
Autolykos: The Ergo Platform PoW Scheme

Alexander Chepurnoy∗, Vasily Kharin†, Dmitry Meshkov‡

December, 04, 2020
v2.0

Abstract

This document describes family of Autolykos Proof-of-Work algorithms
used in Ergo cryptocurrency. From block 1 until 414,720 Autolykos ver-
sion 1 is used on Ergo mainnet. Since block 414,720 Autolykos version 2
is used.

1 Autolykos version 2

Autolykos version 2 is following Autolykos version 1 defined in Section 2,
but with certain modifications made:

• non-outsourceability switched off. It turns out (based on more than
1 year of non-outsourceable PoW experience) that non-outsourceable
PoW is not attractive to small miners.

• now algorithm is trying to bind an efficient solving procedure with
a single table of 2 GB

• table size (memory requirements of a solving algorithm) grows with
time

• now table is depending on block height only, so there is no penaliza-
tion for recalculating block candidate for the same height

Solution verification and proving are given in Alg. 1 and Alg. 2.
Please note that:

1. H() is now not mod q , but ordinary blake2b256 with 256-bit output

2. takeRight(n, ·) is taking n least significant (right) bytes (from 32
bytes array)

3. sum is always about 256 bits (32 bytes)

4. h is height of a block (32 bits = 4 bytes)

∗Autolykos v. 1 and v. 2
†Autolykos v. 1
‡Autolykos v. 1

1

5. N value is growing with time as follows. Until block 614, 400, N =
226 = 67, 108, 864. From this block, and until block 9, 216, 000, every
51,200 blocks N is increased by 5 percent. Since block 9, 216, 000,
value of N is fixed and equals to 2, 147, 387, 550. Test vectors for N
values are provided in Table 1.

6. M is still equal to 8 ∗ 1, 024 (bytes)

Algorithm 1 Solution verification and proving

1: Input: m,nonce
2: i := takeRight(8, H(m||nonce)) mod N
3: e := takeRight(31, H(i||h||M))
4: J := genIndexes(e||m||nonce)
5: f :=

∑
j∈J takeRight(31, H(j||h||M))

6: require H(f) < b

Algorithm 2 Block mining

1: Input: upcoming block header hash m, block height h
2: Calculate ri∈[0,N) = takeRight(31, H(j||h||M))
3: while true do
4: nonce ← rand
5: i := takeRight(8, H(m||nonce)) mod N
6: e := takeRight(31, H(i||h||M))
7: J := genIndexes(e||m||nonce)
8: f :=

∑
j∈J rj

9: if H(f) < b then
10: return (m,nonce)
11: end if
12: end while

Height N value
500,000 67,108,864
600,000 67,108,864
614,400 70,464,240
700,000 73,987,410
788,400 81,571,035
1,051,200 104,107,290
9,216,000 2,147,387,550
29,216,000 2,147,387,550

Table 1: Test vectors for N values

2

2 Autolykos version 1

2.1 Introduction

Security of Proof-of-Work blockchains relies on multiple miners trying
to produce new blocks by participating in PoW puzzle lottery, and the
network is secure if the majority of them are honest. However, the reality
becomes much more complicated than the original one-CPU-one-vote idea
from the Bitcoin whitepaper[1].

The first threat to decentralization came from mining pools – miners
tend to unite in mining pools. Regardless of the PoW algorithm number of
pools controlling more then 50% of computational power is usually quite
small: 4 pools in Bitcoin, 2 in Ethereum, 3 in ZCash, etc. This problem
led to the notion of non-outsourceable puzzles [2, 3]. These are the puzzles
constructed in such a way that if a mining pool outsources the puzzle to
a miner, miner can recover pool’s private key and steal the reward with
a non-negligible probability. However the existing solutions either have
too large solution size (kilobyte is already on the edge of acceptability for
distributed ledgers) or very specific and can not be modified or extended
in any way without breaking non-outsourceability.

The second threat to cryptocurrencies decentralization is that ASIC-
equipped miners are able to find PoW solutions orders of magnitude faster
and more efficiently than miners equipped with the commodity hardware.
In order to reduce the disparity between the ASICs and regular hardware,
memory-bound computations where proposed in [4]. The most interesting
practical examples are two asymmetric memory-hard PoW schemes which
require significantly less memory to verify a solution than to find it [5, 6].
Despite the fact that ASICs already exist for both of them [7, 8], they
remain the only asymmetric memory-hard PoW algorithms in use.

