class Loader
It is used to load all classes at run time.

Compilation and MSIL
 The Code Execution Process involves the following two stages:

1. Compiler time process.

2. Runtime process.

UNIT – I BASIS .NET . NET PROGRAMMING

4

P. GOPINATH M.C.A.,

1. Compiler time process

1. The .Net framework has one or more language compliers, such as Visual Basic, C#,

Visual C++, JScript, or one of many third-party compilers.

2. Any one of the compilers translate your source code into Microsoft Intermediate

Language (MSIL) code.

3. For example, if you are using the C# programming language to develop an application,

when you compile the application, the C# language compiler will convert your source

code into Microsoft Intermediate Language (MSIL) code.

4. In short, VB.NET, C# and other language compilers generate MSIL code.

5. Currently "Microsoft Intermediate Language" (MSIL) code is also known as

"Intermediate Language" (IL) Codeor "Common Intermediate Language" (CIL) Code.

SOURCE CODE -----.NET COMLIPER------> BYTE CODE (MSIL + META DATA)

2. Runtime process.
1. The Common Language Runtime (CLR) includes a JIT compiler for converting MSIL to

native code.

2. The JIT Compiler in CLR converts the MSIL code into native machine code that is then

executed by the OS.

3. During the runtime of a program the "Just in Time" (JIT) compiler of the Common

Language Runtime (CLR) uses the Metadata and converts Microsoft Intermediate

Language (MSIL) into native code.

BYTE CODE (MSIL + META DATA) ----- Just-In-Time (JIT) compiler------> NATIVE

CODE

Microsoft Intermediate Language (MSIL)

 A .NET programming language (C#, VB.NET etc.) does not compile into executable

code; instead it compiles into an intermediate code called Microsoft Intermediate

Language (MSIL).

 As a programmer one need not worry about the syntax of MSIL - since our source code

in automatically converted to MSIL.

 The MSIL code is then send to the CLR (Common Language Runtime) that converts the

code to machine language which is then run on the host machine.

.NET Framework Class Library

http://ecomputernotes.com/csharp/dotnet/microsoft-intermediate-language

UNIT – I BASIS .NET . NET PROGRAMMING

5

P. GOPINATH M.C.A.,

.NET Framework Class Library is the collection of classes, namespaces, interfaces and

value types that are used for .NET applications.

It contains thousands of classes that supports the following functions.

o Base and user-defined data types

o Support for exceptions handling

o input/output and stream operations

o Communications with the underlying system

o Access to data

o Ability to create Windows-based GUI applications

o Ability to create web-client and server applications

o Support for creating web services

.NET Framework Class Library Namespaces
Following are the commonly used namespaces that contains useful classes and interfaces and

defined in Framework Class Library.

Namespaces Description

System It includes all common

datatypes, string values,

arrays and methods for data

conversion.

System.Data,

System.Data.Common, System.Data.OleDb,

System.Data.SqlClient, System.Data.SqlTypes

These are used to access a

database, perform

commands on a database

and retrieve database.

System.IO, System.DirectoryServices,

System.IO.IsolatedStorage

These are used to access,

read and write files.

System.Diagnostics It is used to debug and trace

the execution of an

application.

System.Net, System.Net.Sockets These are used to

communicate over the

Internet when creating peer-

to-peer applications.

System.Windows.Forms, System.Windows.Forms.Design These namespaces are used

to create Windows-based

applications using

Windows user interface

components.

System.Web, System.WebCaching, System.Web.UI,

System.Web.UI.Design, System.Web.UI.WebControls,

System.Web.UI.HtmlControls, System.Web.Configuration,

These are used to create

ASP. NET Web

applications that run over

UNIT – I BASIS .NET . NET PROGRAMMING

6

P. GOPINATH M.C.A.,

System.Web.Hosting, System.Web.Mail,

System.Web.SessionState

the web.

System.Web.Services, System.Web.Services.Description,

System.Web.Services.Configuration,

System.Web.Services.Discovery,

System.Web.Services.Protocols

These are used to create

XML Web services and

components that can be

published over the web.

System.Security, System.Security.Permissions,

System.Security.Policy, System.WebSecurity,

System.Security.Cryptography

These are used for

authentication,

authorization, and

encryption purpose.

System.Xml, System.Xml.Schema, System.Xml.Serialization,

System.Xml.XPath, System.Xml.Xsl

These namespaces are used

to create and access XML

files.

Visual Studio IDE

 An integrated development environment (IDE), also known as integrated design

environment and integrated debugging environment.

 It is a type of computer software that assists computer programmers to develop software.

In the case of Visual Basic .NET, that IDE is Visual Studio.

IDE Contents

 The Visual Studio IDE consists of several sections or tools.

 That the developer uses while programming. As you view the IDE for a new project

you generally have three sections in view:

1. The Toolbox on the left

2.The Solution Explorer on the right

3.The Code / Design view in the middle

Toolbox

The Toolbox is a palette of developer objects, or controls.

 That are placed on forms or web pages, and then code is added to allow the user to

interact with them.

 An example would be Textbox, Button and ListBox controls. With these three

controls added to a Windows Form object the developer could write code that would

take text, input by the application user, and added to the ListBox after the button was

clicked.

Solution Explorer
 This is a section that is used to view and modify the contents of the project.

 A Visual Studio Windows Application Project will generally have a Form object with a

code page, references to System components and possibly other modules with special

code that is used by the application.

Properties Windows

UNIT – I BASIS .NET . NET PROGRAMMING

7

P. GOPINATH M.C.A.,

 The properties windows shows all the control (like textbox) properties to be change at

design time.

 The Most of this property can be change at run time with some code, but basically most

of this properties change the way the control is display on your application.

Code / Design view

 This is where the magic takes place. Forms are designed graphically.

 In other words, the developer has a form on the screen that can be sized and modified to

look the way it will be displayed to the application users.

 Controls are added to the form from the Toolbox, the color and caption can be changed

along with many other items.

 This center window of the IDE is also where developers write the code that makes

everything in the application work.

 The code is written in modules, or files, that are either connected to an object (Forms) or

called specifically when needed.

Basic elements of C#

 C# is pronounced as "C-Sharp".

 Anders Hejlsberg is known as the founder of C# language.

 It is based on C++ and Java, but it has many additional extensions used to perform

component oriented programming approach.

 C# has evolved much since their first release in the year 2002.

 It is an object-oriented programming language provided by Microsoft.

 That runs on .Net Framework.

The C# programming develop different types of secured and robust applications:

o Window applications

o Web applications

o Web service applications

o Database applications etc.

C# Variable

 A variable is a name of memory location.

 It is used to store data. Its value can be changed and it can be reused many times.

 It is a way to represent memory location through symbol so that it can be easily

identified.

 The basic variable type available in C# can be categorized as:

Variable Type Example

Decimal types decimal

Boolean types True or false value, as assigned

Integral types int, char, byte, short, long

Floating point types float and double

Nullable types Nullable data types

UNIT – I BASIS .NET . NET PROGRAMMING

8

P. GOPINATH M.C.A.,

Rules for defining variables

 A variable can have alphabets, digits and underscore.

 A variable name can start with alphabet and underscore only. It can't start with digit.

 No white space is allowed within variable name.

 A variable name must not be any reserved word or keyword e.g. chars, float etc.

Valid variable names:

1. int x;

2. int _x;

3. int k20;

Invalid variable names:

1. int 4;

2. int x y;

3. int double;

C# Data Types

A data type specifies the type of data that a variable can store such as integer, floating, character etc.

There are 3 types of data types in C# language.

Types Data Types

Value Data Type short, int, char, float, double etc

Reference Data Type String, Class, Object and Interface

Pointer Data Type Pointers

Value Data Type

 The value data types are integer-based and floating-point based.

 C# language supports both signed and unsigned literals.

There are 2 types of value data type in C# language.

1) Predefined Data Types - such as Integer, Boolean, Float, etc.

2) User defined Data Types - such as Structure, Enumerations, etc.

Data Types Memory Size Range

Char 1 byte -128 to 127

signed char 1 byte -128 to 127

UNIT – I BASIS .NET . NET PROGRAMMING

9

P. GOPINATH M.C.A.,

unsigned char 1 byte 0 to 127

short 2 byte -32,768 to 32,767

signed short 2 byte -32,768 to 32,767

unsigned short 2 byte 0 to 65,535

int 4 byte -2,147,483,648 to -2,147,483,647

signed int 4 byte -2,147,483,648 to -2,147,483,647

unsigned int 4 byte 0 to 4,294,967,295

long 8 byte ?9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

signed long 8 byte ?9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

unsigned long 8 byte 0 - 18,446,744,073,709,551,615

float 4 byte 1.5 * 10-45 - 3.4 * 1038, 7-digit

precision

double 8 byte 5.0 * 10-324 - 1.7 * 10308, 15-digit

precision

decimal 16 byte at least -7.9 * 10?28 - 7.9 * 1028,

with at least 28-digit precision

Reference Data Type

 The reference data types do not contain the actual data stored in a variable, but they contain a

reference to the variables.

 If the data is changed by one of the variables, the other variable automatically reflects this

change in value.

There are 2 types of reference data type in C# language.

1) Predefined Types - such as Objects, String.

2) User defined Types - such as Classes, Interface.

Pointer Data Type

The pointer in C# language is a variable, it is also known as locator or indicator

that points to an address of a value.

Symbols used in pointer

UNIT – I BASIS .NET . NET PROGRAMMING

10

P. GOPINATH M.C.A.,

Symbol Name Description

& (ampersand sign) Address operator Determine the address of a variable.

* (asterisk sign) Indirection operator Access the value of an address.

Declaring a pointer

The pointer in C# language can be declared using * (asterisk symbol).

1. int * a; //pointer to int

2. char * c; //pointer to char

C# Keywords

 A keyword is a reserved word.

 It cannot use it as a variable name, constant name etc.

 In C# keywords cannot be used as identifiers. However, if we want to use the

keywords as identifiers, we may prefix the keyword with @ character.

abstract Base As Bool break Catch case

Byte Char Checked class const continue decimal

private protected Public return readonly Ref sbyte

explicit extern False finally fixed Float for

foreach Goto If implicit in in

(generic

modifier)

int

ulong ushort unchecked using unsafe Virtual void

Null object Operator out out

(generic

modifier)

override params

default delegate Do double else Enum event

sealed short Sizeof stackalloc static String struct

switch This Throw true try Typeof uint

abstract Base As bool break Catch case

volatile while

Program structures sample input and output operations

C# Example: Hello World

In C# programming language, a simple "hello world" program can be written by multiple ways.

Let's see the top 4 ways to create a simple C# example:

UNIT – I BASIS .NET . NET PROGRAMMING

11

P. GOPINATH M.C.A.,

o Simple Example

o Using System

o Using public modifier

o Using namespace

C# Simple Example

1. class Program

2. {

3. static void Main(string[] args)

4. {

5. System.Console.WriteLine("Hello World!");

6. }

7. }

Output:

Hello World!

Description

class: is a keyword which is used to define class.

Program: is the class name. A class is a blueprint or template from which objects are created. It

can have data members and methods. Here, it has only Main method.

static: is a keyword which means object is not required to access static members. So it saves

memory.

void: is the return type of the method. It does't return any value. In such case, return statement is

not required.

Main: is the method name. It is the entry point for any C# program. Whenever we run the C#

program, Main() method is invoked first before any other method. It represents start up of the

program.

string[] args: is used for command line arguments in C#. While running the C# program, we can

pass values. These values are known as arguments which we can use in the program.

System.Console.WriteLine("Hello World!"): Here, System is the namespace. Console is the

class defined in System namespace. The WriteLine() is the static method of Console class which

is used to write the text on the console.

C# - Operators and Expression

 An operator is a symbol.

 That tells the compiler to perform specific mathematical or logical manipulations.

 C# has rich set of built-in operators and provides the following type of operators

1. Arithmetic Operators

2. Relational Operators

3. Logical Operators

4. Bitwise and bit shift operators

5. Assignment Operators

Arithmetic Operators:

Arithmetic operators are used to perform arithmetic operations such as addition,

subtraction, multiplication, division, etc.

Operator Operator Name Example

+ Addition Operator 6 + 3 evaluates to 9

UNIT – I BASIS .NET . NET PROGRAMMING

12

P. GOPINATH M.C.A.,

Operator Operator Name Example

- Subtraction Operator 10 - 6 evaluates to 4

* Multiplication Operator 4 * 2 evaluates to 8

/ Division Operator 10 / 5 evaluates to 2

% Modulo Operator (Remainder) 16 % 3 evaluates to 1

Example :

using System;

namespace Operator {

class ArithmeticOperator {

 public static void Main(string[] args) {

 double firstNumber = 14.40, secondNumber = 4.60, result;

 int num1 = 26, num2 = 4, rem;

// Addition operator

 result = firstNumber + secondNumber;

 Console.WriteLine("{0} + {1} = {2}", firstNumber, secondNumber, result);

// Subtraction operator

 result = firstNumber - secondNumber;

 Console.WriteLine("{0} - {1} = {2}", firstNumber, secondNumber, result);

// Multiplication operator

 result = firstNumber * secondNumber;

 Console.WriteLine("{0} * {1} = {2}", firstNumber, secondNumber, result);

// Division operator

 result = firstNumber / secondNumber;

 Console.WriteLine("{0} / {1} = {2}", firstNumber, secondNumber, result);

// Modulo operator

 rem = num1 % num2;

 Console.WriteLine("{0} % {1} = {2}", num1, num2, rem);

 }

}

}

Output:

14.4 + 4.6 = 19

14.4 - 4.6 = 9.8

14.4 * 4.6 = 66.24

14.4 / 4.6 = 3.1304347826087

26 % 4 = 2

Relational Operators

UNIT – I BASIS .NET . NET PROGRAMMING

13

P. GOPINATH M.C.A.,

 Relational operators are used to check the relationship between two operands.

 If the relationship is true the result will be true, otherwise it will result in false.

 Relational operators are used in decision making and loops.

Operator Operator Name Example

== Equal to 6 == 4 evaluates to false

> Greater than 3 > -1 evaluates to true

< Less than 5 < 3 evaluates to false

>= Greater than or equal to 4 >= 4 evaluates to true

<= Less than or equal to 5 <= 3 evaluates to false

!= Not equal to 10 != 2 evaluates to true

Example :

using System;

 namespace Operator {

 class RelationalOperator {

 public static void Main(string[] args){

 bool result;

 int firstNumber = 10, secondNumber = 20;

result = (firstNumber==secondNumber);

Console.WriteLine("{0} == {1} returns {2}",firstNumber, secondNumber, result);

result = (firstNumber > secondNumber);

Console.WriteLine("{0} > {1} returns {2}",firstNumber, secondNumber, result);

result = (firstNumber < secondNumber);

Console.WriteLine("{0} < {1} returns {2}",firstNumber, secondNumber, result);

result = (firstNumber >= secondNumber);

Console.WriteLine("{0} >= {1} returns {2}",firstNumber, secondNumber, result);

result = (firstNumber <= secondNumber);

Console.WriteLine("{0} <= {1} returns {2}",firstNumber, secondNumber, result);

result = (firstNumber != secondNumber);

Console.WriteLine("{0} != {1} returns {2}",firstNumber, secondNumber, result);

 }

 } }

Output:

UNIT – I BASIS .NET . NET PROGRAMMING

14

P. GOPINATH M.C.A.,

10 == 20 returns False

10 > 20 returns False

10 < 20 returns True

10 >= 20 returns False

10 <= 20 returns True

10 != 20 returns True

Logical Operators:

 Logical operators are used to perform logical operation such as and, or.

 Logical operators operates on boolean expressions (true and false) and returns boolean

values.

 Logical operators are used in decision making and loops.

Operand 1 Operand 2 OR (||) AND (&&)

True True true True

True False true false

False True true false

False False false false

Example :

using System;

namespace Operator {

 class LogicalOperator {

 public static void Main(string[] args){

 bool result;

 int firstNumber = 10, secondNumber = 20;

// OR operator

 result = (firstNumber == secondNumber) || (firstNumber > 5);

 Console.WriteLine(result);

// AND operator

 result = (firstNumber == secondNumber) && (firstNumber > 5);

 Console.WriteLine(result);

 }

 }

}

Output:

True

False

UNIT – I BASIS .NET . NET PROGRAMMING

15

P. GOPINATH M.C.A.,

Bitwise and Bit Shift Operator:

Bitwise and bit shift operators are used to perform bit manipulation operations.

Operator Operator Name

~ Bitwise Complement

& Bitwise AND

| Bitwise OR

^ Bitwise Exclusive OR

<< Bitwise Left Shift

>> Bitwise Right Shift

Example :

using System;

 namespace Operator {

 class BitOperator {

 public static void Main(string[] args){

 int firstNumber = 10;

 int secondNumber = 20;

 int result;

 result = ~firstNumber;

 Console.WriteLine("~{0} = {1}", firstNumber, result);

 result = firstNumber & secondNumber;

 Console.WriteLine("{0} & {1} = {2}", firstNumber,secondNumber, result);

 result = firstNumber | secondNumber;

 Console.WriteLine("{0} | {1} = {2}", firstNumber,secondNumber, result);

 result = firstNumber ^ secondNumber;

 Console.WriteLine("{0} ^ {1} = {2}", firstNumber,secondNumber, result);

 result = firstNumber << 2;

 Console.WriteLine("{0} << 2 = {1}", firstNumber, result);

 result = firstNumber >> 2;

 Console.WriteLine("{0} >> 2 = {1}", firstNumber, result);

 }

 }

}

UNIT – I BASIS .NET . NET PROGRAMMING

16

P. GOPINATH M.C.A.,

 Output :

~10 = -11

10 & 20 = 0

10 | 20 = 30

10 ^ 20 = 30

10 << 2 = 40

10 >> 2 = 2

Assignment Operators

There are following assignment operators supported by C#

Operator Operator Name Example Equivalent To

+= Addition Assignment x += 5 x = x + 5

-= Subtraction Assignment x -= 5 x = x - 5

*= Multiplication Assignment x *= 5 x = x * 5

/= Division Assignment x /= 5 x = x / 5

%= Modulo Assignment x %= 5 x = x % 5

&= Bitwise AND Assignment x &= 5 x = x & 5

|= Bitwise OR Assignment x |= 5 x = x | 5

^= Bitwise XOR Assignment x ^= 5 x = x ^ 5

<<= Left Shift Assignment x <<= 5 x = x << 5

>>= Right Shift Assignment x >>= 5 x = x >> 5

=> Lambda Operator x => x*x Returns x*x

Example :

using System;

namespace Operator

{

 class BitOperator

 {

 public static void Main(string[] args)

UNIT – I BASIS .NET . NET PROGRAMMING

17

P. GOPINATH M.C.A.,

 {

 int number = 10;

 number += 5;

 Console.WriteLine(number);

 number -= 3;

 Console.WriteLine(number);

 number *= 2;

 Console.WriteLine(number);

 number /= 3;

 Console.WriteLine(number);

 number %= 3;

 Console.WriteLine(number);

 number &= 10;

 Console.WriteLine(number);

 number |= 14;

 Console.WriteLine(number);

 number ^= 12;

 Console.WriteLine(number);

 number <<= 2;

 Console.WriteLine(number);

number >>= 3;

 Console.WriteLine(number);

 }

 }

}

Output:

15

12

24

8

2

2

14

2

8

1

Control Statements

UNIT – I BASIS .NET . NET PROGRAMMING

18

P. GOPINATH M.C.A.,

C# offers three types of control statements:

1. Selection Statements.

2. Iteration Statements.

3. Jump Statements

1. Selection statements

C# if-else statement:

In C# programming, the if statement is used to test the condition.

