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Severe COVID-19 is associated with molecular 
signatures of aging in the human brain

Maria Mavrikaki    1,4 , Jonathan D. Lee    1,4, Isaac H. Solomon    2 & 
Frank J. Slack    1,3 

As coronavirus disease 2019 (COVID-19) and aging are both accompanied by 
cognitive decline, we hypothesized that COVID-19 might lead to molecular 
signatures similar to aging. We performed whole-transcriptome analysis of 
the frontal cortex, a critical area for cognitive function, in individuals with 
COVID-19, age-matched and sex-matched uninfected controls, and uninfected 
individuals with intensive care unit/ventilator treatment. Our findings 
indicate that COVID-19 is associated with molecular signatures of brain aging 
and emphasize the value of neurological follow-up in recovered individuals.

COVID-19 is an acute respiratory disease often accompanied by neuro-
logical sequelae1. Individuals with previous severe COVID-19 exhibit a 
10-year average drop in their global cognitive performance2, mimicking 
accelerated aging. Complementary studies combining neuroimaging 
and cognitive screening implicate COVID-19-induced impairment of 
the frontal cortex3,4, a critical area for cognitive function, but molecular 
evidence of aging-like effects in the brain is lacking.

To address this, we performed RNA-sequencing (RNA-seq) analysis 
of 54 postmortem frontal cortex samples, including samples from 21 
individuals with severe COVID-19 (previous neurological history was 
limited to Alzheimer’s disease in one person and epilepsy in another) 
and 1 asymptomatic individual aged between 23 and 84 years old, 22 
age-matched (±2 years) and sex-matched uninfected controls with no 
history of neurological or psychiatric disorders, an age-matched and 
sex-matched uninfected individual with Alzheimer’s disease, and an 
additional independent control group of 9 uninfected individuals with 
history of intensive care unit (ICU) or ventilator treatment (22–85 years 
old; ICU/VENT; Fig. 1a and Supplementary Fig. 1a; see Supplementary 
Table 1 for clinical information; COVID-19 cohort). All COVID-19-cases 
were determined by positive pre-mortem or peri-mortem testing for 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infec-
tion via nasopharyngeal swab qPCR and history of hospitalization, 
whereas uninfected control samples were collected before the COVID-19  
pandemic (with three exceptions in the ICU/VENT group that had 
negative SARS-CoV-2 qPCR tests at the time of death, and no COVID-19 
history and/or negative serological test).

By clustering analyses, COVID-19 transcriptomic cases broadly 
segregated away from controls, with two of the outliers being from 

the 23-year-old asymptomatic individual and the 62-year-old indi-
vidual with comorbid epilepsy; the age-matched/sex-matched con-
trols proximal to COVID-19 cases were from older adults (Fig. 1b and 
Supplementary Figs. 1 and 2). Uninfected older adults in the ICU/VENT 
group generally clustered closer to COVID-19-infected individuals, 
whereas younger ICU/VENT individuals clustered relatively close to 
controls; two cases cluster separately from all other samples (Sup-
plementary Fig. 1b). Comparison of COVID-19 cases and their cor-
responding age-matched and sex-matched controls revealed 6,993 
differentially expressed genes (DEGs), 3,330 of which were upregulated 
and 3,663 downregulated (Fig. 1c and Supplementary Table 2). For 
example, the S100A8 and S100A9 genes, which encode calprotectin 
and blood circulating levels of which distinguish severe from mild 
COVID-19 disease5, were upregulated among individuals with COVID-19.  
Pathway enrichment analysis identified numerous significant GO 
terms associated with aging in the human brain enriched upon severe 
COVID-19, including positive enrichment of immune-related pathways 
and negative enrichment of synaptic activity, cognition and memory 
pathways (Fig. 1d and Supplementary Fig. 3). We also observed signifi-
cant associations of cellular response to DNA damage, mitochondrial 
function, regulation of response to stress and oxidative stress, vesicular 
transport, calcium homeostasis6, and insulin signaling/secretion7 
pathways previously associated with aging processes and brain aging6,8. 
Altogether, our analyses suggest that many biological pathways that 
change with natural aging in the brain also change in severe COVID-19.