In this paper we propose Autolykos — new asymmetric memory-hard
non-outsourceable PoW puzzle. In Section 3 we provide a full specification
of Autolykos, while in Section 3.1 we discuss its properties. Few auxiliary
algorithms are placed in Appendix.

3 Autolykos v.1 puzzle

The proposed scheme requires following components:

1. Cyclic group G of prime order q with fixed generator g and identity
element e. Secp256k1 elliptic curve is used for this purposes.

2. Number of elements k required in the solution. Value k = 32 is used
in implementation.

3. Number N of elements in the list R ⊂ Z/qZ to be stored in miner’s
memory. Value N = 226 is used in implementation.

4. Hash function H which returns the values in Z/qZ. Particular im-
plementation is based on Blake2b256 and is described in Alg.5.

5. Hash function genIndexes which returns a list of numbers from
0 . . . (N − 1) of size k. It is based on Blake2b256 and is described in
Alg.6.

3

6. Target interval parameter b, that is recalculated via difficulty ad-
justment rules.

7. Constant message M = [0, . . . , 1023].f latMap(i => Longs.toByteArray(i))
that is used to enlarge message size and increase elements calculation
time.

Autolykos is based on one list k-sum problem: miner should find k
elements from the pre-defined list R of size N , such that

∑
j∈J rj−sk = d

is in the interval {−b, . . . , 0, . . . , b mod q}. In addition, we require set of
element indexes J to be obtained by one-way pseudo-random function
genIndexes. This prevents optimizations as soon as it is hard to find
such a seed, that genIndexes(seed) returns the desired indexes.

Thus we assume that the only option for miner is to use the simple
brute-force algorithm 3 to create a valid block.

Algorithm 3 Block mining

1: Input: upcoming block header hash m, key pair pk = gsk

2: Generate randomly a new key pair w = gx

3: Calculate ri∈[0,N) = H(j||M ||pk||m||w)
4: while true do
5: nonce ← rand
6: J := genIndexes(m||nonce)
7: d :=

∑
j∈J rj · x− sk mod q

8: if d < b then
9: return (m, pk,w, nonce, d)

10: end if
11: end while

Note that although the mining process utilizes private keys, solution
itself only contains public keys. Solution verification can be performed by
Alg. 4.

Algorithm 4 Solution verification

1: Input: m, pk,w, nonce, d
2: require d < b
3: require pk, w ∈ G and pk, w 6= e
4: J := genIndexes(m||nonce)
5: f :=

∑
j∈J H(j||M ||pk||m||w)

6: require wf = gdpk

3.1 Discussion

First, notice that in Algorithm 3 we refer to construction f(m,nonce, w, pk) =∑
j∈genIndexes(m||nonce) H(j||M ||pk||w) as a hash function. Public key

plays a role of commitment. Therefore, the pair (pk, d) is a Schnorr signa-
ture with a public key w over the message (m,nonce) with a hash function
f . If one denotes e the corresponding value of f , and pass to more common

4

notations: e = f(m,nonce, w,weg−d). The puzzle consists in trying differ-
ent nonces and keys in order for signature to satisfy d ∈ {−b, . . . , 0, . . . , b}.
Security follows from the security of Schnor signatures, and outsourcing
the puzzle is equivalent to outsourcing the signature (or parts of signa-
ture creation routine). The only difference from conventional setup is the
design of function f . It must be constructed in such a way that efficient
massive evaluations with different nonces require allocating large amount
of memory (benefitting from data reuse), whereas single evaluation on
verifier’s side can be done “on fly”.

To achieve this, algorithm 3 requires to keep the whole list R during
the main loop. Every pre-calculated hash occupies 32 bytes, so the whole
list of N elements occupies N ·32 = 2Gb of memory. For sure, a miner can
recalculate these elements “on fly” during the main loop and thus reduce
memory requirements. However in such a case the number of calls of H
will significantly grow up (e.g. assuming GPU hashrate G = 230H/s [9]
and block interval t = 120 s, every element will be used (G/N)·k·t = 3·104

times on average.) reducing miner’s efficiency and profit.
While list R is quite big, it’s filling consumes quite a lot of time: our

initial implementation [10] consumed 25 seconds on Nvidia GTX 1070
to fill list R. This part, however, may be sufficiently optimized if miner
in addition stores a list of unfinalized hashes ui∈[0,N) = H(i||M ||pk in
memory, consuming 5 more Gigabytes of it. In such a case this work
to calculate unfinalized hashes should be done only once during mining
initialization while finalizing them and filling the list R for the new header
will only consume few milliseconds (for about 50 ms on Nvidia GTX 1070).