There are various types of if statements in C#.

if statement

if-else statement

nested if statement

if-else-if ladder

 IF Statement

 The if statement tests the condition.

 It is executed if condition is true.

Syntax:

if(condition){

//code to be executed

}

 Example:

using System;

public class IfExample

 {

 public static void Main(string[] args)

 {

 int num = 10;

 if (num % 2 == 0)

 {

 Console.WriteLine("It is even number");

 }

 }

 }

Output:

It is even number

 IF-else Statement

 The C# if-else statement also tests the condition.

 It executes the if block if condition is true otherwise else block is executed.

UNIT – I BASIS .NET . NET PROGRAMMING

19

P. GOPINATH M.C.A.,

Syntax:

if(condition){

//code if condition is true

}else{

//code if condition is false

}

Example:

using System;

public class IfExample

 {

 public static void Main(string[] args)

 {

 int num = 11;

 if (num % 2 == 0)

 {

 Console.WriteLine("It is even number");

 }

 else

 {

 Console.WriteLine("It is odd number");

 }

 }

 }

Output:

It is odd number

 IF-else-if ladder Statement

 The C# if-else-if ladder statement executes one condition from multiple statements.

Syntax:

if(condition1){

//code to be executed if condition1 is true

}else if(condition2){

//code to be executed if condition2 is true

}

else if(condition3){

//code to be executed if condition3 is true

}

...

else{

//code to be executed if all the conditions are false

}

UNIT – I BASIS .NET . NET PROGRAMMING

20

P. GOPINATH M.C.A.,

 Example:

using System;

public class IfExample

 {

 public static void Main(string[] args)

 {

 Console.WriteLine("Enter a number to check grade:");

 int num = Convert.ToInt32(Console.ReadLine());

 if (num <0 || num >100)

 {

 Console.WriteLine("wrong number");

 }

 else if(num >= 0 && num < 50){

 Console.WriteLine("Fail");

 }

 else if (num >= 50 && num < 60)

 {

 Console.WriteLine("D Grade");

 }

 else if (num >= 60 && num < 70)

 {

 Console.WriteLine("C Grade");

 }

 else if (num >= 70 && num < 80)

 {

 Console.WriteLine("B Grade");

 }

 else if (num >= 80 && num < 90)

 {

 Console.WriteLine("A Grade");

 }

 else if (num >= 90 && num <= 100)

 {

 Console.WriteLine("A+ Grade");

 }

 }

 }

Output:

Enter a number to check grade:66

C Grade

Output:

Enter a number to check grade:-2

wrong number

C# switch

UNIT – I BASIS .NET . NET PROGRAMMING

21

P. GOPINATH M.C.A.,

 The switch statement executes one statement from multiple conditions.

 It is like if-else-if ladder statement in C#.

Syntax:
switch(expression){

case value1:

 //code to be executed;

 break;

case value2:

 //code to be executed;

 break;

......

default:

 //code to be executed if all cases are not matched;

 break;

}

Example:

using System;

 public class SwitchExample

 {

 public static void Main(string[] args)

 {

 Console.WriteLine("Enter a number:");

 int num = Convert.ToInt32(Console.ReadLine());

 switch (num)

 {

 case 10: Console.WriteLine("It is 10")

 break;

 case 20: Console.WriteLine("It is 20");

 break;

 case 30: Console.WriteLine("It is 30");

 break;

 default: Console.WriteLine("Not 10, 20 or 30");

 break;

 }

 }

 }

Output:

Enter a number:

10

It is 10

Output:

Enter a number:

55

Not 10, 20 or 30

2. Iteration Statements

UNIT – I BASIS .NET . NET PROGRAMMING

22

P. GOPINATH M.C.A.,

For Loop

 The for loop is used to iterate a part of the program several times.

 If the number of iteration is fixed, it is recommended to use for loop than while or do-

while loops.

 The for loop is same as C/C++

 . We can initialize variable, check condition and increment/decrement value.

Syntax:
1. for(initialization; condition; incr/decr){

2. //code to be executed

3. }

Example:

1. using System;

2. public class ForExample

3. {

4. public static void Main(string[] args)

5. {

6. for(int i=1;i<=5;i++){

7. Console.WriteLine(i);

8. }

9. }

10. }

Output:

1

2

3

4

5

Nested For Loop
In C#, we can use for loop inside another for loop, it is known as nested for loop.

Example:

using System;

public class ForExample

 {

 public static void Main(string[] args)

 {

 for(int i=1;i<=3;i++){

 for(int j=1;j<=3;j++){

 Console.WriteLine(i+" "+j);

 }

 }

 }

 }

Output:

1 1

1 2

UNIT – I BASIS .NET . NET PROGRAMMING

23

P. GOPINATH M.C.A.,

1 3

2 1

2 2

2 3

3 1

3 2

3 3

While Loop

 The while loop is a entry control loop.

 In while loop is used to iterate a part of the program several times.

 If the number of iteration is not fixed, it is recommended to use while loop than for loop.

Syntax:
1. while(condition){

2. //code to be executed

3. }

Example:

1. using System;

2. public class WhileExample

3. {

4. public static void Main(string[] args)

5. {

6. int i=1;

7. while(i<=5)

8. {

9. Console.WriteLine(i);

10. i++;

11. }

12. }

13. }

Output:

1

2

3

4

5

 Do-While Loop

 The do-while loop is a exit control loop.

 The do-while loop is used to iterate a part of the program several times.

 If the number of iteration is not fixed and you must have to execute the loop at least once,

it is recommended to use do-while loop.

 The do-while loop is executed at least once because condition is checked after loop body.

Syntax:
1. do{

2. //code to be executed

3. }while(condition);

UNIT – I BASIS .NET . NET PROGRAMMING

24

P. GOPINATH M.C.A.,

Example:

1. using System;

2. public class DoWhileExample

3. {

4. public static void Main(string[] args)

5. {

6. int i = 1;

7.

8. do{

9. Console.WriteLine(i);

10. i++;

11. } while (i <= 5) ;

12.
13. }

14. }

Output:

1

2

3

4

5

3.Jump Statements:

Break Statement

The break is used to break loop or switch statement.

 It breaks the current flow of the program at the given condition.

 In case of inner loop, it breaks only inner loop.

Syntax:
1. jump-statement;

2. break;

Example:

1. using System;

2. public class BreakExample

3. {

4. public static void Main(string[] args)

5. {

6. for (int i = 1; i <= 10; i++)

7. {

8. if (i == 5)

9. {

10. break;

11. }

12. Console.WriteLine(i);

13. }

14. }

15. }

UNIT – I BASIS .NET . NET PROGRAMMING

25

P. GOPINATH M.C.A.,

Output:

1

2

3

4

Continue Statement

 The continue statement is used to continue loop.

 It continues the current flow of the program and skips the remaining code at specified

condition.

 In case of inner loop, it continues only inner loop.

Syntax:
1. jump-statement;

2. continue;

Example:

1. using System;

2. public class ContinueExample

3. {

4. public static void Main(string[] args)

5. {

6. for(int i=1;i<=6;i++){

7. if(i==5){

8. continue;

9. }

10. Console.WriteLine(i);

11. }

12. }

13. }

Output:

1

2

3

4

6

Goto Statement

The goto statement is also known jump statement.

It is used to transfer control to the other part of the program.

It unconditionally jumps to the specified label.

It can be used to transfer control from deeply nested loop or switch case label.

Currently, it is avoided to use goto statement in C# because it makes the program complex.

Example
1. using System;

2. public class GotoExample

3. {

4. public static void Main(string[] args)

5. {

6. ineligible:

7. Console.WriteLine("You are not eligible to vote!");

UNIT – I BASIS .NET . NET PROGRAMMING

26

P. GOPINATH M.C.A.,

8.

9. Console.WriteLine("Enter your age:\n");

10. int age = Convert.ToInt32(Console.ReadLine());

11. if (age < 18){

12. goto ineligible;

13. }

14. else

15. {

16. Console.WriteLine("You are eligible to vote!");

17. }

18. }

19. }

Output:

You are not eligible to vote!

Enter your age:

11

You are not eligible to vote!

Enter your age:

5

You are not eligible to vote!

Enter your age:

26

You are eligible to vote!

C# Arrays

 The array is a group of similar types of elements.

 That have a contiguous set of memory location.

 Array is an object of base type System.Array.

 In C#, array index starts from 0. We can store only fixed set of elements in C# array.

Advantages

o Code Optimization (less code)

o Random Access

o Easy to traverse data

o Easy to manipulate data

o Easy to sort data etc.

Disadvantages

o Fixed size

 Types

There are 3 types of arrays in C# programming:

1. Single Dimensional Array

UNIT – I BASIS .NET . NET PROGRAMMING

27

P. GOPINATH M.C.A.,

2. Multidimensional Array

3. Jagged Array

1. Single Dimensional Array

To create single dimensional array, you need to use square brackets [] after the type.

Syntax:

Datatype[] array_name = new Datatype[Size];

Example:

using System;

public class ArrayExample

{

 public static void Main(string[] args)

 {

 int[] arr = new int[5];//creating array

 arr[0] = 10;//initializing array

 arr[2] = 20;

 arr[4] = 30;

 //traversing array

 for (int i = 0; i < arr.Length; i++)

 {

 Console.WriteLine(arr[i]);

 }

 }

}

Output:

10

0

20

0

30

2. Multidimensional Array

 C# also supports multi-dimensional arrays.

 A multi-dimensional array is a two dimensional series like rows and columns.

Syntax:

Datatype[,] array_name = new Datatype[row, column];

Example:

using System;

public class Program

{

 public static void Main(){

 int[,] intArray = new int[3,2]{ {1, 2}, {3, 4}, {5, 6} };

UNIT – I BASIS .NET . NET PROGRAMMING

28

P. GOPINATH M.C.A.,

 Console.WriteLine(intArray[0, 0]);

 Console.WriteLine(intArray[0, 1]);

 Console.WriteLine(intArray[1, 0]);

 Console.WriteLine(intArray[1, 1]);

 Console.WriteLine(intArray[2, 0]);

 Console.WriteLine(intArray[2, 1]);

 }

}

Output:

1

2

3

4

5

6

3. Jagged Array

 A jagged array is an array of an array.

 Jagged arrays store arrays instead of any other data type value directly.

 A jagged array is initialized with two square brackets [][].

 The first bracket specifies the size of an array and the second bracket specifies the

dimension of the array which is going to be stored as values. (Remember, jagged array

always store an array.)

The following jagged array stores a two single dimensional array as a value:

Syntax:

Datatype[][,] Array_name = new Datatype[Size][,];

Example:

using System;

public class Program {

 public static void Main() {

 int[][] intJaggedArray = new int[2][];

 intJaggedArray[0] = new int[3]{1,2,3};

 intJaggedArray[1] = new int[2]{4,5};

UNIT – I BASIS .NET . NET PROGRAMMING

29

P. GOPINATH M.C.A.,

 Console.WriteLine(intJaggedArray[0][0]);

 Console.WriteLine(intJaggedArray[0][2]);

 Console.WriteLine(intJaggedArray[1][1]);

 }

}

Output:

1

3

5

Traversal using foreach loop
 the array elements using foreach loop.

 It returns array element one by one.

Example:

1. using System;

2. public class ArrayExample

3. {

4. public static void Main(string[] args)

5. {

6. int[] arr = { 10, 20, 30, 40, 50 };//creating and initializing array

7.

8. //traversing array

9. foreach (int i in arr)

10. {

11. Console.WriteLine(i);

12. }

13. }

14. }

Output:

10

20

30

40

50

Structures:

 a structure is a value type data type.

 It make a single variable hold related data of various data types.

 The struct keyword is used for creating a structure.

 Structures are used to represent a record.

Example:

using System;

struct Books {

UNIT – I BASIS .NET . NET PROGRAMMING

30

P. GOPINATH M.C.A.,

 public string title;

 public string author;

 public string subject;

 public int book_id;

};

public class testStructure {

 public static void Main(string[] args) {

 Books Book1; /* Declare Book1 of type Book */

 Books Book2; /* Declare Book2 of type Book */

 /* book 1 specification */

 Book1.title = "C Programming";

 Book1.author = "Nuha Ali";

 Book1.subject = "C Programming Tutorial";

 Book1.book_id = 6495407;

 /* book 2 specification */

 Book2.title = "Telecom Billing";

 Book2.author = "Zara Ali";

 Book2.subject = "Telecom Billing Tutorial";

 Book2.book_id = 6495700;

 /* print Book1 info */

 Console.WriteLine("Book 1 title : {0}", Book1.title);

 Console.WriteLine("Book 1 author : {0}", Book1.author);

 Console.WriteLine("Book 1 subject : {0}", Book1.subject);

 Console.WriteLine("Book 1 book_id :{0}", Book1.book_id);

 /* print Book2 info */

 Console.WriteLine("Book 2 title : {0}", Book2.title);

 Console.WriteLine("Book 2 author : {0}", Book2.author);

 Console.WriteLine("Book 2 subject : {0}", Book2.subject);

 Console.WriteLine("Book 2 book_id : {0}", Book2.book_id);

 Console.ReadKey();

 }

}

Output:

Book 1 title : C Programming

Book 1 author : Nuha Ali

Book 1 subject : C Programming Tutorial

Book 1 book_id : 6495407

Book 2 title : Telecom Billing

Book 2 author : Zara Ali

Book 2 subject : Telecom Billing Tutorial

UNIT – I BASIS .NET . NET PROGRAMMING

31

P. GOPINATH M.C.A.,

Book 2 book_id : 6495700

 .NET PROGRAMMING

1
 P. GOPINATH M.C.A.,

Unit – II VB.NET

Introduction to VB.Net

 Visual Basic is a third-generation event-driven programming language first released by

Microsoft in 1991.

 Visual Basic .NET (VB.NET) is an object-oriented programming language implemented

on the .NET Framework

 VB.NET is an object, including all of the primitive types (Short, Integer, Long, String,

Boolean, etc.) and user-defined types, events, and even assemblies. All objects inherits

from the base class Object.

 It has full access to all the libraries in the .Net Framework.

The following reasons make VB.Net a widely used professional language −

 Modern, general purpose.

 Object oriented.

 Component oriented.

 Easy to learn.

 Structured language.

 It produces efficient programs.

 It can be compiled on a variety of computer platforms.

 Part of .Net Framework.

VB.NET fundamentals:

Variables:

 A variable is a memory location that is used to store data.

 A variable is referred by a name and can store data of a particular data type.

 Data stored in a variable can change at any point in a program.

Data type:

It is a kind of data it may be either number or text.

Example: Integer, bit, string, Date …

Constants:

 It is similar to variable used to store values.

 Values stored in a constant always in same.

Example: pi=3.14

Array

 The array is a group of similar types of elements.

 That have a contiguous set of memory location.

 Array is an object of base type System.Array.

 In VB.NET array index starts from 0. We can store only fixed set of elements in VB.NET

array.

Example:

 .NET PROGRAMMING

2
 P. GOPINATH M.C.A.,

Module arrayApl

 Sub Main()

 Dim n(10) As Integer ' n is an array of 11 integers '

 Dim i, j As Integer

 ' initialize elements of array n '

 For i = 0 To 5

 n(i) = i + 100 ' set element at location i to i + 100

 Next i

 ' output each array element's value '

 For j = 0 To 5

 Console.WriteLine("Element({0}) = {1}", j, n(j))

 Next j

 Console.ReadKey()

 End Sub

End Module

Output;

Element(0) = 100 Element(1) = 101 Element(2) = 102 Element(3) = 103

Element(4) = 104 Element(5) = 105

Object:

 Objects are the basic run time entity they may represent a person a place.

 Objects have states and behaviors.

Example:

A dog has states - color, name, breed as well as behaviors – wagging the tail, barking, eating. An

object is an instance of a class.

Class Definition

 A class can be defined as a template/blueprint that describes the behavior/state that the

object of its type support.

 A class definition starts with the keyword Class followed by the class name

 the class body, ended by the End Class statement.

Syntax:

Class name [(Of typelist)]

 [Inherits classname]

 [Implements interfacenames]

 [statements]

End Class

Control Structure in VB.NET

 The program have to perform some action or take decision based on some condition at

that time you need to use control structure.

 .NET PROGRAMMING

3
 P. GOPINATH M.C.A.,

 Control structures are very useful for taking decisions based on the condition.

 Control structures structure first test for the condition and based on the outcome of that

condition they perform the specified tasks.