As natural brain aging is associated with cognitive decline, we 
further assessed associations of transcriptomic changes in COVID-19 
and cognitive function. We collated frontal cortex transcriptomic 
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that this could be due to multiple factors, including SARS-CoV-2 viral 
infection in the frontal cortex or COVID-19-induced systemic inflamma-
tion. In agreement with previous studies11,12, SARS-CoV-2 viral RNA was 
not detected in samples from individuals with COVID-19 (at the time 
of death; Supplementary Fig. 7), suggesting that the observed gene 
expression changes are unlikely due to direct effects of the viral RNA in 
the frontal cortex. On the other hand, our transcriptomic pathway anal-
yses identified upregulation of tumor necrosis factor (TNF) and type 
I/II interferon response pathways in the frontal cortex of individuals 
with COVID-19 (Fig. 2d). Indeed, interferons and TNF have been impli-
cated in brain aging and aging-induced cognitive decline6,13–15. Among 
individuals with COVID-19 with available peripheral cytokine data, we 
indeed observed increased TNF levels (3.5–24.2 pg ml−1 at 0–2 d before 
death in three individuals; values > 2.8 pg ml−1 are considered elevated; 
data were not available for the rest of the individuals). In line with our 
findings, a mouse model of SARS-CoV-2 infection exhibited elevation of 
pro-inflammatory cytokines in cerebrospinal fluid, including interferon 
gamma (IFN-γ) and TNF, in the absence of viral neuroinvasion16. To test 
whether TNF and type I/II interferons can modulate the expression of 
aging-regulated genes, we performed a transcriptomic analysis (RNA-
seq) on human primary neurons treated with different doses of TNF, 
interferon beta (IFN-β) or IFN-γ. Interestingly, TNF and to a lesser extent 
IFN-γ and IFN-β increased the predicted aging index of cytokine-treated 
neurons, suggestive of the induction of an aging-like effect (Fig. 2e,f). 
We also found that cytokines upregulated the expression of aging-reg-
ulated genes that were upregulated in individuals with COVID-19 such 
as TRIM22, CHI3L1, C1S and IFITM1 and downregulated the expression 
of aging-regulated genes that were downregulated in individuals with 
COVID-19 such as CCND2, ACTR3B and EPHA5 (Supplementary Fig. 8).  
Taken together, our data suggest that COVID-19-induced TNF and type 
I/II interferons may lead to significant deteriorating effects in the brain 
in the absence of SARS-CoV-2 neuroinvasion.

Aging is a major risk factor for the development of cognitive defi-
cits. Our results, together with previously reported residual cognitive 
deficits reported in recovered cases2, imply that aging-associated 
and cognitive decline-associated gene expression changes observed 
in individuals with COVID-19 may lead to increased rates of cognitive 
decline. Furthermore, we provide evidence that these aging-regulated 
gene expression changes may be mediated in part by circulating TNF 
and type I/II interferons, suggesting that acute management of severe 
COVID-19-induced inflammation may be neuroprotective. We recog-
nize limitations in our study including: the variability in illness dura-
tion, the imperfect quality of several samples and the specificity of our 
findings due to COVID-19. Despite these constraints, our study was suf-
ficiently powered to identify substantial transcriptome-wide changes 

data from 633 individuals who underwent the Mini-Mental State 
Examination (MMSE) while alive and donated their brains at the time 
of death as part of the ROSMAP study9,10. We split individuals and 
their corresponding transcriptomic data based on the median MMSE 
score: ≥25 as high cognitive performance versus MMSE < 25 as low 
cognitive performance. From gene-set enrichment analysis (GSEA), 
we found strong associations between low cognitive performance 
and COVID-19 (Fig. 1e).

Given the strong associations between aging-regulated pathways 
and severe COVID-19, we sought to directly test whether COVID-19 
is associated with similar gene expression patterns as natural aging 
in the human brain. We performed RNA-seq analysis of postmortem 
frontal cortex samples of 10 young (≤38 years old) and 10 older (≥71 
years old) uninfected individuals (Supplementary Table 1; aging cohort 
and Supplementary Fig. 4a) and compared these findings to COVID-19 
DEGs. We found striking similarities between individuals with COVID-
19 and aged individuals: genes upregulated in aging were upregulated 
in severe COVID-19; likewise, genes downregulated in aging were also 
downregulated in severe COVID-19 (see Fig. 1f for age-matched/sex-
matched controls versus COVID-19). As further validation, we collated 
transcriptome-wide datasets from five independent aging cohorts and 
confirmed this association (Supplementary Fig. 5 and Supplementary 
Table 4). Intriguingly, we continued to observe a significant associa-
tion between aging-associated genes and DEGs from individuals with 
COVID-19 versus uninfected individuals treated with ICU/VENT (Fig. 1g).

To delineate the effects of severe COVID-19 on brain aging directly, 
we leveraged our aging cohort to derive an aging index (Supplementary 
Fig. 4), comprising our aging DEGs and condensed by the first principal 
component across these transcriptomic data. As validation, we applied 
our predicted aging index to uninfected controls (COVID-19 cohort) and 
found similarly strong Pearson correlations between the training and 
test sets (Fig. 2a,b). Applying this model to individuals with COVID-19,  
we observed a significant increase in the predicted aging index com-
pared to corresponding uninfected age-matched/sex-matched control 
and uninfected ICU/VENT control groups (Fig. 2c). Additional analysis 
revealed that the predicted aging index in individuals with COVID-19 
was not significantly affected by the presence or absence of cerebro-
vascular disease (P > 0.05). Thus, severe COVID-19 appears to shift 
the molecular age of brains relative to both uninfected age-matched 
and sex-matched controls as well as uninfected ICU/VENT controls. 
Lastly, using qPCR analysis, we validated several of the top shared DEGs 
between our COVID-19 cohort and aging datasets (n = 22 per group; 
Supplementary Fig. 6).