The protocol is quite efficient in terms of solution size and verification
time: it consists of 2 public keys of size 32 bytes, number d that is at most
32 bytes (but contains a lot of leading zeros in case of the small target b)
and an 8-bytes long nonce. Header verification requires verifier to calculate
1 genIndexes hash, k hashes H and perform two exponentiations in the
group. Reference Scala implementation [11] allows verifying block header
in 2 milliseconds on Intel Core i5-7200U, 2.5GHz.

References

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[2] A. Miller, A. Kosba, J. Katz, and E. Shi, “Nonoutsourceable scratch-
off puzzles to discourage bitcoin mining coalitions,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 2015, pp. 680–691.

[3] I. E. P. Daian, E. G. Sirer, and A. Juels, “Piecework: Generalized out-
sourcing control for proofs of work,” in BITCOIN Workshop, 2017.

[4] C. Dwork, A. Goldberg, and M. Naor, “On memory-bound functions
for fighting spam,” in Annual International Cryptology Conference.
Springer, 2003, pp. 426–444.

[5] A. Biryukov and D. Khovratovich, “Equihash: Asymmetric proof-of-
work based on the generalized birthday problem,” Ledger, vol. 2, pp.
1–30, 2017.

5

[6] Ethash. [Online]. Available: https://github.com/ethereum/wiki/
wiki/Ethash/6e97c9cea49605264c6f4d1dc9e1939b1f89a5a3

[7] Bitmain confirms release of first ethereum asic
miners. [Online]. Available: https://www.coindesk.com/
bitmain-confirms-release-first-ever-ethereum-asic-miners

[8] Bitmains latest crypto asic can mine zcash. [Online]. Available: https:
//www.coindesk.com/bitmains-latest-crypto-asic-can-mine-zcash

[9] Non-specialized hardware comparison. [Online]. Available: https:
//en.bitcoin.it/wiki/Non-specialized hardware comparison

[10] Autolykos gpu miner. [Online]. Available: https://github.com/
ergoplatform/Autolykos-GPU-miner

[11] Autoleakus scala implementation. [Online]. Avail-
able: https://github.com/ergoplatform/ergo/tree/master/src/main/
scala/org/ergoplatform/mining

Appendix

Implementation of hash function H which returns the values in Z/qZ:

Algorithm 5 Numeric hash

1: function H(input)
2: validRange := (2256/q) · q
3: hashed := Blake2b256(input)
4: if hashed < validRange then
5: return hashed.mod(q)
6: else
7: return H(hashed)
8: end if
9: end function

Implementation of hash function genIndexes which returns a list of
size k with numbers in 0 . . . (N − 1):

Algorithm 6 Index generator

1: function genIndexes(seed)
2: hash := Blake2b256(seed)
3: extendedHash := hash||hash
4: return (0 . . . k − 1).map(i => extendedHash.slice(i, i + 4).mod(N))
5: end function

6

https://github.com/ethereum/wiki/wiki/Ethash/6e97c9cea49605264c6f4d1dc9e1939b1f89a5a3
https://github.com/ethereum/wiki/wiki/Ethash/6e97c9cea49605264c6f4d1dc9e1939b1f89a5a3
https://www.coindesk.com/bitmain-confirms-release-first-ever-ethereum-asic-miners
https://www.coindesk.com/bitmain-confirms-release-first-ever-ethereum-asic-miners
https://www.coindesk.com/bitmains-latest-crypto-asic-can-mine-zcash
https://www.coindesk.com/bitmains-latest-crypto-asic-can-mine-zcash
https://en.bitcoin.it/wiki/Non-specialized_hardware_comparison
https://en.bitcoin.it/wiki/Non-specialized_hardware_comparison
https://github.com/ergoplatform/Autolykos-GPU-miner
https://github.com/ergoplatform/Autolykos-GPU-miner
https://github.com/ergoplatform/ergo/tree/master/src/main/scala/org/ergoplatform/mining
https://github.com/ergoplatform/ergo/tree/master/src/main/scala/org/ergoplatform/mining

	Autolykos version 2
	Autolykos version 1
	Introduction

	Autolykos v.1 puzzle
	Discussion