Following are the list of Control structures :

(1) If … Then … EndIf

(2) If … Then … Else … EndIf

(3) If … Then … ElseIf … EndIf

(4) Select Case….End Select

(1) If …Then … End If Statement
The general syntax of the If … Then …. End If structure is given below:

Syntax:

If condition Then

Statement Block

End if

Example:

If txtName.text = “” then

MsgBox ("Please Enter Name")

txtName.Focus ()

End If

(2) If … Then … Else … End If
The General syntax of If … Then … Else … End If structure is given below:

Syntax:

If condition then

Statement block 1

Else

Statement block 2

End if

Example:

If val (txtNumber1.text) > val (txtNumber2.text) then

MsgBox (txtNumber1.text & “Is Maximum”)

Else

MsgBox (txtNumber2.text & “Is Maximum”)

End If

(3) If … Then … ElseIf … End If
The general syntax of If … Then … ElseIf … End If structure is given below:

Syntax:

 .NET PROGRAMMING

4
 P. GOPINATH M.C.A.,

If Condition1 Then

Statement Block 1

ElseIf Condition2 Then

Statement Block 2

ElseIf Condition3 Then

Statement Block 3

……..

ElseIf ConditionN Then

Statement Block N

Else

Default Statement Block

End if

Example:

If txtName.text = “” then

MsgBox (“Please Enter Name”)

txtName. Focus ()

ElseIf txtAge.text = “” then

MsgBox (“Please Enter Age”)

txtAge. Focus ()

ElseIf txtBasic.text = “” then

MsgBox (“Please Enter Basic”)

txtBasic. Focus ()

Else

Basic = Val (txtBasic.text)

DA = Basic * 0.80

HRA = (Basic + DA) * 0.12

Gross = Basic + DA + HRA

txtGross.text = Gross

End If

(4) Select Case … End Select

It is also known as multiple choice decision statement. It allows you to select one option from the

list of available options. It is the alternative of If …Then ... ElseIf structure. The general syntax

for Select Case …. End Select structure is given below:

Select Case expression

Case Value1

Statement Block 1

Case Value 2

Statement Block 2

 .NET PROGRAMMING

5
 P. GOPINATH M.C.A.,

…………………………

Case Value N

Statement Block N

Case Else

Default statement Block

End Select

Dim A as integer, B as integer, C as Integer

Dim op as string

Select Case op

Case “+”

C = A + B

Case “-”

C = A - B

Case “*”

C = A * B

Case “/”

C = A / B

Case Else

MsgBox (“Wrong Option”)

End Select

Looping Control Structure

it is required to perform some action or task repeatedly for specified number of times or until

some condition is satisfied at that time you need to use Looping control structure.

Following are the List of Looping Control Structure:

(1) Do While … Loop

(2) For … Next

(1) Do While …. Loop

Do while … Loop control structure is used to repeat statements between Do While and Loop

statements until the condition specified with the Do While statements evaluates to FALSE.

The general syntax of Do While … Loop structure is given below:

Do while Condition

Statement Block

Loop

Dim a As Integer

a = 1

Do While a <= 10

If a Mod 2 <> 0 Then

lblOdd.Text = lblOdd.Text & " " & a

 .NET PROGRAMMING

6
 P. GOPINATH M.C.A.,

End If

a = a + 1

Loop

(5) For…Next

For…Next control structure is used to repeat Statement Block for specified number of times.

The general syntax of For … Next statement is given below:

For counter=Start-Value To End-Value [step Step-Value]

Statement Block

Next

Example:

Dim i As Integer

Dim n As Integer = 4

Dim fact As Integer = 1

For i = 1 To n Step 1

fact = fact * i

Next

Label1.Text = fact

Constructor:

 A Constructor is a special kinds of member function that used to initialize the object.

 A constructor is like a method in that it contain executable code and may be defined with

parameter.

 This is first method that is run when an instance of type is created.

Constructor is two types in VB.NET

 Instance constructor

 Shared constructor

Instance constructor:-

"An Instance constructor runs whenever the CLR creates an object from a class"

coding for instance constructor:-

Module Module1

 Sub Main()

 Dim con As New Constructor("Hello world")

 Console.WriteLine(con.display())

 'display method

 End Sub

End Module

Public Class Constructor

 .NET PROGRAMMING

7
 P. GOPINATH M.C.A.,

 Public x As String

 Public Sub New(ByVal value As String)

 'constructor

 x = value

 'storing the value of x in constructor

 End Sub

 Public Function display() As String

 Return x

 'returning the stored value

 End Function

End Class

Output:- Hellow world

Shared Constructor:-
"Shared constructor are most often used to initialize class level data such as shared

fields"

coding for shared constructor:-

Module Testcons

 Sub Main()

 Console.WriteLine("100")

 B.G()

 Console.WriteLine("200")

 End Sub

End Module

Class A

 Shared Sub New()

 Console.WriteLine("Init A")

 End Sub

End Class

Class B

 Inherits A

 Shared Sub New()

 Console.WriteLine("Init B")

 End Sub

 Public Shared Sub G()

 Console.WriteLine("Hello world")

 End Sub

End Class

Output: 100

 200

 Hello world

Overriding

 .NET PROGRAMMING

8
 P. GOPINATH M.C.A.,

A method in a subclass has the same name, same parameters or signature and same return

type (or sub-type) as a method in its super-class, then the method in the subclass is said

to override the method in the super-class.

Method overriding is one of the way by Run Time Polymorphism. That same name

function with same parameters in deferent deferent classes called Run time Polymorphism.

Example:

Public Class poly

Public Sub show()

WriteLine("hellow")

End Sub

End Class

Public Class poly2

Inherits poly

Public Sub show()

WriteLine("world")

End Sub

End Class

Class output

Public Shared Sub Main()

Dim a As poly2 = New poly2()

a.show()

End Sub

End Class

Output:

World

Inheritance:

 Inheritance is a mechanism where in a new class is derived from an existing class.

 In VB.NET, classes may inherit the properties and methods of other classes.

 A class derived from another class is called a subclass.

 the class from which a subclass is derived is called a superclass.

 A subclass can have only one superclass, whereas a superclass may have one or more

subclasses.

Syntax:

Public Class Base

End Class

https://www.geeksforgeeks.org/dynamic-method-dispatch-runtime-polymorphism-java/

 .NET PROGRAMMING

9
 P. GOPINATH M.C.A.,

Public Class Derived

 Inherits Base

 'Derived class inherits the Base class

End Class

Example:

Imports System. Console

Module Module1

 Sub Main()

 Dim Obj As New Subclass()

 WriteLine(Obj.sum())

 Read()

 End Sub

End Module

Public Class Superclass

 'base class

 Public X As Integer = 5

 Public Y As Integer = 15

End Class

Public Class Subclass

 Inherits Base

 'derived class. Class Subclass inherited from class Superclass

 Public Z As Integer = 25

 Public Function sum() As Integer

 'using the variables, function from superclass and adding more functionality

 Return X + Y + Z

 End Function

End Class

Output:

45

Polymorphism

 "Manipulated the object of various classes and invoke method on one object without

knowing the object type".

 .NET PROGRAMMING

10
 P. GOPINATH M.C.A.,

 Polymorphism is one of the crucial features of VB.NET, It means "The ability to take on

different form", It is also called as Overloading.

 the use of same thing for different purposes. It used to create as many functions with

one function name but with different argument list.

 The function performs different operations based on the argument list in the function call.

 The exact function to be invoked will be determined by checking the type and number of

arguments in the function.

Example:-polymorphism real word examples are Student, Manager, Animal and etc.

Polymorphism can be divide in to two parts,

 Compile time polymorphism

 Run time polymorphism

Compile time polymorphism:-

 compile time polymorphism achieved by "Method Overloading",

 That same name function with deferent parameters in same class called compile time

polymorphism.

Example:

Module Module1

Sub Main()

Dim two As New One()

WriteLine(two.add(10))

'calls the function with one argument

WriteLine(two.add(10, 20))

'calls the function with two arguments

WriteLine(two.add(10, 20, 30))

'calls the function with three arguments

End Sub

End Module

Public Class One

Public i, j, k As Integer

Public Function add(ByVal i As Integer) As Integer

'function with one argument

Return i

End Function

Public Function add(ByVal i As Integer, ByVal j As Integer) As Integer

'function with two arguments

Return i + j

End Function

 .NET PROGRAMMING

11
 P. GOPINATH M.C.A.,

Public Function add(ByVal i As Integer, ByVal j As Integer, ByVal k As Integer) As Integer

'function with three arguments

Return i + j + k

End Function

End Class

Output:

 10

 20

 30

Run time Polymorphism:-

 Run time polymorphism achieved by "Method Overriding or Operator Overloading"that

same name function with same parameters in deferent deferent classes called Run time

Polymorphism.

Example:

Public Class poly

Public Sub show()

WriteLine("hellow")

End Sub

End Class

Public Class poly2

Inherits poly

Public Sub show()

WriteLine("world")

End Sub

End Class

Class output

Public Shared Sub Main()

Dim a As poly2 = New poly2()

a.show()

End Sub

End Class

Output:

World

Interfaces:-
 A user defined data type similar to class but contains all abstract methods.

 All methods are abstract and public by default.

 All such methods are overridden in child class.

 Allows implementing the multiple inheritance.

 A class can inherit only one other class but any number of interfaces.

 All interfaces in .NET starts with I.

 .NET PROGRAMMING

12
 P. GOPINATH M.C.A.,

 Implements keyword to implement the interface.

 Use the Interface keyword to create an interface.

Example:

Module Module1

 Interface Common

 Sub Leaves()

 End Interface

 Interface IHr

 Inherits Common

 Sub ShowSalary()

 End Interface

 Interface IFinance

 Inherits Common

 Sub Budget()

 End Interface

 Class ERP

 Implements IHr

 Implements IFinance

 Public Sub ShowSalary() Implements IHr.ShowSalary

 System.Console.WriteLine("Salary will be on 10th")

 End Sub

 Public Sub Budget() Implements IFinance.Budget

 System.Console.WriteLine("Budget is 10 L")

 End Sub

 Public Sub Leaves() Implements Common.Leaves

 System.Console.WriteLine("Leaves are 10 Cs, 20 EL")

 End Sub

 End Class

 Class ITC

 Public Shared Sub Main()

 Dim h As IHr = New ERP()

 h.ShowSalary()

 h.Leaves()

 End Sub

 End Class

End Module

OUTPUT:

 .NET PROGRAMMING

13
 P. GOPINATH M.C.A.,

Exception:

 An exception is a problem that arises during the execution of a program.

 An exception is a response to an exceptional circumstance that arises while a program is

running, such as an attempt to divide by zero.

 Exceptions provide a way to transfer control from one part of a program to another.

 Exception handling is built upon four keywords:

Try, Catch, Finally and Throw.

 Try − A Try block identifies a block of code for which particular exceptions will be

activated. It's followed by one or more Catch blocks.

 Catch − A program catches an exception with an exception handler at the place in a

program where you want to handle the problem. The Catch keyword indicates the catching

of an exception.

 Finally − The Finally block is used to execute a given set of statements, whether an

exception is thrown or not thrown. For example, if you open a file, it must be closed

whether an exception is raised or not.

 Throw − A program throws an exception when a problem shows up. This is done using a

Throw keyword.

Syntax:

Try

 [tryStatements]

 [Exit Try]

[Catch [exception [As type]] [When expression]

 [catchStatements]

 [Exit Try]]

 .NET PROGRAMMING

14
 P. GOPINATH M.C.A.,

[Catch ...]

[Finally

 [finallyStatements]]

End Try

Example:

Module Module1

 Sub Main()

 Try

 ' Try to divide by zero.

 Dim value As Integer = 1 / Integer.Parse("0")

 ' This statement is sadly not reached.

 Console.WriteLine("Hi")

 Catch ex As Exception

 ' Display the message.

 Console.WriteLine(ex.Message)

 End Try

 End Sub

End Module

Output

Arithmetic operation resulted in an overflow.

Delegates and Events

 Delegates are objects that refer to methods.

 They are sometimes described as type-safe function pointers because they are similar to

function pointers used in other programming languages. But unlike function pointers,

 Visual Basic delegates are a reference type based on the class System.Delegate.

 Delegates can reference both shared methods — methods that can be called without a

specific instance of a class — and instance methods.

 Events in VB.NET are handled by delegates, which serve as a mechanism that defines

one or more callback functions to process events.

 An event is a message sent by an object to signal the occurrence of an action.

 The action could arise from user interaction, such as a mouse click, or could be triggered

by some other program logic.

 The object that triggers the event is called the event sender.

 The object that captures the event and responds to it is called the event receiver.

 In event communication, the event sender class does not know which object or method

will handle the events it raises.

 It merely functions as an intermediary or pointer-like mechanism between the source and

the receiver.

 The .NET framework defines a special type delegate that serves as a function pointer.

https://docs.microsoft.com/en-us/dotnet/api/system.delegate

 .NET PROGRAMMING

15
 P. GOPINATH M.C.A.,

Example

Public Class MyEvt

 Public Delegate Sub t(ByVal sender As [Object], ByVal e As MyArgs)

 ' declare a delegate

 Public Event tEvt As t

 'declares an event for the delegate

 Public Sub mm()

 'function that will raise the callback

 Dim r As New MyArgs()

 RaiseEvent tEvt(Me, r)

 'calling the client code

 End Sub

 Public Sub New()

 End Sub

End Class

'arguments for the callback

Public Class MyArgs

 Inherits EventArgs

 Public Sub New()

 End Sub

End Class

Public Class MyEvtClient

 Private oo As MyEvt

 Public Sub New()

 Me.oo = New MyEvt()

 AddHandler Me.oo.tEvt, New MyEvt.t(AddressOf oo_tt)

 End Sub

 Public Shared Sub Main(ByVal args As [String]())

 Dim cc As New MyEvtClient()

 cc.oo.mm()

 End Sub

 'this code will be called from the server

 Public Sub oo_tt(ByVal sender As Object, ByVal e As MyArgs)

 Console.WriteLine("yes")

 Console.ReadLine()

 End Sub

End Class

OUTPUT:

 yes

.NET PORGRAMMING

1
P. GOPINATH M.C.A.,

Unit – III controls

Windows - Forms

The creating a Window Forms Application by following steps in Microsoft Visual Studio - File

→ New Project → Windows Forms Applications Finally, select OK,

Microsoft Visual Studio creates your project and displays following window Form with a

name Form1.

Visual Basic Form is the container for all the controls that make up the user interface.

.NET PORGRAMMING

2
P. GOPINATH M.C.A.,

If you click the icon on the top left corner, it opens the control menu, which contains the various

commands to control the form like to move control from one place to another place, to

maximize or minimize the form or to close the form.

Form Properties

S.N Properties Description

1
AcceptButton The button that's automatically activated when you press Enter, no

matter which control has the focus at the time. Usually the OK button

on a form is set as AcceptButton for a form.

2
CancelButton The button that's automatically activated when you hit the Esc key.

Usually, the Cancel button on a form is set as CancelButton for a

form.

.NET PORGRAMMING

3
P. GOPINATH M.C.A.,

3
AutoScale This Boolean property determines whether the controls you place on

the form are automatically scaled to the height of the current font. The

default value of this property is True. This is a property of the form,

but it affects the controls on the form.

4
AutoScroll This Boolean property indicates whether scroll bars will be

automatically attached to the form if it is resized to a point that not all

its controls are visible.

5
AutoScrollMinSize This property lets you specify the minimum size of the form, before

the scroll bars are attached.

6
AutoScrollPosition The AutoScrollPosition is the number of pixels by which the two

scroll bars were displaced from their initial locations.

7
BackColor Sets the form background color.

8
BorderStyle The BorderStyle property determines the style of the form's border

and the appearance of the form −

 None − Borderless window that can't be resized.

 Sizable − This is default value and will be used for resizable

window that's used for displaying regular forms.

 Fixed3D − Window with a visible border, "raised" relative to

the main area. In this case, windows can't be resized.

 FixedDialog − A fixed window, used to create dialog boxes.

 FixedSingle − A fixed window with a single line border.

 FixedToolWindow − A fixed window with a Close button

only. It looks like the toolbar displayed by the drawing and

imaging applications.

 SizableToolWindow − Same as the FixedToolWindow but

resizable. In addition, its caption font is smaller than the usual.

9
ControlBox By default, this property is True and you can set it to False to hide the

icon and disable the Control menu.

.NET PORGRAMMING

4
P. GOPINATH M.C.A.,

10
Enabled If True, allows the form to respond to mouse and keyboard events; if

False, disables form.

11
Font This property specify font type, style, size

12
HelpButton Determines whether a Help button should be displayed in the caption

box of the form.

13
Height This is the height of the Form in pixels.

14
MinimizeBox By default, this property is True and you can set it to False to hide the

Minimize button on the title bar.

15
MaximizeBox By default, this property is True and you can set it to False to hide the

Maximize button on the title bar.

16
MinimumSize This specifies the minimum height and width of the window you can

minimize.

17
MaximumSize This specifies the maximum height and width of the window you

maximize.

18
Name This is the actual name of the form.

19
StartPosition This property determines the initial position of the form when it's first

displayed. It will have any of the following values −

 CenterParent − The form is centered in the area of its parent

form.

 CenterScreen − The form is centered on the monitor.

 Manual − The location and size of the form will determine its

starting position.

 WindowsDefaultBounds − The form is positioned at the

default location and size determined by Windows.

.NET PORGRAMMING

5
P. GOPINATH M.C.A.,

 WindowsDefaultLocation − The form is positioned at the

Windows default location and has the dimensions you've set at

design time.

20
Text The text, which will appear at the title bar of the form.

21
Top, Left These two properties set or return the coordinates of the form's top-

left corner in pixels.

22
TopMost This property is a True/False value that lets you specify whether the

form will remain on top of all other forms in your application. Its

default property is False.

23
Width This is the width of the form in pixel.

Form Methods

Sr.No. Method Name & Description

1 Activate
Activates the form and gives it focus.

2 ActivateMdiChild
Activates the MDI child of a form.

3 AddOwnedForm
Adds an owned form to this form.

4 BringToFront
Brings the control to the front of the z-order.

5 CenterToParent
Centers the position of the form within the bounds of the parent form.

6 CenterToScreen
Centers the form on the current screen.

7 Close
Closes the form.

8 Contains

.NET PORGRAMMING

6
P. GOPINATH M.C.A.,

Retrieves a value indicating whether the specified control is a child of the control.