Finally, we sought to determine pathophysiologic mechanisms 
that may explain the association of COVID-19 with aging. We considered 

Fig. 1 | Severe COVID-19 is associated with transcriptomic signatures of 
aging in the human brain. a, Age and sex of each individual in COVID-19 or 
uninfected age/sex-matched control (±2 years) groups (n = 22 per group) 
analyzed in this cohort. An asterisk indicates notable COVID-19 cases. The 
23-year-old male presented with asymptomatic COVID-19, the 62-year-old 
female presented with severe COVID-19 history and comorbid epilepsy and 
the 84-year-old female who had a history of severe COVID-19 with comorbid 
Alzheimer’s disease (AD; an uninfected individual with AD was also included as 
an additional control; Supplementary Table 1). Created with BioRender.com.  
b, t-distributed stochastic neighbor embedding (t-SNE) analysis of frontal 
cortex transcriptomes from COVID-19-infected individuals, uninfected age-
matched and sex-matched controls, and an independent group of uninfected 
controls with history of ICU and/or ventilator treatment (ICU/VENT). Black 
border, 23-year-old asymptomatic male with COVID-19. Red border, 62-year-old 
female with COVID-19 history and comorbid epilepsy. Blue border, 84-year-old 
female with COVID-19 history and comorbid AD. Black point, 84-year-old female 
without COVID-19 but with AD. Green border, uninfected age-matched and sex-
matched control (non-AD) for the COVID-19-infected individual with comorbid 
AD. For age-matched/sex-matched controls and COVID-19 samples n = 22 per 
group; ICU/VENT-treated uninfected controls n = 9. c, Volcano plot representing 

the DEGs of the frontal cortex of individuals with COVID-19 versus age-matched 
and sex-matched controls (n = 22 per group). Red points denote significantly 
upregulated genes among COVID-19 cases (false discovery rate (FDR) < 0.05). 
Blue points denote significantly downregulated genes among COVID-19 cases. 
Black points highlight significant genes with corresponding gene symbols 
(Supplementary Table 2). d, Gene Ontology (GO) biological pathway enrichment 
analysis of COVID-19 versus age-matched/sex-matched control DEGs. Gene 
ranks were determined by signed −log10 FDRs of DEGs (Supplementary  
Table 3). e, GSEA of cognitive decline-regulated genes using COVID-19 (COVID-19 
versus age-matched and sex-matched controls) DEGs. DEG ranks were assigned 
by signed −log10 FDR from the frontal cortex transcriptome of individuals with 
MMSE scores > 25 (high cognitive performance) versus the transcriptome 
of individuals with MMSE scores < 25 (low cognitive performance/cognitive 
decline) as measured in the ROSMAP study. f,g, GSEA of COVID-19 DEGs 
(COVID-19 versus age-matched/sex-matched control in f and COVID-19 versus 
ICU/VENT in g), using significantly upregulated (top) or downregulated genes 
(bottom) in our aging cohort as gene sets. DEG ranks were assigned by  
signed −log10 FDR from COVID-19 versus corresponding control frontal  
cortex. NES, normalized enrichment score. P, two-tailed GSEA P value 
(Supplementary Fig. 5).
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in individuals with COVID-19. In addition to being larger than previously 
reported COVID-19 brain transcriptome studies11,12,17, our COVID-19 
cases were matched by age and sex to uninfected controls, enabling 

the identification of aging-associated gene expression signatures in 
our samples. Furthermore, we included ICU/VENT uninfected samples 
as an additional independent control group to distinguish COVID-19 
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Fig. 2 | Severe COVID-19 and cytokine treatment of neurons are associated 
with increases in predicted age. a, First, a principal-component analysis using 
DEGs (FDR < 0.05) of young versus old uninfected controls estimated principal 
component 1 (PC1). The graph presents a two-tailed Pearson correlation of 
chronological age with aging index (PC1) among young versus old uninfected 
controls from the aging cohort (training set). n = 20. Gray shadow indicates the 
95% confidence interval from a linear regression fit (R2 (18) = 0.58, P = 9.2 × 10−5). 
b, Two-tailed Pearson correlation of chronological age with predicted aging 
index (PC1) among uninfected age-matched and sex-matched controls from the 
COVID-19 cohort (test set). n = 22. Gray shadow indicates the 95% confidence 
interval from a linear regression fit (R2 (20) = 0.438, P = 7.9 × 10−4). c, Predicted 
aging index (PC1) of individuals with COVID-19 (n = 22), age-matched/sex-
matched uninfected controls (control; n = 22), and an independent group of 
uninfected cases with ICU/VENT treatment history (n = 9). The line in each 
group represents the mean ± s.e.m. COVID-19 versus control Welch two-tailed 
t(42.0) = 5.68, P = 3.4 × 10−6; COVID-19 versus ICU/VENT Welch two-tailed 

t(21.0) = 3.14, P = 0.015. A Bonferroni correction was used to adjust for multiple 
comparisons. d, Significant interferon and TNF-related pathways identified using 
GO biological pathway enrichment analysis of COVID-19 versus age-matched/sex-
matched control frontal cortex DEGs. FDR, GSEA FDR (Supplementary Table 3). 
e, Experimental design of in vitro cytokine treatment in human neurons. Created 
with BioRender.com. f, Effects of IFN-β, IFN-γ and TNF on predicted aging index, 
as assessed following in vitro treatment of primary human neurons. The line in 
each group represents the mean ± s.e.m. n = 3 independent wells (1 × 105 cells per 
well were plated) for each treatment. IFN-β_LO versus control Welch two-tailed 
t(2.68) = 4.48, P = 0.16; IFN-β_HI versus control Welch two-tailed t(3.51) = 8.26, 
P = 0.012; IFN-γ_LO versus control Welch two-tailed t(3.58) = 20.8, P = 4.4 × 10−4; 
IFN-γ_HI versus control Welch two-tailed t(3.35) = 12.3, P = 4.1 × 10−3; TNF_LO 
versus control Welch two-tailed t(3.63) = 33.6, P = 6.6 × 10−5; TNF_HI versus control 
Welch two-tailed t(2.28) = 15.8, P = 0.013. Bonferroni correction was used to adjust 
for multiple comparisons.

http://www.nature.com/nataging
http://BioRender.com


Nature Aging

Brief Communication https://doi.org/10.1038/s43587-022-00321-w

from other comorbidities requiring ICU monitoring and/or ventilation. 
The generalizability of our results to individuals who had mild COVID-19  
or who recovered from COVID-19 remains to be determined. Given 
our findings, we advocate for neurological follow-up of individuals 
who recovered from COVID-19 and suggest potential clinical value in 
modifying risk factors to reduce the risk or delay the development of 
aging-related neurological pathologies and cognitive decline18.

Methods
Human brain tissues
This study complies with all relevant ethical regulations. Postmor-
tem brain tissue specimens from individuals with COVID-19 (n = 22) 
were collected through a protocol for waived consent for the use of 
excess tissue approved by the Mass General Brigham Institutional 
Review Board (IRB protocol no. 2018P001724; controls and samples 
for the aging cohort were obtained as de-identified from the National 
Institutes of Health (NIH) NeuroBioBank, which does not require IRB 
approval; postmortem human brain research of de-identified samples 
is not considered human subjects research). Consent for autopsy was 
provided by the individuals’ next of kin or healthcare proxy according 
to Massachusetts state law (participant compensation was not applica-
ble). All autopsies were performed at Brigham and Women’s Hospital 
(BWH) from 01 September 2020 to 31 December 2021 with pre-mortem 
or peri-mortem positive testing for SARS-CoV-2 by nasopharyngeal 
swab qPCR. Individuals in the COVID-19 group had no known psychi-
atric or neurological disorder (two individuals had history of previ-
ous stroke; Supplementary Table 1) with the exception of one person 
with epilepsy and another with Alzheimer’s disease. Tissues collected 
within a postmortem interval no more than 50 h were included, and 
this criterion was applied to all tissues used in our study, including 
controls and the aging cohort described below. Eligibility criteria 
included adults with pre-mortem or peri-mortem positive testing for 
SARS-CoV-2 by nasopharyngeal swab qPCR and no known psychiatric 
or neurological disorder (however, we included the individual with epi-
lepsy and the individual with Alzheimer’s disease due to limited tissue 
availability) and postmortem interval no more than 50 h. Sample size 
was determined based on availability of tissues. At the time of autopsy, 
brains were sectioned coronally, and samples of middle frontal gyrus 
(alternating between left and right sides in the absence of gross abnor-
malities) were collected and frozen at −80 °C. Frozen middle/superior 
frontal gyrus (Brodmann area 8) controls were obtained from the NIH 
NeuroBioBank (the Harvard Brain Tissue Resource Center (HBTRC), 
the University of Miami’s Brain Endowment Bank and the University 
of Maryland Brain and Tissue Bank; n = 22). Controls (two of which had 
reported ventilator history) were selected to be age (within ± 2 years) 
and sex matched to a COVID-19 case and were categorized as unaffected 
controls with no known psychiatric or neurological condition in the NIH 
NeuroBioBank system. Each COVID-19 case was matched to one age-
matched and sex-matched control; in the instance of similar ages and 
sex between COVID-19 and control cases within sequencing batches, 
cases and controls were grouped together for differential expression 
analysis (Supplementary Table 1). As one individual with COVID-19 had 
comorbid Alzheimer’s disease, we also included an age-matched and 
sex-matched uninfected individual with Alzheimer’s disease. As an 
additional independent group (ICU/VENT), we included frozen frontal 
cortex (Brodmann area 8) from uninfected individuals with a history 
of ventilator treatment obtained from the NIH NeuroBioBank (the 
University of Miami’s Brain Endowment Bank) and the Human Brain Col-
lection Core at NIH, and frozen frontal cortex of uninfected individuals 
with ICU treatment, which were collected at BWH as described above 
for the COVID-19 cases (Supplementary Table 1). This control group 
was included as most individuals with COVID-19 received ICU/VENT 
treatment. Each case in the ICU/VENT control group was age matched 
(within ± 3 years; with three exceptions that were ±5–8 years, but were 
also included due to limited tissue availability) and sex matched to a 

COVID-19 case (n = 9). Thus, each COVID-19 case was matched to one 
ICU/VENT control when available. All control samples were collected 
before November 2019 and the start of the COVID-19 pandemic in the 
United States, with the exception of samples from three individu-
als with a history of ventilator or ICU support, who all had negative 
SARS-CoV-2 nasopharyngeal swab qPCR at the time of death and no 
reported COVID-19 history (a negative result for nucleocapsid serologi-
cal/antibody test at the time of death was also available for one of those 
individuals) and thus were considered uninfected by SARS-CoV-2. For 
the aging cohort, frozen frontal cortex specimens (Brodmann area 8) 
from ten young (≤38 years old) and ten old (≥71 years old) individuals 
(aging cohort) were obtained from the NIH NeuroBioBank (the Univer-
sity of Maryland Brain and Tissue Bank, the HBTRC and the University 
of Miami’s Brain Endowment Bank; n = 10 per group; Supplementary 
Table 1). Samples analyzed in the aging cohort were collected before 
the COVID-19 outbreak in the United States and thus were considered 
uninfected by SARS-CoV-2.