9 Focus
Sets input focus to the control.

10 Hide
Conceals the control from the user.

11 Refresh
Forces the control to invalidate its client area and immediately redraw itself and any child

controls.

12 Scale(SizeF)
Scales the control and all child controls by the specified scaling factor.

13 ScaleControl
Scales the location, size, padding, and margin of a control.

14 ScaleCore
Performs scaling of the form.

15 Select
Activates the control.

16 SendToBack
Sends the control to the back of the z-order.

17 SetAutoScrollMargin
Sets the size of the auto-scroll margins.

18 SetDesktopBounds
Sets the bounds of the form in desktop coordinates.

19 SetDesktopLocation
Sets the location of the form in desktop coordinates.

20 SetDisplayRectLocation
Positions the display window to the specified value.

21 Show
Displays the control to the user.

22 ShowDialog
Shows the form as a modal dialog box.

Form Events

.NET PORGRAMMING

7
P. GOPINATH M.C.A.,

Sr.No. Event Description

1 Activated Occurs when the form is activated in code or by the user.

2 Click Occurs when the form is clicked.

3 Closed Occurs before the form is closed.

4 Closing Occurs when the form is closing.

5 DoubleClick Occurs when the form control is double-clicked.

6 DragDrop Occurs when a drag-and-drop operation is completed.

7 Enter Occurs when the form is entered.

8 GotFocus Occurs when the form control receives focus.

9 HelpButtonClicked Occurs when the Help button is clicked.

10 KeyDown Occurs when a key is pressed while the form has focus.

11 KeyPress Occurs when a key is pressed while the form has focus.

12 KeyUp Occurs when a key is released while the form has focus.

13 Load Occurs before a form is displayed for the first time.

14 LostFocus Occurs when the form loses focus.

15 MouseDown Occurs when the mouse pointer is over the form and a mouse

button is pressed.

16 MouseEnter Occurs when the mouse pointer enters the form.

17 MouseHover Occurs when the mouse pointer rests on the form.

18 MouseLeave Occurs when the mouse pointer leaves the form.

19 MouseMove Occurs when the mouse pointer is moved over the form.

20 MouseUp Occurs when the mouse pointer is over the form and a mouse

button is released.

21 MouseWheel Occurs when the mouse wheel moves while the control has focus.

22 Move Occurs when the form is moved.

.NET PORGRAMMING

8
P. GOPINATH M.C.A.,

23 Resize Occurs when the control is resized.

24 Scroll Occurs when the user or code scrolls through the client area.

25 Shown Occurs whenever the form is first displayed.

26 VisibleChanged Occurs when the Visible property value changes.

Text box

controls allow entering text on a form at runtime. By default, it takes a single line of text,

however, you can make it accept multiple texts and even add scroll bars to it.

Let's create a text box by dragging a Text Box control from the Toolbox and dropping it on the

form.

The Properties of the TextBox Control

The following are some of the commonly used properties of the TextBox control −

s.no Property & Description

1) Font
Gets or sets the font of the text displayed by the control.

2) FontHeight
Gets or sets the height of the font of the control.

.NET PORGRAMMING

9
P. GOPINATH M.C.A.,

3) ForeColor
Gets or sets the foreground color of the control.

4) Lines
Gets or sets the lines of text in a text box control.

5) Multiline
Gets or sets a value indicating whether this is a multiline TextBox control.

6) PasswordChar
Gets or sets the character used to mask characters of a password in a single-line TextBox

control.

7) ReadOnly
Gets or sets a value indicating whether text in the text box is read-only.

8) ScrollBars
Gets or sets which scroll bars should appear in a multiline TextBox control. This property

has values −

 None

 Horizontal

 Vertical

 Both

9) TabIndex
Gets or sets the tab order of the control within its container.

10) Text
Gets or sets the current text in the TextBox.

11) TextAlign
Gets or sets how text is aligned in a TextBox control. This property has values −

 Left

 Right

 Center

.NET PORGRAMMING

10
P. GOPINATH M.C.A.,

12) TextLength
Gets the length of text in the control.

13) WordWrap
Indicates whether a multiline text box control automatically wraps words to the beginning

of the next line when necessary.

Methods

s.no Method Name & Description

1) Clear
Clears all text from the text box control.

2) Copy
Copies the current selection in the text box to the Clipboard.

3) Cut
Moves the current selection in the text box to the Clipboard.

4) Paste
Replaces the current selection in the text box with the contents of the Clipboard.

5) Paste(String)
Sets the selected text to the specified text without clearing the undo buffer.

6) ResetText
Resets the Text property to its default value.

7) ToString
Returns a string that represents the TextBoxBase control.

8) Undo
Undoes the last edit operation in the text box.

Events:

Sr.No. Event & Description

1 Click
Occurs when the control is clicked.

.NET PORGRAMMING

11
P. GOPINATH M.C.A.,

2 DoubleClick
Occurs when the control is double-clicked.

3 TextAlignChanged
Occurs when the TextAlign property value changes.

RichTextBox Control in VB.NET

 RichTextBox Control allows user to display, input, edit and format text information.

 RichTextBox Control supports advance formatting features as compared to TextBox.

Using RichTextBox user can format only selected portion of the text. User can also

format paragraph using RichTextBox Control.

Properties

Property Purpose

AutoWordSelection It is used to specify weather automatic word selection is ON or OFF. It has

Boolean value. Default value is false.

BackColor It is used to get or set background color of the RichTextBox.

ContextMenuStrip It is used to specify the name of shortcut menu that is displayed when user

right clicks on the RichTextBox.

DetectUrls It is used to specify weather URL that is entered in RichTextBox is

automatically displayed as hyperlink or not. It has Boolean value. Default

value is true.

Enabled It is used to specify weather RichTextBox Control is enabled or not at run

time. It has Boolean value. Default value is true.

Font It is used to set Font Face, Font Style, Font Size and Effects of the text

associated with RichTextBox Control.

ForeColor It is used to get or set Fore color of the text associated with RichTextBox

Control.

HideSelection It is used to specify weather text selection should be hidden or not when

RichTextBox lose its focus. It has Boolean value. Default value is true.

.NET PORGRAMMING

12
P. GOPINATH M.C.A.,

MaxLength It is used to get or set maximum number of characters that can be entered in

RichTextBox. Default value is 2147483647.

Multiline It is used to specify weather RichTextBox can be expanded to enter more

than one line of text or not. It has Boolean value. Default value is true.

ReadOnly It is used to specify weather text associated with RichTextBox is ReadOnly

or not. It has Boolean value. Default value is false.

RightMargin It is used to get or set right margin of the text in RichTextBox.

ScrollBars It is used to get or set type of scrollbars to be added with RichTextBox

control. It has following 4 options:

(1) None

(2) Horizontal

(2) Vertical

(3) Both

Default value is Both.

Size It is used to get or set height and width of RichTextBox control in pixel.

Text It is used to get or set text associated with RichTextBox Control.

TabIndex It is used to get or set Tab order of the RichTextBox.

TabStop It is used to specify weather user can use TAB key to set focus on

RichTextBox Control or not. It has Boolean value. Default value is true.

Visible It is used to specify weather RichTextBox Control is visible or not at run

time. It has Boolean value. Default value is true.

WordWrap It is used to specify weather line will be automatically word wrapped while

entering multiple line of text in RichTextBox control or not. It has Boolean

value. Default value is true.

ZoomFactor It is used to get or set current zoom level of RichTextBox.

SelectedRtf It is used to get or set currently selected RTF formatted text in

RichTextBox.

SelectedText It is used to get or set currently selected text in RichTextBox.

SelectionAlignment It is used to get or set horizontal alignment of the text selected in

RichTextBox.

SelectionBackColor It is used to get or set BackColor of the text selected in RichTextBox.

.NET PORGRAMMING

13
P. GOPINATH M.C.A.,

SelectionBullet It is used to get or set value which determines weather bullet style should be

applied to selected text or not.

SelectionColor It is used to get or set Fore Color of the text selected in RichTextBox.

SelectionFont It is used to get or set font face, font style, and font size of the text selected

in RichTextBox.

SelectionLength It is used to get or set number of characters selected in the RichTextBox.

SelectionStart It is used to get or set starting point of the text selected in the RichTextBox.

Methods

Method Purpose

Cut It is used to move current selection of RichTextBox into clipboard.

Copy It is used to copies selected text of RichTextBox in clipboard.

Paste It is used to replace current selection of TextBox by contents of clipboard. It is

also used to move contents of Clipboard to RichTextBox control where cursor is

currently located.

Select It is used to select specific text from RichTextBox.

SelectAll It is used to select all text of RichTextBox.

DeselectAll It is used to deselect all text selected in RichTextBox.

Clear It is used to clear all text from RichTextBox Control.

AppendText It is used to append text at the end of current text in RichTextBox Control.

ClearUndo It is used to clear information from the Undo buffer of the RichTextBox.

Find It is used to find starting position of first occurrence of a string in the

RichTextBox control. If a string is not found then it returns -1.

SaveFile It is used to save contents of RichTextBox in to Rich Text Format (RTF) file.

LoadFile It is used to loads a Rich Text Format (RTF) file or standard ASCII text file into

RichTextBox Control.

Undo It is used to undo last edit operation of RichTextBox.

Redo It is used to redo the last operation that is undo using undo method.

Events

.NET PORGRAMMING

14
P. GOPINATH M.C.A.,

Event Purpose

TextChanged It is the default event of RichTextBox Control. It fires each time a text in the

RichTextBox control changed.

Label

 It is used to display some text on the form which user cannot edit.

 The user can edit contents of the label control at run time using text property.

 Labels are widely used with form to display text before various controls. So user can

easily understand the purpose of controls for which they are placed on the form.

Properties

Property Purpose

BackColor It is used to get or set background color of the label.

Font It is used to set Font Face, Font Style, Font Size and Effects of the text

associated with Label Control.

ForeColor It is used to get or set Fore color of the text associated with Label Control.

Enabled It is used to specify weather label control is enabled or not at run time. It has

Boolean value. Default value is true.

FlatStyle It is used to get or set appearance of the Label Control when user moves mouse

on it or click on it. It has following 4 options:

System, Popup, Standard, Flat

Image It is used to specify an image that is displayed in Label Control.

ImageAlign It is used to get or set alignment of the image that is displayed in the Label

control.

Text It is used to get or set text associated with the Label control.

TextAlign It is used to get or set alignment of the text associated with the Label control.

Visible It is used to specify weather label control is visible or not at run time. It has

Boolean value. Default value is true.

.NET PORGRAMMING

15
P. GOPINATH M.C.A.,

Methods

Method Purpose

Show It is used to show label control at run time.

Hide It is used to hide label control at run time.

Events

Event Purpose

Click It is the default event of Label Control. It fires each time user clicks on Label

Control.

DoubleClick It fires each time user double clicks on Label Control.

TextChanged It fires each a text associated with Label Control is changed.

Linklabel

 LinkLabel Control is designed such that it provides the functionality of Hyperlink in

window application.

 It is derived from label Control so it also provides all the functionality of Label control.

Properties

Property Purpose

LinkColor It is used to get or set Fore color of the Hyperlink in its default state.

ActiveLinkColor It is used to get or set Fore color of the Hyperlink when user clicks it.

DisabledLinkColor It is used to get or set Fore color of the Hyperlink when LinkLabel is

disabled.

VisitedLinkColor It is used to get or set Fore color of the Hyperlink when LinkVisited

property of LinkLabel is set to true.

.NET PORGRAMMING

16
P. GOPINATH M.C.A.,

LinkVisited It is used to specify weather Hyperlink is already visited or not. It has

Boolean value. Default value is false.

Text It is used to get or set text associated with LinkLabel Control.

TextAlign It is used to get or set alignment of the text associated with LinkLabel

Control.

ForeColor It is used to get or set Fore Color of the text associated with LinkLabel

Control.

BackColor It is used to get or set Background color of the LinkLabel Control.

Enabled It is used to specify weather LinkLabel control is enabled or not at

runtime. It has Boolean value true or false. Default value is true.

Visible It is used to specify weather LinkLabel control is visible or not at runtime.

It has Boolean value true or false. Default value is true.

Methods

Method Purpose

Show It is used to Show LinkLabel Control at runtime.

Hide It is used to Hide LinkLabel Control at runtime.

Focus It is used to set input focus on LinkLabel Control.

Events

Event Purpose

Link Clicked It is the default event of LinkLabel Control. It fires each time a user click on

a hyperlink of LinkLabel Control.

Button Control

 Button is a widely used control in window application.

 It is used to perform an action.

 The user clicks on a Button the click event associated with the Button is fired and the

action associated with the event is executed.

Properties

Property Purpose

.NET PORGRAMMING

17
P. GOPINATH M.C.A.,

BackColor It is used to get or set background color of the Button.

Font It is used to set Font Face, Font Style, Font Size and Effects of the text

associated with Button Control.

ForeColor It is used to get or set Fore color of the text associated with Button Control.

Enabled It is used to specify weather Button Control is enabled or not at run time. It

has Boolean value. Default value is true.

FlatStyle It is used to get or set appearance of the Button Control when user moves

mouse on it or click on it. It has following 4 options:

System, Popup, Standard, Flat

Image It is used to specify an image that is displayed in Button Control.

ImageAlign It is used to get or set alignment of the image that is displayed in the Button

control.

Text It is used to get or set text associated with the Button Control.

TextAlign It is used to get or set alignment of the text associated with the Button

control.

Visible It is used to specify weather Button Control is visible or not at run time. It

has Boolean value. Default value is true.

TextImageRelation It is used to get or set position of text in relation with image. It has following

5 options:

(1) Overlay

(2) ImageAboveText

(3) TextAboveImage

(4) ImageBeforeText

(5) TextBeforeImage

It is used when user wants to display both text and image on Button Control.

TabStop It is used to specify weather user can use TAB key to set focus on Button

Control or not. It has Boolean value. Default value is true.

Methods

Method Purpose

Show It is used to show Button control at run time.

.NET PORGRAMMING

18
P. GOPINATH M.C.A.,

Hide It is used to hide Button control at run time.

Focus It is used to set input focus on Button Control at run time.

Event

Event Purpose

Click It is the default event of Button Control. It fires each time user clicks on Button

Control.

CheckBox

 Check box control is used to represents list of options to the user from which user can

select none or any number of options.

 Check Box control allow user to select or deselect particular option.

 Each time user clicks on the Check Box its status get changed. When check box is

selected it has a checked status and when it is not selected it has Unchecked status.

Properties

Property Purpose

AutoCheck It is used to specify weather CheckBox can automatically change its state or not

when it is clicked. It has Boolean value. Default value is true.

CheckAlign It is used to get or set alignment of the within CheckBox Control.

Checked It is used to get or set Boolean value, which indicates weather

CheckBox Control is currently selected or not. It has Boolean value. True means

selected. Default value is false.

CheckState It is used to get or set current state of the CheckBox Control. It can have one of

the following three values: Checked, Unchecked, Indeterminate

.NET PORGRAMMING

19
P. GOPINATH M.C.A.,

ThreeState It is used to specify weather CheckBox Control allows three check states instead

of two check states or not. It has a Boolean value. Default value is false.

Text It is used to get or set text associated with CheckBox Control.

TextAlign It is used to get or set alignment of the text that is associated with CheckBox

Control.

Enable It is used to specify weather CheckBox Control is enabled or not. It has Boolean

value. Default value is true.

Visible It is used to specify weather CheckBox Control is visible or not at run time. It

has Boolean value. Default value is true.

BackColor It is used to get or set background color of the CheckBox.

ForeColor It is used to get or set color of the text associated with CheckBox.

Font It is used to get or set font Style, Font Size, Font Face of the text associated with

CheckBox.

TabStop It is used to specify weather user can use TAB key to set focus on CheckBox

Control or not. It has Boolean value. Default value is true.

Methods

Method Purpose

Show It is used to show CheckBox Control at run time.

Hide It is used to Hide CheckBox Control at run time.

Focus It is used to set cursor or focus on CheckBox Control.

Events

Event Purpose

CheckedChanged It is the default event of CheckBox Control. It fires each time the value

of checked property is changed.

CheckStateChanged It fires each time the value of CheckState property is changed.

Radio Button

 RadioButton Control is used to represent list of options to the user from which user can

select only one option.

.NET PORGRAMMING

20
P. GOPINATH M.C.A.,

 Every RadioButton that are placed on the form are treated as a single group, from which

user can select only one option.

Properties

Property Purpose

AutoCheck It is used to specify weather RadioButton can automatically change its state or

not when it is clicked. It has Boolean value. Default value is true.

CheckAlign It is used to get or set alignment of the within RadioButton Control.

Checked It is used to get or set current state of the RadioButton Control. It means weather

RadioButton Control is currently selected or not. It has Boolean value. True

means selected. Default value is false.

Text It is used to get or set text associated with RadioButton Control.

TextAlign It is used to get or set alignment of the text that is associated with RadioButton

Control.

Enable It is used to specify weather RadioButton Control is enabled or not. It has

Boolean value. Default value is true.

Visible It is used to specify weather RadioButton Control is visible or not at run time. It

has Boolean value. Default value is true.

BackColor It is used to get or set background color of the RadioButton.

ForeColor It is used to get or set color of the RadioButton’s text.

Font It is used to get or set font Style, Font Size, Font Face of the RadioButton’s text.

TabStop It is used to specify weather user can use TAB key to set focus on RadioButton

Control or not. It has Boolean value. Default value is true.

Methods

Method Purpose

PerformClick It is used to fire Click event of RadioButton Control.

Show It is used to show RadioButton Control.

Hide It is used to Hide RadioButton Control at run time.

.NET PORGRAMMING

21
P. GOPINATH M.C.A.,

Focus It is used to set cursor or focus on RadioButton Control.

Events

Event Purpose

CheckedChanged It is the default event of RadioButton Control. It fires each time the value of

checked property is changed.

GroupBox

 GroupBox control is used to group other controls of VB.NET.