Frozen tissue was processed using Biosafety Level 2+ procedures 
approved by the Beth Israel Deaconess Medical Center (BIDMC) Insti-
tutional Biosafety Committee. Brain tissues were homogenized using 
TRIzol (Thermo Fisher) reagent and RNA were extracted from tissues 
by phase separation. Total RNA was quantified by NanoDrop (DeNovix 
DS-11) and TapeStation 4200 (RNA Screen Tape; Agilent Technologies).

Definition of severe COVID-19
Severe COVID-19 was determined by meeting the NIH criteria for severe 
or critical illness (that is, peripheral capillary oxygen saturation < 94% 
on room air at sea level, the ratio of arterial oxygen partial pressure 
to fractional inspired oxygen < 300 mm Hg, a respiratory rate > 30 
breaths per minute, or lung infiltrates > 50%; respiratory failure, septic 
shock and/or multiple organ dysfunction). Asymptomatic COVID-19 
was determined by testing for SARS-CoV-2 by nasopharyngeal swab 
qPCR and a lack of respiratory or other typical symptoms observed 
in COVID-19.

Library construction and RNA-seq
A total of 450 ng RNA for the frontal cortex samples and 80 ng of total 
RNA for the human primary neurons was used for library prepara-
tion via the KAPA RNA HyperPrep kit with RiboErase (HMR; Roche, 
08098131702) according to the manufacturer’s recommendations. 
Briefly, hybridization with hybridization oligonucleotides (HMR) was 
performed at 95 °C for 2 min followed by rRNA depletion using RNAse 
H, which was performed at 45 °C for 30 min. Following rRNA deple-
tion cleanup via KAPA pure beads, DNase digestion was performed 
at 37 °C for 30 min followed by cleanup, RNA elution, fragmentation 
(6 min at 94 °C for samples with an RNA integrity number ≥ 7 or 5 min 
at 85 °C for samples with an RNA integrity number ≤ 7) and priming. 
First-strand and second-strand synthesis and A-tailing were performed 
according to the manufacturer’s recommendations. A total of 1.5 μM 
KAPA Unique Dual-Indexed (UDI; Roche, 8861919702) adaptors were 
ligated to the second-strand synthesis product in the presence of a 
ligation master mix in a reaction that was performed at 20 °C for 15 min. 
Following cleanup, all libraries underwent 10 (frontal cortex samples) 
or 13 (human primary neurons) cycles of amplification. Successful 
library production, quality control and quantification were assessed 
using TapeStation (High sensitivity D1000 Screen Tape; Agilent Tech-
nologies). Libraries were pooled (four runs in total) and subjected to 
NovaSeq 6000.

RT–qPCR
A total of 400 ng RNA from each frontal cortex sample was processed 
for cDNA via the SuperScript IV Reverse Transcriptase kit (Thermo 
Fisher Scientific, 18090050) according to the manufacturer’s instruc-
tions. All qPCR experiments were performed in a 384-well plate 
using LightCycler 480 SYBR Green (Roche, 4887352001) via a Roche 

http://www.nature.com/nataging


Nature Aging

Brief Communication https://doi.org/10.1038/s43587-022-00321-w

LightCycler 480 II PCR system using Roche LightCycler 480 Software 
v1.5.1.62.

To assess the expression of SARS-CoV-2, primers against the SARS-
CoV-2 nucleocapsid (N) gene (primer set nCOV_N1 (IDT no. 10007031; 
5′-GACCCCAAAATCAGCGAAAT-3′ for forward and 10007032; 5′-TCTG-
GTTACTGCCAGTTGAATCTG-3′ for reverse primer) and primer set 
nCOV_N2 (IDT no. 10007033; 5′-TTACAAACATTGGCCGCAAA-3′ for 
forward and 10007034; 5′-GCGCGACATTCCGAAGAA-3′ for reverse 
primer)) and RPP30 (RNase P gene; RP; used for normalization; IDT no. 
10006827; 5′-AGATTTGGACCTGCGAGCG-3′ for forward and no. 
10006828; 5′-GAGCGGCTGTCTCCACAAGT-3′ for reverse primer) were 
synthesized (IDT) as recommended by the US Centers for Disease 
Control and Prevention. The 2019-nCoV_N_Positive Control RUO Plas-
mid (IDT no. 10006625) was included as a positive control. All other 
primers (ACTB (QT00095431), S100A8 (QT00226121), S100A9 
(QT00018739), IFITM1 (QT00064246), MYL12A (QT01665741), GRIN3A 
(QT00043617), RHOBTB3 (QT00072611), CORO1A (QT00066997), SST 
(QT00004277), MAP2 (QT00057358) and NPTXR (QT00015701); 
QuantiTect Primer Assays) were purchased from Qiagen. ACTB was 
used for normalization. qPCR data were analyzed via the 2−ΔΔcT method19 
using Microsoft Excel 2016.

RNA-seq analysis
For assessment of SARS-CoV-2 genome alignment, reads were aligned 
to the SARS-CoV-2 reference genome (NCBI reference sequence 
NC_045512.2) using bowtie2 v2.2.9 with options ‘--X 1000 --no-mixed’. 
Analysis of RNA-seq of Calu-3-infected samples from Blanco-Melo 
et al.20 were included as positive controls with default bowtie2 
parameters.

For assessment of differential gene expression, raw sequencing 
reads were aligned to a reference transcriptome generated from the 
Ensembl v104 human transcriptome with salmon v1.4.0 using options 
‘--seqBias --useVBOpt --gcBias --posBias --numBootstraps 30 --vali-
dateMappings’. Length-scaled transcripts per million were acquired 
using the tximport v1.18.0 function, and log2 fold changes and FDRs 
were determined by DESeq2 v1.30.1 in R. t-SNE analysis was performed 
using Rtsne v0.15, with counts transformed by the variance stabilizing 
transformation function from DESeq2. Heat maps were generated 
with pheatmap v1.0.12 using counts produced by variance stabilizing 
transformation, with further scaling across samples. For the analysis 
of COVID-19 versus uninfected controls, age/sex matching (Supple-
mentary Table 1) was used as a covariate.

Gene-set enrichment analysis
Signed −log10 FDRs from DESeq2 analyses were used to rank genes for 
GSEA via fgsea v1.16.0, filtering out genes with an FDR > 0.5. Public gene 
sets used for analyses were: GO Biological Processes (GO.db v3.12.1), 
Kyoto Encyclopedia of Genes and Genomes (KEGG; KEGGREST v1.30.1) 
and ReactomeDB (reactome.db v1.74.0) pathways to gene mappings 
from fgsea via the ‘reactomePathways’ function. For enrichment analy-
ses, Ensembl gene IDs were matched with corresponding gene symbols 
and Entrez IDs via biomaRt v2.46.3.

Brain aging-regulated molecular signatures
Significant DEGs (FDR < 0.05) from our aging cohort transcriptome 
analysis were used to assess gene-set enrichment. In addition, we lev-
eraged previously published aging-regulated DEG set data generated 
in five independent cohorts6,8–10,21,22. Lu et al. performed a broad-spec-
trum gene expression analysis (Affymetrix Human Genome U95Av2) 
of human prefrontal cortex from 30 individuals aged 26–106 years 
old and determined age-regulated genes based on a comparison of 
individuals ≤ 42 years old versus individuals ≥ 73 years old (n = 10–11 
per group)6. Loerch et al. performed a genome-wide gene expression 
analysis (Affymetrix Human Genome U133plus 2.0) of human pre-
frontal cortex from individuals aged 24–94 years old and determined 

age-regulated genes based on a comparison of individuals ≤ 40 years 
old versus individuals ≥ 70 years old (n = 28; n = 13–15 per group)8. For 
three additional human cohorts, we used DEGs as determined by ref. 23  
in which gene expression data from individuals aged 85+ years old 
were compared to gene expression data of younger individuals; in 
those reanalyses, Zullo et al. included only individuals with annotated 
normal cognitive function. Those additional three cohorts include:  
(1) the Gibbs et al. cohort21 in which gene expression data (Illumina 
HumanRef-8 Expression BeadChips) from the frontal cortex of  
37 individuals were analyzed and DEGs estimated by comparing individ-
uals aged 85+ years to individuals aged 55–80 years23; (2) the ROSMAP 
cohort, part of the Religious Orders Study (ROS) and Rush Memory 
and Aging Project (MAP; ROSMAP) at the Rush Alzheimer’s Disease 
Center9,10,24, in which RNA-seq data from the dorsolateral prefrontal 
cortex of 117 individuals were analyzed and DEGs estimated by com-
paring individuals aged 85+ years to individuals 70–80 years old23; and 
(3) the Common Mind Consortium (CMC) cohort22 in which RNA-seq 
data from the dorsolateral prefrontal cortex of 155 individuals were 
analyzed and DEGs estimated by comparing individuals aged 85+ years 
to individuals 60–80 years old23.

Molecular signatures in the frontal cortex associated with 
cognitive decline in humans
ROSMAP clinical data and aligned RNA-seq counts9,10 were downloaded 
from https://www.synapse.org/. A total of 633 (406 females; 227 males) 
transcriptomic profiles with corresponding MMSE scores were avail-
able; the median MMSE score (25) was used to stratify transcriptomic 
profiles as either good or poor cognition. All available cases (indi-
viduals with no cognitive impairment, individuals with mild cognitive 
impairment and individuals with Alzheimer’s or other dementia; with 
ages ranging between 67 and 95+ years) were included. DEGs were 
determined by DESeq2 (using sex as a covariate; age was not included 
as a covariate due to the narrow age distribution, absence of younger 
individuals and lack of precise age information for cases above 95 years 
of age) in R v4.0.4, and enrichment of COVID-19-dysregulated DEGs was 
performed by GSEA as described above.

Aging index
Due to the differences in transcriptome profiling methods used in this 
study (total RNA-seq versus poly-A capture or microarray used by other 
studies), which may bias our modeling approaches, we derived an ‘aging 
index’ using our aging cohort as a training set and the ‘control’ group 
of the COVID-19 cohort as a test set. The aging index was determined 
as the first principal component derived from a principal-component 
analysis of log2(transcripts per milllion + 1) genes via ‘prcomp’ in R, with 
feature selection determined by FDR < 5% from DESeq2 differential 
expression analysis. Varying the FDR cutoff for feature selection did 
not substantially affect the Pearson correlation of the test set; further 
model training was not performed due to the relatively small size of 
the cohort. Similarly transformed gene expression datasets derived 
from total RNA-seq (COVID cohort and cytokine treatments) as in our 
aging study were vector multiplied to the PC1 rotation scalars to yield 
predicted aging index scores.