 GroupBox control having a frame to indicate boundary and a text to indicate header or

title.

 Generally GroupBox control is used as a container for Radio Button. When Radio

Buttons are grouped using GroupBox, user can select one RadioButton from each

GroupBox.

Properties of GroupBox Control in VB.NET

Property Purpose

BackColor It is used to get or set background color of the GroupBox.

BackgroundImage It is used to get or set background Image of the GroupBox.

BackgroundImageLayout It is used to get or set background Image layout of the GroupBox. It

has one of the following values:

None, Tile, Centre, Stretch, Zoom

Font It is used to get or set font Style, Font Size, Font Face of the text

contained in GroupBox Control.

ForeColor It is used to get or set color of the text contained in GroupBox Control.

Enabled It is used to specify weather GroupBox Control is enabled or not. It

has Boolean value. Default value is true.

.NET PORGRAMMING

22
P. GOPINATH M.C.A.,

Visible It is used to specify weather GroupBox Control is visible or not at run

time. It has Boolean value. Default value is true.

Text It is used to get or set Title or Header Text of the GroupBox Control.

Methods

Method Purpose

Show It is used to show GroupBox Control.

Hide It is used to Hide GroupBox Control at run time.

Focus It is used to set cursor or focus on GroupBox Control.

Listbox

 ListBox Control is a rectangular box type structure which allows user to display list of

items from which user can select one or more items at a time.

 It also allows user to sort items of the list in particular order.

 The User can add new items, remove selected or all items from ListBox at run time or

design time.

Properties

Property Purpose

MultiColumn It is used to specify weather ListBox supports multiple columns or not. It

has Boolean value. Default value is false.

ColumnWidth It is used to specify width of each column in MultiColumn ListBox.

Items It represents collection of items contained in ListBox control.

.NET PORGRAMMING

23
P. GOPINATH M.C.A.,

Sorted It is used to specify weather items of ListBox are sorted in alphabetical

order or not. It has Boolean value. Default value is false.

SelectionMode It is used to get or set SelectionMode of ListBox. It determines how user

can select the Items of ListBox. It can have one of the following four

options:

(1) None: No Selection is allowed

(2) One: User can select only one item at a time.

(3) MultiSimple: User can select or deselect item just by mouse click or

pressing spacebar.

(4) MultiExtended: User can select or deselect items by holding Ctrl key

and mouse click. User can also select or deselect items by pressing Shift

key and mouse click or arrow key.

Default value is One.

ScrollAlwaysVisible It is used to specify weather Scroll Bars is always associated with ListBox

or Not regardless of number of items present in ListBox. It has Boolean

value. Default value is false.

HorizontalExtent It is used to get or set width in pixel, by which a ListBox can scrolled

horizontally. It works only when Horizontal Scrollbar Property is set to

true.

HorizontalScrollbar It is used to specify weather ListBox can have Horizontal Scroll Bar or

Not, If Number of Items in ListBox are not accommodate in specified

width. It has Boolean value. Default value is False.

SelectedIndex It is used to get or set zero based index of the item currently selected in

ListBox.

SelectedItem It is used to get or set item currently selected in ListBox.

SelectedItems It is used to get collection of multiple items currently selected in ListBox.

SelectedIndices It is used to get collection of zero based indexes of all items currently

selected in ListBox.

Enable It is used to specify weather ListBox Control is enabled or not at runtime. It

has Boolean value. Default value is true.

.NET PORGRAMMING

24
P. GOPINATH M.C.A.,

Visible It is used to specify weather ListBox Control is visible or not at runtime. It

has Boolean value. Default value is true.

TabStop It is used to specify weather user can use TAB key to set focus on ListBox

Control or not. It has Boolean value. Default value is true.

Methods

Method Purpose

ClearSelected It is used to unselect all the items that are currently selected in ListBox.

FindString It is used to find first occurrences of an item in the ListBox that partially match

with string specified as an argument. If an item is found than it returns zero

based index of that item, otherwise it returns -1. The search performed by this

method is case insensitive.

FindStringExact It is used to find first occurrences of an item in the ListBox that exactly match

with string specified as an argument. If an item is found than it returns zero

based index of that item, otherwise it returns -1. The search performed by this

method is case insensitive.

GetSelected It is used to determine weather an item whose index is passed as an argument is

selected or not. It returns Boolean value.

SetSelected It is used to select or deselect an item whose index is passed as an argument.

Example:

ListBox1.SetSelected (1, true) will select second item of ListBox.

Events

Event Purpose

SelectedIndexChanged It is the default event of ListBox Control. It fires each time a selected

Item in the ListBox is changed.

Methods

Method Purpose

Add It is used to add an item at the end of ListBox collection.

Example:

ListBox1.Items.Add(Item)

.NET PORGRAMMING

25
P. GOPINATH M.C.A.,

Insert It is used to insert an item at specific index position.

Example:

ListBox1.Items.Insert(Index, Item)

Clear It is used to remove all items from ListBox collection.

Example:

ListBox1.Items.Clear()

CopyTo It is used to copy all the Items of ListBox into an array that is passed as an argument.

It also accepts an index position as an argument to specify from which index position

within array copy will start.

Example:

ListBox1.Items.CopyTo(ArrayName, StartIndex)

Remove It is used to remove first occurrence of an item that matches with value passed as an

argument.

Example:

ListBox1.Items.Remove(Value)

RemoveAt It is used to remove an item from specific index position in ListBox.

Example:

ListBox1.RemoveAt (1) will remove second Item of ListBox.

Contains It is used to determine weather a ListBox’s Item Collection contains an item that is

passed as an argument. It returns Boolean value. If an item is found then it returns

true otherwise false.

Example:

If ListBox1.Items.Contains (Value) Then

MsgBox(“Item is Found”)

Else

MsgBox(“Item is Not Found”)

End If

Properties

Property Purpose

Count It is used to get number of items available in ListBox’s Item Collection.

CheckedListBox

.NET PORGRAMMING

26
P. GOPINATH M.C.A.,

 CheckedListBox is a ListBox with Checkbox to the left side of each item in the list.

 It is derived from ListBox so it provides all the functionality of ListBox Control.

Properties

Property Purpose

CheckOnClick It is used to specify weather CheckBox should be toggled (change state) or

not when an item is selected in the CheckedListBox. It has Boolean value.

Default value is False.

MultiColumn It is used to specify weather CheckedListBox supports multiple columns or

not. It has Boolean value. Default value is false.

ColumnWidth It is used to specify width of each column in MultiColumn

CheckedListBox.

Items It represents collection of items contained in CheckedListBox control.

Sorted It is used to specify weather items of CheckedListBox are sorted in

alphabetical order or not. It has Boolean value. Default value is false.

SelectionMode It is used to get or set SelectionMode of CheckedListBox. It determines

how user can select the Items of CheckedListBox. It can have one of the

following four options:

(1) None: No Selection is allowed

(2) One: User can select only one item at a time.

(3) MultiSimple: User can select or deselect item just by mouse click or

pressing spacebar.

(4) MultiExtended: User can select or deselect items by holding Ctrl key

and mouse click. User can also select or deselect items by pressing Shift

key and mouse click or arrow key.

Default value is One.

ScrollAlwaysVisible It is used to specify weather Scroll Bars is always associated with

CheckedListBox or Not regardless of number of items present in

CheckedListBox. It has Boolean value. Default value is false.

HorizontalExtent It is used to get or set width in pixel, by which a CheckedListBox can

scrolled horizontally. It works only when Horizontal Scrollbar Property is

set to true.

.NET PORGRAMMING

27
P. GOPINATH M.C.A.,

HorizontalScrollbar It is used to specify weather CheckedListBox can have Horizontal Scroll

Bar or Not, If Number of Items in CheckedListBox are not accommodate

in specified width. It has Boolean value. Default value is False.

ThreeDCheckBoxes It is used to get or set value which determines CheckBox has Flat or

Normal Button State. It has Boolean value. Default value is false. When it

is true check box has flat button state.

SelectedIndex It is used to get or set zero based index of the item currently selected in

CheckedListBox.

SelectedItem It is used to get or set item currently selected in CheckedListBox.

SelectedItems It is used to get collection of multiple items currently selected in

CheckedListBox.

CheckedItems It is used to get collection of multiple items currently checked in

CheckedListBox.

SelectedIndices It is used to get collection of zero based indexes of all items currently

selected in CheckedListBox.

CheckedIndices It is used to get collection of zero based indexes of all items currently

checked in CheckedListBox.

Enable It is used to specify weather CheckedListBox Control is enabled or not at

runtime. It has Boolean value. Default value is true.

Visible It is used to specify weather CheckedListBox Control is visible or not at

runtime. It has Boolean value. Default value is true.

TabStop It is used to specify weather user can use TAB key to set focus on

CheckedListBox Control or not. It has Boolean value. Default value is true.

Methods

Method Purpose

ClearSelected It is used to unselect all the items that are currently selected in ListBox.

FindString It is used to find first occurrences of an item in the ListBox that partially

match with string specified as an argument. If an item is found than it

returns zero based index of that item, otherwise it returns -1. The search

performed by this method is case insensitive.

.NET PORGRAMMING

28
P. GOPINATH M.C.A.,

FindStringExact It is used to find first occurrences of an item in the ListBox that exactly

match with string specified as an argument. If an item is found than it

returns zero based index of that item, otherwise it returns -1. The search

performed by this method is case insensitive.

GetSelected It is used to determine weather an item whose index is passed as an

argument is selected or not. It returns Boolean value.

SetSelected It is used to select or deselect an item whose index is passed as an argument.

Example:

ListBox1.SetSelected (1, true) will select second item of ListBox.

ClearSelected It is used to unselect all items in CheckedListBox.

GetItemChecked It is used to check weather an item whose index is passed as an argument is

checked or not. It returns Boolean value.

GetItemCheckState It is used to get check state of an item whose index is passed as an argument.

It returns 1 if item is checked otherwise false.

SetItemCheckState It is used to set the check state of an item whose index is passed as an

argument.

Example:

CheckedListBox1.SetItemChecked (1, CheckState.Checked

) will check the second item of CheckedListBox.

Events

Event Purpose

SelectedIndexChanged It is the default event of ListBox Control. It fires each time a selected

Item in the ListBox is changed.

ItemCheck It fires each time an item is checked or unchecked.

Combo Box

 ComboBox control represents list of items in a drop down list type structure from which

user can select only one item at a time.

 The User can drop down the list to display list of items in a ComboBox.

 ComboBox control comes with built in TextBox so user can enter new item if it is not

available in the list of ComboBox.

.NET PORGRAMMING

29
P. GOPINATH M.C.A.,

 ComboBox is similar to a ListBox but it does not allow user to select more then one

items.

 It occupies less space on the form because of its drop down structure.

 The User can add new items, remove selected or all items from ComboBox at runtime or

design time.

Properties

Property Purpose

AutoComplete Mode It is used to get or set value which determines how AutoComplete

option works for ComboBox.

It has four options:

Suggest, Append, SuggestAppend, None

Default value is None.

AutoCompleteSource It is used to get or set Auto Complete Source for ComboBox.

AutoCompleteCustomSource It is used to specify Custom Source by defining list of items in

it. It works when AutoCompleteSource is set to CustomSource.

DropDownStyle It is used to get or set value which determines appearance and

behavior style of ComboBox. It has three options:

(1)DropDown: ComboBox with built in TextBox and Drop Down

List.

(2)DropDownList: ComboBox with only DropDown List.

(3) Simple: ComboBox with expanded DropDown List and built

in TextBox.

DropDownWidth It is used to get or set width of DropDown list in pixel.

DropDownHeight It is used to get or set height of DropDown list in pixel.

MaxDropDownItems It is used to get or set value which determines how many items

should be display in dropdown list. For remaining items to display

you need to scroll the dropdown list. Default value is 8.

MaxLength It is used to get or set value which determines maximum number

of characters that can be entered in built in TextBox of

ComboBox.

.NET PORGRAMMING

30
P. GOPINATH M.C.A.,

Text It is used to get or set text associated with built in TextBox of

ComboBox.

Items It represents collection of items contained in ComboBox control.

Sorted It is used to specify weather items of ComboBox are sorted in

alphabetical order or not. It has Boolean value. Default value is

false.

SelectedIndex It is used to get or set zero based index of the item currently

selected in ComboBox.

SelectedItem It is used to get or set item currently selected in ComboBox.

SelectionStart It is used to get or set starting index of the text that is entered in

the built in TextBox of ComboBox.

Selectionlength It is used to get or set number of characters that is selected in the

built in TextBox of ComboBox.

SelectedText It is used to get or set text that is selected in built in TextBox of

ComboBox.

Enable It is used to specify weather ComboBox Control is enabled or not

at runtime. It has Boolean value. Default value is true.

Visible It is used to specify weather ComboBox Control is visible or not at

runtime. It has Boolean value. Default value is true.

TabStop It is used to specify weather user can use TAB key to set focus on

ComboBox Control or not. It has Boolean value. Default value is

true.

Methods

Method Purpose

FindString It is used to find first occurrences of an item in the ComboBox that partially

match with string specified as an argument. If an item is found than it returns

zero based index of that item, otherwise it returns -1. The search performed by

this method is case insensitive.

FindStringExact It is used to find first occurrences of an item in the ComboBox that exactly

match with string specified as an argument. If an item is found than it returns

zero based index of that item, otherwise it returns -1. The search performed by

this method is case insensitive.

.NET PORGRAMMING

31
P. GOPINATH M.C.A.,

SelectAll It is used to select all the text in the built in TextBox of ComboBox.

Select It is used to select all or specific range of the text in the built in TextBox of

ComboBox.

Syntax:

ComboBox1.Select(Start, Length)

Example:

ComboBox1.Select (1,4)

It will select 4 characters starting from second character in the built in textbox

of ComboBox.

Events

Event Purpose

SelectedIndexChanged It is the default event of ComboBox Control. It fires each time a selected

Item in the ListBox is changed.

TextChanged It fires each time a text is changed in the built in TextBox of ComboBox

Control.

DropDown This event fires each time a DropDown list is displayed by clicking on

DropDown arrow.

DropDownClosed This event fires each time a DropDown list is disappeared after selecting

particular Item.

Picturebox

 PictureBox control allows user to display an image on the form.

 The User can display image either design time or run time using Picture Box Control.

Properties

Methods

Property Purpose

Image It is used to get or set an image to be display in the PictureBox.

ErrorImage It is used to get or set an Error Image that display when loading of Image

specified in Image property is failed.

.NET PORGRAMMING

32
P. GOPINATH M.C.A.,

Method Purpose

Load It is used to display an image whose path or url is specified in ImageLocation

Property of PictureBox.

LoadAsync It is used to load an image Asynchronously.

CancelAsync It is used to cancel Asynchronous loading of an image.

Events

Event Purpose

Click It is the default event of PictureBox. It fires each time user clicks on

PictureBox.

SizeModeChanged It fires each time a SizeMode property of the PictureBox is changed.

Timer Control in VB.NET

 Timer Control is used when user wants to perform some task or action continuously at

regular interval of time.

Properties

InitialImage It is used to get or set an initial Image that display when an Image specified in

Image property is not loaded.

ImageLocation It is used to get or set path or url of image to be display in PictureBox Control.

SizeMode It is used to get or set the SizeMode. SizeMode determines how an image will

display in PictureBox. It has five options:

Normal, Stretch Image, Auto Size, Center Image, Zoom

WaitOnLoad It is used to specify weather processing of an image is stop until it is loaded or

not. It has Boolean value. Default value is False.

Enabled It is used to specify weather PictureBox Control is enabled or not at runtime. It

has Boolean value. Default value is true.

Visible It is used to specify weather PictureBox Control is visible or not at runtime. It

has Boolean value. Default value is true.

.NET PORGRAMMING

33
P. GOPINATH M.C.A.,

Property Name Description

Name It is used to specify name of the Timer Control.

Enabled
It is used to determine weather Timer Control will be enabled or not.

It has boolean value true or false. Default value is false.

Interval

It is used to specify interval in millisecond. Tick event of Timer

Control generates after the time which is specified in Interval

Property.

Methods

Method Name Description

Start This method is used to start the Timer Control.

Stop This method is used to stop the Timer Control.

Events of Timer Control

Event Name Description

Tick
Tick event of the Timer Control fires continuously after the time

which is specified in the Inteval property of Timer Control.

Example

Now set Properties of various control as below:

Control Name Property Name Value

Form1 Text Timer Control Demo

Label1 Name lblHour

.NET PORGRAMMING

34
P. GOPINATH M.C.A.,

Label2 Name lblMinute

Label3 Name lblSecond

Button1
Name btnStart

Text Start

Button2
Name btnStop

Text Stop

Timer1

Name Timer1

Enabled true

Interval 1000

Now double click on the Timer Control and write following code in the Tick event of Timer

Contro.

lblHour.Text = Now.Hour

lblMinute.Text = Now.Minute

lblSecond.Text = Now.Second

Now double click on the Start Button and write following code in the Click event of Button.

Timer1.Start()

Now double click on the Stop Button and write following code in the Clcik event of Button.

Timer1.Stop()

Menu in VB.NET

 Menu is one of the most common elements of Graphical User Interface.

 Menu is a one type of control that represents a group of choices to the user and allows

user to select any of them according to their requirement.

 Using menu user can organizes various options or commands as per their functionality

 It helps programmer to organize large number of options in a short and easy way.

.NET PORGRAMMING

35
P. GOPINATH M.C.A.,

 It can be attached only with form either SDI or MDI.

It is displayed immediately under the title bar of the form as shown below:

Properties

Property Purpose

AllowItemReorder It is used to specify weather user can reorder menu items by holding Alt key

or not. It has Boolean value. Default value is false.

BackColor It is used to get or set back color of the MenuStrip.

Enabled It is used to specify weather MenuStrip is enabled or not at run time. It has

Boolean value. Default value is true.

Font It is used to set Font Face, Font Style, Font Size and Effects of the text

associated with Menu Items of MenuStrip Control.

Items It represents collection of Menu Items contained in Menu Strip control.