The contribution of cerebrovascular disease (presence of ath-
erosclerosis, arteriolosclerosis or cerebral hemorrhage) on the pre-
dicted aging index was determined using a linear regression model 
that also assessed the potential interaction of chronological age with 
cerebrovascular disease in individuals with COVID-19 using IBM SPSS 
Statistics 21.

Cell culture maintenance and treatments
Human neurons (ScienCell Research Laboratories, 1520-5) were thawed 
and cultured in neuronal medium (ScienCell, 1521) for 3 d on poly-
d-lysine-coated plates before cell treatments. In total, 1 × 105 human 
neurons per well were plated in a 24-well plate. Cells were treated 
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with IFN-β (PBL, 11415-1; 1 ng ml−1 or 0.1 ng ml−1), IFN-γ (BioLegend, 
570204; 1 μg ml−1 or 0.1 μg ml−1), TNF (BioLegend, 570102; 100 ng ml−1 or  
10 ng ml−1) or nuclease-free water (control) for 72 h. Cells were collected 
and RNA was extracted via TRIzol (Thermo Fisher).

Statistical analysis
No statistical methods were used to predetermine sample size. The 
experimental groups were not randomized. Where possible, samples 
were processed together using de-identified numbers (RNA-seq 
library preparation, reverse transcription before qPCR, and qPCR). 
For qPCR and RNA-seq analyses, blinding was not possible as all 
changes had to be matched with corresponding controls. For qPCR, 
when no gene expression was detected (no CT value determined), the 
CT value was set to 40 (maximum number of cycles) to perform a sta-
tistical analysis. qPCR data were analyzed with a two-tailed t-test and 
via GraphPad Prism 9. RNA-seq statistical analyses were performed 
in R (v4.0.4)25 as described above. Comparisons of predicted aging 
index (PC1) between two groups were performed using a two-tailed 
Welch’s t-test in R v4.0.4 and Bonferroni’s adjustment for multiple 
comparisons was applied. Linear regression was performed to assess 
the potential interaction of cerebrovascular disease with age on the 
predicted aging index in individuals with COVID-19 using IBM SPSS 
Statistics 21.0.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
RNA-seq fastq files generated for this study are available through the 
Gene Expression Omnibus (GEO) under accession number GSE188847. 
Raw Calu-3.fastq RNA-seq files from Blanco-Melo et al. are available 
through the GEO (GSE147507) under accession numbers GSM4462348–
GSM4462353 (ref. 20).
Aging gene lists used for gene enrichment analyses are available in 
Supplementary Table 4. Preprocessed gene expression datasets used 
to collate these gene lists were obtained from: Lu et al.6 (https://static-
content.springer.com/esm/art%3A10.1038%2Fnature02661/Media-
Objects/41586_2004_BFnature02661_MOESM5_ESM.xls); Loerch et 
al.8; and ROSMAP (Supplementary Table 1 of Zullo et al.), CMC (Sup-
plementary Table 3 of Zullo et al.) and Gibbs (Supplementary Table 5 
of Zullo et al.23) (https://static-content.springer.com/esm/art%3A10.1
038%2Fs41586-019-1647-8/MediaObjects/41586_2019_1647_MOESM3_
ESM.zip).
The SARS-CoV-2 genome was obtained from https://www.ncbi.nlm.nih.
gov/nuccore/1798174254/. The Ensembl v104 human reference tran-
scriptome was obtained from http://ftp.ensembl.org/pub/release-104/
fasta/homo_sapiens/cdna/Homo_sapiens.GRCh38.cdna.all.fa.gz. GO 
(http://geneontology.org/) was queried from org.Hs.eg.db v3.12.0 in R. 
Reactome pathway annotations (https://reactome.org/) were obtained 
via the ‘reactomePathways’ command in R package fgsea (https://
bioconductor.org/packages/release/bioc/html/fgsea.html). KEGG hsa 
pathway annotations (https://www.genome.jp/kegg/) were obtained 
using the KEGGREST v1.30.1 API in R (https://www.bioconductor.org/
packages/release/bioc/html/KEGGREST.html).
Source data are provided with this study. Any other data are available 
from the authors upon reasonable request.

Code availability
R scripts used are deposited on GitHub at https://github.com/
jonathandlee12/covid19-brain/.
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Sample size In this study, the sample size was determined based on sample availability. As such, we did not perform a sample size calculation. However, 
our sample size exceeds the sample sizes used in previous similar studies (Gagliardi et al., 2021, Brain Behav Immun; Yang et al., 2021, Nature; 
Fullard et al., 2021, Genome Med). We selected samples that had pre- or peri-mortem testing for SARS-CoV-2 via nasopharyngeal swab qPCR 
and history of hospitalization, had no known history of neurological or psychiatric disorders (with two exceptions) and postmortem time 
interval no more than 50h.  

Data exclusions No data were excluded.

Replication We validated several of our gene-level findings from RNA-seq analysis by qPCR of the same patient cohort (Supplementary Figure 6 and 7; see 
below further details). Due to limited tissue availability, it was not possible to perform a similar analysis in an independent cohort.  
 
For RNAseq studies, total of 4 samples were rerun [2 of those aimed to confirm that sequencing batch does not significantly affect sample 
clustering; 2 more control samples were run first as uninfected controls for covid cases, and rerun (in a separate seq run) as older adults in the 
aging cohort]. All rerun seq data lead to very similar clustering of those samples between run and rerun suggesting that overall replication was 
successful.   
 
qPCRs to measure nucleocapsid gene were performed multiple (at least 4 times) times in a subset of samples and all attempts were 
replicating the results (no viral expression was detected; no signal above background; these results also replicate RNA seq data as no viral 
reads were detected in any of our samples). qPCR validation of RNA sequencing data was replicated for all the presented genes in Fig S6 (run 
at least twice for most genes, with the exception of the NPTXR gene for which primers were obtained at a later time-point/for the 
resubmission of this manuscript; for some genes replication was performed at least three times). All replication efforts were successful and 
performed in the same sample cohort as an independent cohort was not available.  
Previously published studies assessing effects of COVID-19 on the human frontal cortex either do not include younger COVID-19 cases and/or 
do not include age- and sex-matched controls, precluding their eligibility as replication cohorts. However, our study replicates some of the 
previously reported COVID-19-induced gene expression findings (e.g. S100A8/9).

Randomization Random allocation of participants into specific groups was not applicable as allocation of participants into groups was based on their known 
medical history and SARS-COV-2 qPCR test (when applicable; controls that were collected before the COVID-19 pandemic were considered 
uninfected). No experimental manipulation was performed to any of the cases analyzed in this cohort (this is only postmortem human brain 
tissue analysis). However, we ensured the random allocation of samples during the different batches of library preparation when possible. For 
qPCR experiments, random order of samples was used. For RNA-seq comparisons between COVID-19 versus control cohorts, age and sex 
were used as covariates. For ROSMAP transcriptome analysis, age was not included as a covariate due to the narrow age distribution, absence 
of younger individuals, and lack of precise age information for cases above 95 years of age.

Blinding When possible in all of our studies, samples were processed together using deidentified numbers (RNA-seq library preparation, reverse 
transcription prior to qPCR and qPCR). For RNA-seq and qPCR analyses, blinding was not possible as all changes had to be matched with 
corresponding controls.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) Human neurons (ScienCell Research Laboratories; Calsbad, CA; #1520-5)  

Authentication Not authenticated. MAP2 expression was confirmed by qPCR.

Mycoplasma contamination Not tested.

Commonly misidentified lines
(See ICLAC register)

N/A.

Human research participants
Policy information about studies involving human research participants

Population characteristics Men and women, 23-84 years old with postmortem interval max 50h were included. All COVID-19 autopsies were performed 
in cases with pre- or peri-mortem positive testing for SARS-CoV-2 by nasopharyngeal swab qPCR. Uninfected age-and sex-
matched controls and uninfected controls with ventilator history (22-85 years old) were obtained by the NIH Neurobiobank 
(with 2 exceptions of uninfected ICU cases that were collected at BWH); controls were collected before the COVID-19 
outbreak in the US (before 11/2019) with 3 exceptions in the ICU/VENT group that had negative SARS-CoV-2 qPCR test at the 
time of death, and no COVID-19 history and/or negative serological test. For duration of COVID-19, time of hospitalization 
and time spent in ICU, vaccination status, postmortem interval (PMI), cause of death, neuropathological findings and other 
details see Sup Table 1.

Recruitment Individuals with routine clinical autopsies performed at BWH and positive for SARS-Cov-2 by nasopharyngeal swabs qPCR test 
(COVID-19 patients) and two available cases with ICU treatment and negative for SARS-Cov-2 by nasopharyngeal swabs qPCR 
test at the time of death (uninfected ICU).  All other uninfected control samples were obtained as deidentified from NIH 
NeuroBioBank affiliated brain banks (thus, control sample analysis is not considered human subjects research). 
 
Potential source of bias: All COVID-19 specimens were collected by one Institution (BWH). As it was not feasible to collect all 
appropriate controls at BWH, controls were obtained from NIH NeuroBioBank affiliated brain banks. To ensure that brain 
area selection will have minimum possible impact in our study, Dr. Solomon (BWH) determined the appropriate brain area to 
be requested for the controls.

Ethics oversight Mass General Brigham IRB

Note that full information on the approval of the study protocol must also be provided in the manuscript.


	Severe COVID-19 is associated with molecular signatures of aging in the human brain
	Methods
	Human brain tissues
	Definition of severe COVID-19
	Library construction and RNA-seq
	RT–qPCR
	RNA-seq analysis
	Gene-set enrichment analysis
	Brain aging-regulated molecular signatures
	Molecular signatures in the frontal cortex associated with cognitive decline in humans
	Aging index
	Cell culture maintenance and treatments
	Statistical analysis
	Reporting summary

	Acknowledgements
	Fig. 1 Severe COVID-19 is associated with transcriptomic signatures of aging in the human brain.
	Fig. 2 Severe COVID-19 and cytokine treatment of neurons are associated with increases in predicted age.