LayoutStyle It is used to get or set Layout Style of Menu Strip Control. It has following 5

options:

(1) Stack with Overflow

(2) Horizontal Stack With Overflow

(3) Vertical Stack With Overflow

(4) Flow

(5) Table

ShowItemToolTips It is used to specify weather Tool Tip text will be displayed for each menu

item or not when mouse is over that menu item. It has Boolean value.

Default value is false.

.NET PORGRAMMING

36
P. GOPINATH M.C.A.,

TextDirection It is used to get or set value which determines direction of text in each menu

Item. It has following 3 options:

(1) Horizontal:

(2) Vertical90:

(3) Vertical270:

Visible It is used to specify weather MenuStrip is visible or not at run time. It has

Boolean value. Default value is true.

Assigning Access key to Menu Items

Access key allows user to select menu item from the keyboard using Alt key.

Access key is combinations of Alt key and other key (Alt + Other key).

In order to select particular Menu Item User has to press Alt key and then press other key which

is defined as access key.

In order to assign Access key to Menu Item just precede the character by & as shown below:

In above figure character N is defined as Access key for Menu Item

New.

The User can access Menu Item New by pressing Alt + N key.

A character which is defined as an access key for menu item is

displayed with underline.

Hence & is used to assign Access Key to particular character in Menu Item, we cannot display &

in Menu Item directly.

In order to display & in Menu Item we have to precede it with another &. For Example to display

Save & Close in Menu Item we have to write Save && Close in text property of Menu Item.

Assigning Shortcut Key to Menu Item

.NET PORGRAMMING

37
P. GOPINATH M.C.A.,

Shortcut Key allows user to perform action associated with particular Menu Item using

keyboard. Thus using concept of Shortcut Key user can fire action associated with particular

Menu Item using keyboard.

Shortcut Key allows user to perform action with a single keystroke.

Shortcut Key is a combination of (Alt, Shift, Ctrl) key and other key as shown in the figure

below:

In order to assign Shortcut Key to particular Menu Item following properties are used:

Property Purpose

ShortcutKeys It is used to assign Shortcut Key to Menu Item.

ShowShortcutKeys It is used to specify weather Shortcut Key is displayed beside Menu

Item or not. It has Boolean value. Default value is False.

ShortcutKeyDisplayString It is used to get or set string that is display instead of Shortcut Key.

Adding checkmarks to Menu Item

User can add checkmark to the left side of Menu Item to indicate that the Menu Item is selected

or not.

In order to add checkmark to particular menu item following properties are used:

.NET PORGRAMMING

38
P. GOPINATH M.C.A.,

Property Purpose

Checked It is used to specify weather checkmark will be displayed to the left side of Menu

item or Not. It has Boolean value. Default is False.

CheckOnClick It is used to specify weather Menu Item will toggle (change) its state or not when

it is clicked. It has Boolean value. Default value is false.

CheckState It is used to get or set state of menu item. It can have one of the following 3

values:

(1) Checked

(2) Unchecked

(3) Indeterminate

Default value is Unchecked.

 Dialog Boxes

 There are many built-in dialog boxes to be used in Windows forms for various tasks like

opening and saving files, printing a page, providing choices for colors, fonts, page setup,

etc., to the user of an application. These built-in dialog boxes reduce the developer's time

and workload.

 All of these dialog box control classes inherit from the CommonDialog class and override

the RunDialog() function of the base class to create the specific dialog box.

 The RunDialog() function is automatically invoked when a user of a dialog box calls

its ShowDialog() function.

The ShowDialog method is used to display all the dialog box controls at run-time. It returns a

value of the type of DialogResult enumeration. The values of DialogResult enumeration are −

 Abort − returns DialogResult.Abort value, when user clicks an Abort button.

 Cancel − returns DialogResult.Cancel, when user clicks a Cancel button.

 Ignore − returns DialogResult.Ignore, when user clicks an Ignore button.

 No − returns DialogResult.No, when user clicks a No button.

 None − returns nothing and the dialog box continues running.

 OK − returns DialogResult.OK, when user clicks an OK button

 Retry − returns DialogResult.Retry , when user clicks an Retry button

 Yes − returns DialogResult.Yes, when user clicks an Yes button

The following diagram shows the common dialog class inheritance −

.NET PORGRAMMING

39
P. GOPINATH M.C.A.,

Open File Dialog Control

Open File Dialog Control allows user to select a file for open.

Methods of Open File Dialog Control in VB.NET

Method Purpose

ShowDialog It is used to Show or run OpenFileDialog Control.

Reset It is used to reset all the properties of OpenFileDialog to its default values.

OpenFile It is used to open the file which is selected by user in read only mode.

Events of Open File Dialog Control in VB.NET

Event Purpose

FileOk It is the default event of OpenFileDialog Control. It fires each time user clicks on Open

button of OpenFileDialog Control. It is used to perform specific task when user click on

Open button.

.NET PORGRAMMING

40
P. GOPINATH M.C.A.,

Save File Dialog Control in VB.NET

SaveFileDialog Control allows user to:

(1) Specify Location where to save the file.

(2) Specify Name of File by which it is saved.

Properties of Save File Dialog Control in VB.NET

Property Purpose

AddExtension It is used to specify weather default extension will be automatically added at

the end of file name or not. It has Boolean value. Default value is true.

CheckFileExists It is used to specify weather warning message will display or not if user select

a file that does not exist. It has Boolean value. Default value is true.

CheckPathExists It is used to specify weather warning message will display or not if user

specified path does not exist. It has Boolean value. Default value is true.

CreatePrompt It is used to specify weather SaveFileDialog Control will display warning

message or not when user is about to create a new file that does not exist. It

has Boolean value. Default value is false.

DefaultExt It is used to specify default extension for file name. Default extension is

appended at the end of file name if user selects file with no extension.

FileName It represents full path of the file that is selected by user in the SaveFileDialog

Control.

Filter It is used to specify which type of files will be display in the SaveFileDialog

Control.

If user wants to display only executable files than user can set Filter Property

to Executable File | *.exe

If user wants to display executable files and Image Files than user can set

Filter Property to Executable File | *.exe | Image Files| *.jpeg

FilterIndex It is used to specify which File Type to be displayed in SaveFileDialog

Control by default. It is used when user specify more than one File Types in

Filter Property. In such situation the first File Type in Filter property becomes

default File Type and it has FilterIndex 1, the second File Type has FilterIndex

2 and So on.

.NET PORGRAMMING

41
P. GOPINATH M.C.A.,

InitialDirectory It is used to specify initial directory for SaveFileDialog Control. Initial

Directory means the folder whose files are displayed by the SaveFileDialog

Control when it opens.

OverwritePrompt It is used to specify weather SaveFileDialog Control will display warning

message or not when user is about to overwrite already existing file. It has

Boolean value. Default value is true.

Title It is used to specify the text to be display in the title bar of the SaveFileDialog

Control.

Methods of Save File Dialog Control in VB.NET

Method Purpose

ShowDialog It is used to Show or run SaveFileDialog Control.

Reset It is used to reset all the properties of SaveFileDialog to its default values.

OpenFile It is used to open the file which is selected by user in read/write mode.

Events of Save File Dialog Control in VB.NET

Event Purpose

FileOk It is the default event of SaveFileDialog Control. It fires each time user clicks on Save

button of SaveFileDialog Control. It is used to perform specific task when user click on

Save button.

Color Dialog Control in VB.NET

Color Dialog Control allows user to select color from the list of available colors.

User can also define custom colors using Color Dialog control.

Properties of Color Dialog Control in VB.NET

Property Purpose

Color It is used to get or set the color selected by the user in Color Dialog Control. It

is also used set specific color in the Color Dialog Control.

FullOpen It is used to specify weather Custom Color Section of the Color Dialog Control

is by default displayed or not. It has Boolean value. Its default value is false.

.NET PORGRAMMING

42
P. GOPINATH M.C.A.,

AllowFullOpen It is used to enable or disable Define Custom Color button In Color Dialog

Control. It has Boolean value. Its default value is true. User can see effect of this

property only when FullOpen property is set to false.

AnyColor It is used to specify weather Color Dialog will display all the available colors in

the set of basic colors or not. It has Boolean value. Default value is False.

SolidColorOnly It is used to specify weather Color Dialog will restrict user to select only solid

colors or not. It has Boolean value. Default value is False.

Methods

Method Purpose

ShowDialog It is used to Show or run Color Dialog Control.

Reset It is used to reset all the properties of ColorDialog to its default values.

Font Dialog

Font Dialog Control allows user to:

(1) Set Font Face

(2) Set Font Style

(3) Set Font Size

(4) Set Font Color

(5) Set Font Effects

Properties of Font Dialog Control in VB.NET

Property Purpose

AllowScriptChange It is used to specify weather character set (script) can be changed in Font

Dialog Control or not. It has Boolean value. Default value is true.

AllowVectorFonts It is used to specify weather vector font can be selected in Font Dialog

Control or not. It has Boolean value. Default value is true.

AllowVerticalFont It is used to specify weather Vertical font can be selected in Font Dialog

Control or not. It has Boolean value. Default value is true.

.NET PORGRAMMING

43
P. GOPINATH M.C.A.,

MaxSize It is sued to specify Maximum Font Size that user can select from Font

Dialog Control.

MinSize It is sued to specify Minimum Font Size that user can select from Font

Dialog Control.

Color It is used to get color selected by user in the Font Dialog Control. User can

also set the color in Font Dialog control using this property.

FixedPitchOnly It is used to specify weather only Fixed Pitch font can be selected in the

Font Dialog Control or not. It has Boolean value. Default value is false.

FontMustExist It is used to specify weather an error will occur or not, if user selects the

font that does not exist in the selection box. It has Boolean value. Default

value is false.

Font It is used to get the font selected in the Font Dialog Control. User can also

set the font style in the Font Dialog Control.

ShowApply It is used to specify weather Apply button will be shown in the Font Dialog

Control or not. It has Boolean value. Default value is false.

ShowColor It is used to specify weather color selection combo box will be shown in the

Font Dialog Control or not. It has Boolean value. Default value is false.

ShowEffects It is used to specify weather font effect options such as Underline, Strikeout

and color selection will be shown in the Font Dialog Control or not. It has

Boolean value. Default value is true.

Methods of Font Dialog Control in VB.NET

Method Purpose

ShowDialog It is used to Show or run Font Dialog Control.

Reset It is used to reset all the options of FontDialog to its default values.

Events

Event Purpose

Apply It is the default event of Font Dialog Control. It fires each time user clicks on Apply

button of Font Dialog Control. It is used to apply font settings on selected text

without closing Font Dialog Control.

.NET PORGRAMMING

44
P. GOPINATH M.C.A.,

Print Dialog

PrintDialog Control allows user to print document. It allows following facilities to user:

(1) Print Document

(2) Select printer

(3) Specify Page Range

(4) Specify Number of copies

(5) Find Printer on Network

Properties

Property Purpose

AllowCurrentPage It is used to specify weather Current Page radio button is enabled or disabled

in PrintDialog Control. It has Boolean value. Default value is false. Current

Page option allows user to print only current page in which cursor is set.

AllowSelection It is used to specify weather Selection radio button is enabled or disabled in

PrintDialog Control. It has Boolean value. Default value is false. Selection

option allows user to print only selected portion of the document.

AllowSomePages It is used to specify weather Pages radio button is enabled or disabled in

PrintDialog Control. It has Boolean value. Default value is false. Pages

option allows user to specify range of pages to be print from document.

For Example:

3-7 will print page number 3 to 7 from entire document.

1,3,5,8 will print Page Number 1, 3, 5 and 8.

AllowPrintToFile It is used to specify weather Print to File Check Box is enabled or disabled

in PrintDialog Control. It has Boolean value. Default value is true.

PrintToFile It is used to specify weather Print to File Check Box is by default selected or

not in PrintDialog Control. It has Boolean value. Default value is false.

ShowNetwork It is used to specify weather Show Network button is displayed in

PrintDialog Control or not. It has Boolean value. Default value is true.

.NET PORGRAMMING

45
P. GOPINATH M.C.A.,

Methods

Method Purpose

ShowDialog It is used to Show or run Print Dialog Control.

Reset It is used to reset all the options of PrintDialog to its default values.

ScrollBar controls

 The ScrollBar controls display vertical and horizontal scroll bars on the form.

 This is used for navigating through large amount of information.

 There are two types of scroll bar controls:

 HScrollBar for horizontal scroll bars and VScrollBar for vertical scroll bars.

 These are used independently from each other.

Let's click on HScrollBar control and VScrollBar control from the Toolbox and place them on

the form.

Properties

Sr.No. Property & Description

1 AutoSize
Gets or sets a value indicating whether the ScrollBar is automatically resized to fit its

contents.

.NET PORGRAMMING

46
P. GOPINATH M.C.A.,

2 BackColor
Gets or sets the background color for the control.

3 ForeColor
Gets or sets the foreground color of the scroll bar control.

4 ImeMode
Gets or sets the Input Method Editor (IME) mode supported by this control.

5 LargeChange
Gets or sets a value to be added to or subtracted from the Value property when the scroll

box is moved a large distance.

6 Maximum
Gets or sets the upper limit of values of the scrollable range.

7 Minimum
Gets or sets the lower limit of values of the scrollable range.

8 SmallChange
Gets or sets the value to be added to or subtracted from the Value property when the scroll

box is moved a small distance.

9 Value
Gets or sets a numeric value that represents the current position of the scroll box on the

scroll bar control.

Methods

Sr.No. Method Name & Description

1 OnClick
Generates the Click event.

2 Select
Activates the control.

Events

Sr.No. Event & Description

1 Click
Occurs when the control is clicked.

2 DoubleClick
Occurs when the user double-clicks the control.

.NET PORGRAMMING

47
P. GOPINATH M.C.A.,

3 Scroll
Occurs when the control is moved.

4 ValueChanged
Occurs when the Value property changes, either by handling the Scroll event or

programmatically.

Datetimepicker Control 0r calendar control

 DateTimePicker Control allows user to select a date and a time.

 It is also used to display selected date and time in specific format.

By default it displays current date in Long Date format. When user clicks on arrow button

it displays full calendar for the current month as shown below:

Properties

Property Purpose

Format It is used to get or set format for displaying date and time in

DateTimePicker Control. It has four options: Long, Short, Time, And

Custom. Default format is long.

CustomFormat It is used to get or set custom format for displaying date and time in

DateTimePicker Control.

For Example:

dd/MM/yyyy will display 01/01/2014

d/M/yyyy will display 1/1/2014

d/M/yy will display 1/1/14

ddd, MMM, yyyy will display Wed, Jan, 2013

dddd, MMMM, yyyy will display

.NET PORGRAMMING

48
P. GOPINATH M.C.A.,

Wednesday, January, 2014

hh:mm:ss will display 02:25:02

HH:mm:ss will display 14:25:02

hh:mm:ss tt will display 02:25:02 PM

Value It is used to get date and time selected in DateTimePicker Control.

ShowCheckBox It is used to specify weather CheckBox is displayed in

DateTimePicker or not. It has Boolean value. Default value is false.

Checked It is used to specify weather CheckBox in DateTimePicker is checked

or not. It has Boolean value. Default value is true. It works only when

ShowCheckBox property is set to true.

ShowUpDown It is used to specify weather UpDown arrow is displayed in the

DateTimePicker instead of DropDown Calendar or Not. It has

Boolean value. Default value is false.

MinDate It is used to get or set Minimum Date that can be selected using

DateTimePicker Control. Default value is 01/01/1753.

MaxDate It is used to get or set Maximum Date that can be selected using

DateTimePicker Control. Default value is 31/12/9998.

Enabled It is used to specify weather DateTimePicker Control is enabled or

not at runtime. It has Boolean value. Default value is true.

Visible It is used to specify weather DateTimePicker Control is visible or not

at runtime. It has Boolean value. Default value is true.

CalendarFont It is used to get or set Font of the Calendar.

CalendarForeColor It is used to get or set ForeColor of the calendar font.

CalendarMonthBackground It is used to get or set Background Color of the Calendar.

CalendarTitleBackColor It is used to get or set Background Color of Calendar’s Title.

CalendarTitleForeColor It is used to get or set ForeColor of the font that is displayed in

Calendar’s Title.

CalendarTrailingForeColor It is used to get or set Fore Color of the previous and next month’s

date that is displayed in Current Month’s Calendar.

Methods

.NET PORGRAMMING

49
P. GOPINATH M.C.A.,

Method Purpose

Show It is used to show DateTimePicker Control at run time.

Hide It is used to Hide DateTimePicker Control at run time.

Focus It is used to set cursor or focus on DateTimePicker Control.

Events

Event Purpose

ValueChanged It is the default event of DateTimePicker Control. This event fires each time a value

in the DateTimePicker Control is changed.

TextChanged This event fires each time a text that is displayed in the DateTimePicker Control is

changed.

CloseUp This event fires each time a Popup Calendar is disappeared after selecting

particular date.

DropDown This event fires each time a Popup Calendar is displayed by clicking on DropDown

arrow.

1

 P. GOPINATH M.C.A.,

Unit – IV ASP .NET

Intro in ASP.NET

 ASP.NET is a web framework designed and developed by Microsoft.

 It was first released in January 2002.

 It is used to develop websites, web applications and web services.

 It provides fantastic integration of HTML, CSS and JavaScript.

 It is built on the Common Language Runtime (CLR) and allows programmers to write

code using any supported .NET language.

ASP.NET Features

ASP.NET is full of features and provides a platform to create and develop web application.

The following features of Web Forms.

1. Cross-platform & container support

2. High performance

3. Asynchronous via async/await

4. Unified MVC & Web API frameworks

5. Multiple environments and development mode

6. Dependency Injection

7. WebSockets & SignalR

8. Cross-Site Request Forgery (CSRF) Protection

9. “Self hosted” Web Applications

10. Action Filters

11. Extensible Output Caching

12. Globalization and Localization

13. Swagger OpenAPI

Page Directives in Asp.Net

Directives

The directives are instructions that specify optional settings in Asp.Net, but they are not

rendered as part of the HTML page return to the client browser.

These instructions include registering a custom control, page language etc.

 It describes how the .aspx pages (web forms) or .ascx pages (user controls) are processed

by the .Net framework.

Page directive

2

 P. GOPINATH M.C.A.,

The most commonly used directive is the @ Page directive and it can be used only in Web Forms.

Page directive allows you to specify many configuration options for the page. By default, Visual

Studio creates a page directive as shown below:

It include only one @ Page directive in your .aspx file. Also you should specify one

language in the Language attribute. This can be any .NET Framework-supported language,

including VB.Net, C#, or JScript.

Different types of directives in Asp.Net

@ Assembly

 The @Assembly Directive attaches assemblies to the page or an ASP.NET user

control thereby all the assembly classes and interfaces are available to the class.

 This directive supports the two attributes Name and src.

 The Name attribute defines the assembly name and the src attribute defines the

source of the assembly.

@ Control

Defines control-specific attributes used by the ASP.NET page parser and compiler and can

be included only in .ascx files (user controls).

@ Implements

The @Implements Directive gets the ASP.NET pages to implement .Net framework

interfaces. This directive only supports a single attribute interface.

@ Import

The Import directive imports a namespace into a web page, user control page of

application. If the Import directive is specified in the global.asax file.

@ Master

Identifies a page as a master page and defines attributes used by the ASP.NET page parser

and compiler and can be included only in .master files.

@ MasterType

Defines the class or virtual path used to type the Master property of a page.

3

 P. GOPINATH M.C.A.,

@ OutputCache

The Output Cache directive controls the output caching policies of a web page or a user

control.

@ PreviousPageType

Creates a strongly typed reference to the source page from the target of a cross-page

posting.

@ Reference

Links a page, user control, or COM control to the current page or user control declaratively.

@ Register

Associates aliases with namespaces and classes, which allow user controls and custom

server controls to be rendered when included in a requested page or user control.

Introduction to server controls:

Server Controls are the tags that are understood by the server.

There are basically three types of server controls.

 HTML Server Controls - Traditional HTML tags

 Web Server Controls - New ASP. NET tags

 Validation Server Controls - For input validation

ASP.NET Web Forms Server Controls

 ASP.NET provides web forms controls that are used to create HTML components.

 These controls are categories as server and client based.

 The following table contains the server controls for the web forms.

 Web server controls are special ASP. NET tags understood by the server.

 Like HTML server controls, Web server controls are also created on the server and

they require a runat="server" attribute to work.

 The Web server controls do not necessarily map to any existing HTML elements and

represent more complex elements.

 Mostly all Web Server controls inherit from a common base class, namely

the WebControl class defined in the System.Web.UI.WebControls namespace.

Control Name Applicable Events Description

4

 P. GOPINATH M.C.A.,

Label None It is used to display text on the HTML page.

TextBox TextChanged It is used to create a text input in the form.

Button Click, Command It is used to create a button.

LinkButton Click, Command It is used to create a button that looks similar to the

hyperlink.

ImageButton Click It is used to create an imagesButton. Here, an

image works as a Button.

Hyperlink None It is used to create a hyperlink control that

responds to a click event.

DropDownList SelectedIndexChanged It is used to create a dropdown list control.

ListBox SelectedIndexCnhaged It is used to create a ListBox control like the

HTML control.

DataGrid CancelCommand,

EditCommand,

DeleteCommand,

ItemCommand,

SelectedIndexChanged,

PageIndexChanged,

SortCommand,

UpdateCommand,

ItemCreated,

ItemDataBound

It used to create a frid that is used to show data.

We can also perform paging, sorting, and

formatting very easily with this control.

DataList CancelCommand,

EditCommand,

DeleteCommand,

ItemCommand,

SelectedIndexChanged,

UpdateCommand,

ItemCreated,

ItemDataBound

It is used to create datalist that is non-tabular and

used to show data.

5

 P. GOPINATH M.C.A.,

CheckBox CheckChanged It is used to create checkbox.

CheckBoxList SelectedIndexChanged It is used to create a group of check boxes that all

work together.

RadioButton CheckChanged It is used to create radio button.

RadioButtonLis

t

SelectedIndexChanged It is used to create a group of radio button controls

that all work together.

Image None It is used to show image within the page.

Panel None It is used to create a panel that works as a

container.

PlaceHolder None It is used to set placeholder for the control.

Calendar SelectionChanged,

VisibleMonthChanged,

DayRender

It is used to create a calendar. We can set the

default date, move forward and backward etc.

AdRotator AdCreated It allows us to specify a list of ads to display. Each

time the user re-displays the page.

Table None It is used to create table.

XML None It is used to display XML documents within the

HTML.

Literal None It is like a label in that it displays a literal, but

allows us to create new literals at runtime and

place them into this control.

ASP.NET Validation

Validation is important part of any web application. User's input must always be

validated before sending across different layers of the application.

6

 P. GOPINATH M.C.A.,

Validation controls are used to,

 Implement presentation logic.

 To validate user input data.

 Data format, data type and data range is used for validation.

Validation is of two types

1. Client Side

2. Serve Side

 Client side validation is good but we have to be dependent on browser and scripting

language support.

 Client side validation is considered convenient for users as they get instant feedback.

The main advantage is that it prevents a page from being postback to the server until

the client validation is executed successfully.

 For developer point of view serve side is preferable because it will not fail, it is not

dependent on browser and scripting language.

Validation controls

Following are the validation controls

Validator Description

CompareValidator It is used to compare the value of an input control against a value of

another input control.

RangeValidator It evaluates the value of an input control to check the specified range.

RegularExpressionValidator It evaluates the value of an input control to determine whether it

matches a pattern defined by a regular expression.

RequiredFieldValidator It is used to make a control required.

ValidationSummary It displays a list of all validation errors on the Web page.

7

 P. GOPINATH M.C.A.,

Rich Controls

 ASP.NET provides large set of controls.

 These controls are divided into different categories, depends upon their functionalities.

 The followings control comes under the rich control’s category.

1. FileUpload control

2. Calendar control

3. AdRotator control

4. MultiView control

5. Wizard control

FileUpload control

 FileUpload control is used to browse and upload files.

 the file is uploaded and store the file on any drive or database.

 The FileUpload control is the combination of a browse button and a text box for entering

the filename.

properties.

 FileBytes: It returns the contents of uploaded file as a byte array

 FileContent: You can get the uploaded file contents as a stream.

 FileName: Provides the name of uploaded file.

 HasFile: It is a Boolean property that checks whether particular file is available or not.

 PostedFile: Gets the uploaded file wrapped in the HttpPostedFile object.

Example

using System;

using System.Text;

public partial class RichControl : System.Web.UI.Page

{

 protected void btnSave_Click(object sender, EventArgs e)

 {

 StringBuilder sb = new StringBuilder();

 if (FileUpload1.HasFile)

 {

 try

8

 P. GOPINATH M.C.A.,

 {

 sb.AppendFormat(" Uploaded file: {0}", FileUpload1.FileName);

 //save the file

 FileUpload1.SaveAs(@"C:\" + FileUpload1.FileName);

 //Showing the file information

 sb.Append("
 File Name: {0}" + FileUpload1.PostedFile.FileName);

 sb.Append("
 File type: {0}"+ FileUpload1.PostedFile.ContentType);

 sb.Append("
 File length: {0}" + FileUpload1.FileBytes.Length);

 Label1.Text = sb.ToString();

 }

 catch (Exception ex)

 {

 sb.Append("
 Error
");

 sb.Append(ex.Message);

 Label1.Text = sb.ToString();

 }

 }

 else

 {

 Label1.Text = sb.ToString();

 }

 }

}

Calendar control

 Calendar control provides you lots of property and events.

 It using these properties and events you can perform the following task with calendar

control.

1. Select date.

2. Selecting a day, a week or a month.

3. Customize the calendar's appearance.

The Calendar control supports three important events:

9

 P. GOPINATH M.C.A.,

Event Description

SelectionChanged This event is fired when you select a day, a week or an entire month.

DayRender This event is fired when each data cell of the calendar control is rendered.

VisibleMonthChanged It is raised when user changes a month.

Example

using System;

using System.Text;

public partial class RichControl : System.Web.UI.Page

{

 protected void Calendar1_SelectionChanged(object sender, EventArgs e)

 {

 Label1.Text ="Todays date is: "+ Calendar1.TodaysDate.ToShortDateString();

 Label2.Text = "Your date of birth is: " + Calendar1.SelectedDate.ToShortDateString();

 }

}

Output:

AdRotator control

 AdRotator control is used to display different advertisements randomly in a page.

 The list of advertisements is stored in either an XML file or in a database table.

 Lots of websites uses AdRotator control to display the advertisements on the web page.

To create an advertisement list, first add an XML file to your project.

10

 P. GOPINATH M.C.A.,

Code for XML file

<?xml version="1.0" encoding="utf-8" ?>

<Advertisements>

 <Ad>

 <ImageUrl>∼ /Images/logo1.png</ImageUrl>

 <NavigateUrl>http://www.TutorialRide.com</NavigateUrl>

 <AlternateText>Advertisement</AlternateText>

 <Impressions>100</Impressions>

 <Keyword>banner</Keyword>

 </Ad>

 <Ad>

 <ImageUrl>∼ /Images/logo2.png</ImageUrl>

 <NavigateUrl>http://www.TutorialRide.com</NavigateUrl>

 <AlternateText>Advertisement</AlternateText>

 <Impressions>100</Impressions>

 <Keyword>banner</Keyword>

 </Ad>

 <Ad>

 <ImageUrl>∼ /Images/logo3.png</ImageUrl>

 <NavigateUrl>http://www.CareerRide.com</NavigateUrl>

 <AlternateText>Advertisement</AlternateText>

 <Impressions>100</Impressions>

 <Keyword>banner</Keyword>

 </Ad>

Important properties of AdRotator control.

 ImageUrl: The URL of the image that will be displayed through AdRotator control.

 NavigateUrl: If the user clicks the banner or ad then the new page is opened according to given

URL.

 AlternateText: It is used for displaying text instead of the picture if picture is not displayed. It

is also used as a tooltip.

 Impressions: It is a number that sets how frequently an advertisement will appear.

11

 P. GOPINATH M.C.A.,

 Keyword: It is used to filter ads or identifies a group of advertisement.

MultiView control

 MultiView control can be used to create a tabbed page.

 In many situations, a web form may be very long, and then you can divide a long form

into multiple sub forms. MultiView control is made up of multiple view controls.

 The multiple ASP.NET controls inside view controls. One View control is displayed at a

time and it is called as the active view. View control does not work separately. It is

always used with a Multiview control.

 If working with Visual Studio 2010 or later, you can drag and drop a MultiView control

onto the form.

Properties

 ActiveViewIndex: It is used to determine which view will be active or visible.

 Views: It provides the collection of View controls contained in the MultiView control.

For understand the Multiview control, first we will create a user interface as given below.

In the given example, in Multiview control, we have taken three separate View control.

1. In First step we will design to capture Product details

2. In Second step we will design to capture Order details

3. Next we will show summary for confirmation. saved.

12

 P. GOPINATH M.C.A.,

MultiViewControlDemo.aspx file

Wizard Control

 This control is same as MultiView control but the main difference is that, it has inbuilt

navigation buttons.

 The wizard control enables you to design a long form in such a way that you can work in

multiple sub form. It perform the task in a step by step process.

 It reduces the work of developers to design multiple forms.

 It enables to create multi step user interface.

 Wizard control provides with built-in previous/next functionality.

13

 P. GOPINATH M.C.A.,

 The Wizard control can contains one or more WizardStep as child controls. Only one

WizardStep is displayed at a time. WizardStep control has an important property called as

StepType. The StepType property determines the type of navigation buttons that will be

displayed for that step.

The possible values are:

The StepType associated with each WizardStep determines the type of navigation buttons that

will be displayed for that step.

The StepTypes are:

1. Start:

2. Step:

3. Finish:

4. Complete:

5. Auto:

Example:

14

 P. GOPINATH M.C.A.,

Custom controls

 Custom controls are compiled code components.

 That execute on the server, expose the object model, and render markup text, such as

HTML or XML, as a normal Web Form or user control does.

How to choose the base class for a custom control

To write a custom control, directly or indirectly derive the new class from

the System.Web.UI.Control class or the System.Web.UI.WebControls.WebControl class.

 System.Web.UI.Control -> the control to render nonvisual elements. For example, <meta>

and <head> are examples of nonvisual rendering.

 System.Web.UI.WebControls.WebControl -> the control to render HTML that generates

a visual interface on the client computer.

15

 P. GOPINATH M.C.A.,

It used to change the functionality of existing controls, such as a button or label.

It can directly derive the new class with these existing classes and can change their default

behavior.

The Control class provides the basic functionality by which you can place it in the control

tree for a Page class.

The Web Control class adds the functionality to the base Control class for displaying visual

content on the client computer.

 Example, It can use the WebControl class to control the look and styles through properties like

font, color, and height.

How to create and use a simple custom control that extends from System.Web.UI.Control

using Visual Studio

1. Start Visual Studio.

2. Create a class library project, and give it a name, for example, CustomServerControlsLib.

3. Add a source file to the project, for example, SimpleServerControl.cs.

4. Include the reference of the System.Web namespace in the references section.

5. Check whether the following namespaces are included in the SimpleServerControl.cs file.

System

System.Collections

System.ComponentModel

System.Data

System.Web

System.Web.SessionState

System.Web.UI

System.Web.UI.WebControls

6. Inherit the SimpleServerControls class with the Control base class.

public class SimpleServerControl : Control

7. Override the Render method to write the output to the output stream.

protected override void Render(HtmlTextWriter writer)

{

 writer.Write("Hello World from custom control");

}

8. Compile the class library project. It will generate the DLL output.

9. Open an existing or create a new ASP.NET Web application project.

10. Add a Web Forms page where the custom control can be used.

11. Add a reference to the class library in the references section of the ASP.NET project.

12. Register the custom control on the Web Forms page.

16

 P. GOPINATH M.C.A.,

<%@ Register TagPrefix="CC " Namespace=" CustomServerControlsLib "

Assembly="CustomServerControlsLib " %>

13. To instantiate or use the custom control on the Web Forms page, add the following line of

code in the <form> tags.

<form id="Form1" method="post" runat="server">

 <CC:SimpleServerControl id="ctlSimpleControl" runat="server">

 </CC:SimpleServerControl >

</form>

Note In this code, SimpleServerControl is the control class name inside the class library.

14. Run the Web Forms page, and you will see the output from the custom control.

Introduction to collection

 A collection is a set of similar type of objects that are grouped together.

 System.Collections namespace contains specialized classes for storing and accessing the

data.

 Each collection class defined in .NET has a unique feature.

Collection Interfaces

There are some basic operations that are possible on any collection.

1. Search specific object in the collection.

2. Adding or removing objects dynamically in the collection.

3. List the objects in the collection by iterating through it.

 These basic operations are defined in the form of interfaces. All the collection classes

implement these interfaces to get the required functionality.

 The implementation can be different for different classes. For example, adding objects in

an Array is different than adding objects in ArrayList collection.

 ArrayList grows and shrinks dynamically. Both the collections need the functionality of

iteration using foreach loop to display the list of objects contained in them.

17

 P. GOPINATH M.C.A.,

Types of collections

Arrays

 Array class is defined in System namespace.

 Arrays can store any type of data but only one type at a time.

 The size of the array has to be specified at compilation time. Insertion and deletion

reduce the performance.

Advanced Collections

 To perform different operations like inserting, deleting, sorting, searching,

comparing, and so on.

 To perform these operations efficiently, the data needs to be organized in a specific

way. This gives rise to advanced collections. Advanced collections are found

in System.Collections namespace.

Advanced collections are again divided into two types-

1. Generic collections

2. Non-generic collections

Non-generic collections:

Every element in non-generic collection is stored as System.Object type.

Examples

ArrayList, Stack, Queue, HashTable, and so on.

 Boxing

Conversion of value type to a reference type is known as boxing. When value is boxed,

CLR allocates new object on the heap and copies the value of the value type into that

instance. CLR returns a reference of newly created object. This is essentially an up cast

18

 P. GOPINATH M.C.A.,

as all types are derived from System.Object class. Developer need not use wrapper classes

or structures for value types to perform the conversion.

Example

1. int speed =80

2. Object obj= speed;

 Unboxing

It is an opposite operation of boxing, that is copies from reference type to value type on

the stack. Explicit casting is required as it is a downcast. It is conversion of a derived type

to a base type.

Example

1. int speed =80

2. Object obj= speed // boxing

3. int speed=(int) obj // unboxing

Generic collections

These are defined in System.Collections.Generic namespace.

Examples

Generic list, generic queue, and so on.

Some of the types of classes in generic collection are,

19

 P. GOPINATH M.C.A.,

XML in ASP.NET

 XML is a cross-platform, hardware and software independent, text based markup

language.

 It enables to store data in a structured format by using meaningful tags.

 XML stores structured data in XML documents that are similar to databases.

 That unlike Databases, XML documents store data in the form of plain text, it can be

used across platforms.

 The XML document to specify the structure of the data by creating a DTD or an XML

schema.

The following code defines the structure of an XML document that will store data related to

books:

<?xml version="1.0"?>

<Books>

 <Book bid="B001">

 <Title> Understanding XML </Title>

 <Price> $30 </Price>

 <author>

 <FirstName> Lily </FirstName>

 <LastName>

 Hicks <LastName>

 </author>

 </Book>

 <Book bid="B002">

 <Title> .NET Framework </Title>

 <Price> $45 </Price>

 <author>

 <FirstName> Jasmine </FirstName>

 <LastName>

 Williams <LastName>

 </author>

 </Book>

</Books>

.NET Support for XML

The .NET Framework has extensive support for working with XML documents. IN the .NET

framework, the support for XML documents includes:

 XML namespace

20

 P. GOPINATH M.C.A.,

 XML designer

 XML Web Server control

 XML DOM support

XML Namespace

 The System.Xml namespace provides a rich set of classes for processing XML data.

 The commonly used classes for working with XML data are:

XmlTextReader:

Provides forward only access to a stream of XML data and checks whether or not an

XML document is well formed.

XmlTextReader reader = new XmlTextReader("XML1.xml");

XmlTextWriter:

Provides forward only way of generating streams or files containing XML data that

conforms to W3C XML 1.0. If you want to declare an object of the XmlTextWriter class.

 XmlTextWriter writer = new XmlTextWriter(Response.Output);

.

XmlDocument:

Provides navigating and edinting features of the nodes in an XML document tree.

 XmlDocument doc = new XmlDocument();

XmlDataDocument:

Provides support for XML and relational data in W3C XML DOM. You can use this

class with a dataset to provide relational and non-relational views of the same set of data.

DataSet ds=new DataSet();

XmlDataDocument doc=new XmlDocument(ds);

 There are a number of reasons to use XmlDataDocument:

o It gives you the freedom to work with any data by using the DOM.

o There is synchronization between an XmlDatadocument and a DataSet, and any changes

in one will be reflected in the other.

o The XML document is loaded into an XmlDatadocument, the schema is preserved.

XmlPathDocument:

Provides a read-only cache for XML document processing by using XSLT. This class is

optimizied for XSLT processing and does not check for the conformity of W3C DOM.

XmlPathDocument doc=new XmlPathDocument("XML1.xml");

21

 P. GOPINATH M.C.A.,

XmlNodeReader:

Provides forward-only access to the data represented by the XmlDocument or

XmlDataDocument class.

XmlDocument doc=new XmlPathDocument();

XmlNodeReader reader=new XmlNodeReader(doc);

XslTransform:

Provides support for a XSLT 1.0 style sheet syntax that enables you to transform an XML

document by using XSL style sheets

Xsltransform xslt = new XslTransform ();

Web services:

Introduction

The use of ASP.NET to create Web Services based on industrial standards including

Extensible Mark-up Language (XML), SOAP (Simple Object Access Protocol), and WSDL (web

service definition language).

A Web Service is a software program that uses XML to exchange information with other software

via common internet protocols.

 The Web Services are a way of interacting with objects over the Internet.

A web service is

 Language Independent.

 Protocol Independent.

 Platform Independent.

 It assumes a stateless service architecture.

 Scalable (e.g. multiplying two numbers together to an entire customer-relationship

management system).

 Programmable (encapsulates a task).

 Based on XML (open, text-based standard).

 Self-describing (metadata for access and use).

 Discoverable (search and locate in registries

Key Web Service Technologies

 XML- Describes only data. So, any application that understands XML-regardless of the

application's programming language or platform has the ability to format XML in a variety

of ways (well-formed or valid).

 SOAP- Provides a communication mechanism between services and applications.

 WSDL- Offers a uniform method of describing web services to other programs.

22

 P. GOPINATH M.C.A.,

 UDDI- Enables the creation of searchable Web services registries.

 When these technologies are deployed together, they allow developers to package

applications as services and publish those services on a network.

Web services advantages

 Use open, text-based standards, which enable components written in various languages and

for different platforms to communicate.

 Promote a modular approach to programming, so multiple organizations can communicate

with the same Web service.

 Comparatively easy and inexpensive to implement, because they employ an existing

infrastructure and because most applications can be repackaged as Web services.

 Significantly reduce the costs of enterprise application (EAI) integration and B2B

communications.

 Implemented incrementally, rather than all at once which lessens the cost and reduces the

organizational disruption from an abrupt switch in technologies.

 The Web Services Interoperability Organization (WS-I) consisting of over 100 vendors

promotes interoperability.

1

 P. GOPINATH M.C.A.,

Unit – v ADO .NET

Data management in ADO.net

The two key components of ADO.NET are Data Providers and DataSet .

1. The Data Provider classes are meant to work with different kinds of data sources. They

are used to perform all data-management operations on specific databases.

2. DataSet class provides mechanisms for managing data when it is disconnected from the

data source.

Data Providers

The .Net Framework includes mainly three Data Providers for ADO.NET.

1. Microsoft SQL Server Data Provider ,

2. OLEDB Data Provider and

3. ODBC Data Provider.

SQL Server uses the SqlConnection object,

A data provider contains

1. Connection,

2

 P. GOPINATH M.C.A.,

2. Command,

3. DataAdapter,

4. DataReader objects.

These four objects provides the functionality of Data Providers in the ADO.NET.

Connection

 The Connection Object provides physical connection to the Data Source.

 It Defines the data source used, server name, database, ect

Command

 The Command Object uses to perform SQL statement or stored procedure to be executed

at the Data Source.

 SQL code to be executed within a database connection. Used to interact with data

between client and server.

DataReader

 Read Only instance to retrieve data sequencally.

 The DataReader Object is a stream-based , forward-only, read-only retrieval of query

results from the Data Source, which do not update the data.

DataAdapter

 DataAdapter Object populate a Dataset Object with results from a Data Source .

 Used to manage a DataSet Object. Allows modifications to data.

ADO.NET Introduction

 It is a module of .Net Framework which is used to establish connection between

application and data sources.

 Data sources can be such as SQL Server and XML. ADO.NET consists of classes that

can be used to connect, retrieve, insert and delete data.

 All the ADO.NET classes are located into System.Data.dll and integrated with XML

classes located into System.Xml.dll.

 ADO.NET has two main components that are used for accessing and manipulating data

are the .NET Framework data provider and the DataSet.

Features of ADO.NET:

 The new and updated features of ADO.NET.

1. Bulk Copy Operation

3

 P. GOPINATH M.C.A.,

Bulk copying of data from a data source to another data source is a new feature added to

ADO.NET 2.0.

Bulk copy classes provides the fastest way to transfer set of data from once source to the

other. Each ADO.NET data provider provides bulk copy classes.

For example, in SQL .NET data provider, the bulk copy operation is handled by

SqlBulkCopy class, which can read a DataSet, DataTable, DataReader, or XML objects. Read

more about Bulk Copy here.

2. Batch Update

Batch update can provide a huge improvement in the performance by making just one

round trip to the server for multiple batch updates, instead of several trips if the database server

supports the batch update feature.

The UpdateBatchSize property provides the number of rows to be updated in a batch.

This value can be set up to the limit of decimal.

3. Data Paging

The command object has a new execute method called ExecutePageReader. This method

takes three parameters - CommandBehavior, startIndex, and pageSize. So if you want to get rows

from 101 - 200, you can simply call this method with start index as 101 and page size as 100.

4. Connection Details

It get more details about a connection by setting Connection's StatisticsEnabled property

to True. The Connection object provides two new methods - RetrieveStatistics and

ResetStatistics.

The RetrieveStatistics method returns a HashTable object filled with the information

about the connection such as data transferred, user details, curser details, buffer information and

transactions.

5. DataSet.RemotingFormat Property

The DataSet.RemotingFormat is set to binary, the DataSet is serialized in binary format

instead of XML tagged format, which improves the performance of serialization and

deserialization operations significantly.

6. DataTable's Load and Save Methods

In previous version of ADO.NET, only DataSet had Load and Save methods.

The Load method can load data from objects such as XML into a DataSet object and

Save method saves the data to a persistent media. Now DataTable also supports these two

methods.

http://www.csharpcorner.com/UploadFile/mahesh/BulckCopyAdoNet2008192005135138PM/BulckCopyAdoNet20.aspx?ArticleID=11b9eb05-4e81-4841-9220-11fb1a7a019a&PagePath=/UploadFile/mahesh/BulckCopyAdoNet2008192005135138PM/BulckCopyAdoNet20.aspx
http://www.csharpcorner.com/UploadFile/mahesh/BulckCopyAdoNet2008192005135138PM/BulckCopyAdoNet20.aspx?ArticleID=11b9eb05-4e81-4841-9220-11fb1a7a019a&PagePath=/UploadFile/mahesh/BulckCopyAdoNet2008192005135138PM/BulckCopyAdoNet20.aspx

4

 P. GOPINATH M.C.A.,

It can also load a DataReader object into a DataTable by using the Load method.

7. New Data Controls

In Toolbox, you will see these new controls - DataGridView, DataConnector, and

DataNavigator. See Figure 1. Now using these controls, you can provide navigation (paging)

support to the data in data bound controls.

Fig 1. Data bound controls.

8. DbProvidersFactories Class

This class provides a list of available data providers on a machine. It can use this class

and its members to find out the best suited data provider for your database when writing a

database independent applications.

9. Customized Data Provider

It providing the factory classes now ADO.NET extends its support to custom data

provider.

10. DataReader's New Execute Methods

Now command object supports more execute methods. Besides old ExecuteNonQuery,

ExecuteReader, ExecuteScaler, and ExecuteXmlReader, the new execute methods are

ExecutePageReader, ExecuteResultSet, and ExecuteRow.

--

ASP.net using SQL Server:

To connect the SQL database into ASP .net using C# language.

Requirements

 Visual Studio 2008

 ASP.NET 4.5.2

 SQL Server 2008

5

 P. GOPINATH M.C.A.,

The following step for connect to the SQL database into ASP.NET, using C#, given below.

Step 1

Open Visual Studio 2008 , go to the File >> New >> Project (or) the shortcut key "Ctrl+Shift

+N".

Step 2

select Visual C# >> Web >> ASP.NET Web Application. Finally, click "OK" button.

Step 3

6

 P. GOPINATH M.C.A.,

Here, you can select the template for your ASP.NET Application. We are choosing "Empty"

here. Now, click OK button.

Step 4

Now, open the project and look for the Solution Explorer.

Here, open the default .aspx. If you want a Webform, you can add the page (Web Form).

Add+New item (Ctrl+Shift+A).

7

 P. GOPINATH M.C.A.,

Now, we can create a login page, using ASP.NET code. You need to follow the drag and drop

method. Here, we already created the login page.

Step 5

Now, open the project. If you want a SQL Server database, you can add the page (SQL Server

database). Add+New item (Ctrl+Shift+A).

Here, you can select Visual C# and choose SQL Server database. Afterwards, click "OK" button.

8

 P. GOPINATH M.C.A.,

Here, open the new Window and click YES button.

Now, add this to the database in our project.

9

 P. GOPINATH M.C.A.,

Step 6

Now, we can go to the Server Explorer and add your database. You can click the Tables and

afterwards, click Add New Table.

Now, open the new table and you can fill the data, which is like (studentname, password) and

afterwards, you click the Update .

10

 P. GOPINATH M.C.A.,

Here, click database in update and subsequently click update the database.

Here, the database is updated.

Here, the database and data are added.

11

 P. GOPINATH M.C.A.,

Now, we can click on the right click and click Show Table Data.

Now, the data is stored.

Step 7

Now, you can add SQL Data Source. Drag and drop method. Here, click Configure Data Source

12

 P. GOPINATH M.C.A.,

Now, we can choose your database and click NEXT button.

Now, you can select the ConnectionString and Click NEXT button

13

 P. GOPINATH M.C.A.,

Now, we can choose Specify columns from a table or view and afterwards, click Next button.

Now, click Test Query.

14

 P. GOPINATH M.C.A.,

Here, add the data and click Finish button.

Step 8

15

 P. GOPINATH M.C.A.,

Now, you can go to CS(C# code) page and you will write the C# code.

1. using System;

2. using System.Collections.Generic;

3. using System.Linq;

4. using System.Web;

5. using System.Web.UI;

6. using System.Web.UI.WebControls;

7. using System.Data.SqlClient;

8. using System.Configuration;

9.

10. namespace DatabaseConnectivity

11. {

12. public partial class loginpage System.Web.UI.Page

13. {

14. protected void Page_Load(object sender, EventArgs e)

15. {

16. if(IsPostBack)

17. {

18. SqlConnection conn = new SqlConnection(ConfigurationManager.Connection

Strings["RegiConnectionString"].ConnectionString);

19. conn.Open();

20. string checkuser = "select count(*) from RegisterDataBase where StudentNam

e='"+TextBox1.Text+"'";

21. SqlCommand cmd = new SqlCommand(checkuser, conn);

22. int temp = Convert.ToInt32(cmd.ExecuteScalar().ToString());

23.
24. if (temp == 1)

25. {

26. Response.Write("Student Already Exist");

27. }

28.
29. conn.Close();

30. }

31.
32. }

33.
34. protected void Button1_Click(object sender, EventArgs e)

35. {

36. try

37. {

38.
39. SqlConnection conn = new SqlConnection(ConfigurationManager.Connection

Strings["RegiConnectionString"].ConnectionString);

40. conn.Open();

16

 P. GOPINATH M.C.A.,

41. string insertQuery = "insert into RegisterDataBase(StudentName,Passwords,E

mailId,Department,College)values (@studentname,@passwords,@emailid,@department,

@college)";

42. SqlCommand cmd = new SqlCommand(insertQuery, conn);

43. cmd.Parameters.AddWithValue("@studentname", TextBox1.Text);

44. cmd.Parameters.AddWithValue("@passwords", TextBox2.Text);

45. cmd.Parameters.AddWithValue("@emailid", TextBox3.Text);

46. cmd.Parameters.AddWithValue("@department", TextBox4.Text);

47. cmd.Parameters.AddWithValue("@college", TextBox5.Text);

48. cmd.ExecuteNonQuery();

49.
50. Response.Write("Student registeration Successfully!!!thank you");

51.
52. conn.Close();

53.
54. }

55. catch (Exception ex)

56. {

57. Response.Write("error" + ex.ToString());

58. }

59. }

60. }

61. }

Now, you can see the Loginpage.aspx code.

1. <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="loginpage.aspx.cs"

Inherits="DatabaseConnectivity.loginpage" %>

2.

3. <!DOCTYPE html>

4.

5. <html xmlns="http//www.w3.org/1999/xhtml">

6. <head runat="server">

7. <title></title>

8. <link href="stylepage.css" type="text/css" rel="stylesheet" />

9. <style type="text/css">

10. .auto-style1 {

11. width 100%;

12. }

13. </style>

14. </head>

15. <body>

16. <form id="form1" runat="server">

17. <div id="title">

18. <h1>REGISTER PAGE</h1>

17

 P. GOPINATH M.C.A.,

19. </div>

20. <div id ="teble"></div>

21. <table class="auto-style1">

22. <tr>

23. <td>

24. <aspLabel ID="Label1" runat="server" Text="StudentName"></aspLabel></td

>

25. <td>

26. <aspTextBox ID="TextBox1" runat="server"></aspTextBox></td>

27. </tr>

28. <tr>

29. <td>

30. <aspLabel ID="Label2" runat="server" Text="Password"></aspLabel></td>

31. <td>

32. <aspTextBox ID="TextBox2" runat="server"></aspTextBox></td>

33. </tr>

34. <tr>

35. <td>

36. <aspLabel ID="Label3" runat="server" Text="EmailId"></aspLabel></td>

37. <td>

38. <aspTextBox ID="TextBox3" runat="server"></aspTextBox></td>

39. </tr>

40. <tr>

41. <td>

42. <aspLabel ID="Label4" runat="server" Text="Department"></aspLabel></td>

43. <td>

44. <aspTextBox ID="TextBox4" runat="server"></aspTextBox></td>

45. </tr>

46. <tr>

47. <td>

48. <aspLabel ID="Label5" runat="server" Text="College"></aspLabel></td>

49. <td>

50. <aspTextBox ID="TextBox5" runat="server"></aspTextBox></td>

51. </tr>

52. </table>

53. <div id="button">

54. <aspButton ID="Button1" runat="server" Text="submit" OnClick="Button1_Click"

BackColor="Yellow" />

55. </div>

56. <div id="sim"></div>

57. <aspSqlDataSource ID="SqlDataSource1" runat="server" ConnectionString="<%$

ConnectionStringsRegiConnectionString %>" SelectCommand="SELECT * FROM [Reg

isterDataBase]"></aspSqlDataSource>

58.
59. <div id="grid">

18

 P. GOPINATH M.C.A.,

60. <aspGridView ID="GridView1" runat="server" AllowPaging="True" AllowSorti

ng="True" AutoGenerateColumns="False" CellPadding="4" DataSourceID="SqlDataSo

urce1" ForeColor="#333333" GridLines="None">

61. <AlternatingRowStyle BackColor="White" ForeColor="#284775" />

62. <Columns>

63. <aspBoundField DataField="Id" HeaderText="Id" SortExpression="Id" />

64. <aspBoundField DataField="StudentName" HeaderText="StudentName" So

rtExpression="StudentName" />

65. <aspBoundField DataField="Passwords" HeaderText="Passwords" SortExpr

ession="Passwords" />

66. <aspBoundField DataField="EmailId" HeaderText="EmailId" SortExpressio

n="EmailId" />

67. <aspBoundField DataField="Department" HeaderText="Department" SortE

xpression="Department" />

68. <aspBoundField DataField="College" HeaderText="College" SortExpressio

n="College" />

69. </Columns>

70. <EditRowStyle BackColor="#999999" />

71. <FooterStyle BackColor="#5D7B9D" -Bold="True" ForeColor="White" />

72. <HeaderStyle BackColor="#5D7B9D" -Bold="True" ForeColor="White" />

73. <PagerStyle BackColor="#284775" ForeColor="White" HorizontalAlign="Cen

ter" />

74. <RowStyle BackColor="#F7F6F3" ForeColor="#333333" />

75. <SelectedRowStyle BackColor="#E2DED6" -

Bold="True" ForeColor="#333333" />

76. <SortedAscendingCellStyle BackColor="#E9E7E2" />

77. <SortedAscendingHeaderStyle BackColor="#506C8C" />

78. <SortedDescendingCellStyle BackColor="#FFFDF8" />

79. <SortedDescendingHeaderStyle BackColor="#6F8DAE" />

80. </aspGridView>

81. </div>

82.
83. <div id="last">

84. <h3>Developed by

85. Muthuramalingam Duraipandi</h3>

86. </div>

87. </form>

88. </body>

89. </html>

Step 9

Here, you need to run any Browser and after a few minutes, you will get some output. Now, we

can insert the data into your database.

19

 P. GOPINATH M.C.A.,

Step 10

Now, we can added the GridView. Drag and drop method needs to be used.

Now, you can choose the data source, it is sqlDataSource.

20

 P. GOPINATH M.C.A.,

Here, the database data is added to GridView.

Step 11

Here, you need to run any Browser and after a few minutes, you will get an output. Now, we can

view the data.

