
1 | P a g e

ENGR 211 - Introduction to Programming

Mini Project 2

December 19, 2016

(Due: by 5 pm on Jan. 2, 2017)

In this mini project, you are going to develop the same software that was assigned for Mini Project
1, but this time, you are going to use the object-oriented programming paradigm that we covered
in the class. That is, the primary goal of this mini project is to make you practice development with
classes and objects. Hence, please try to take very opportunity to use classes and objects in your
code. At various points, you will be forced to use a particular class as explained below.

Text-based User Interface:

The interface will be the same as the one in Mini Project 1, except that “Quit” menu items (in
every place that it appears) will be replaced by “Sign Out” menu item. When a user chooses this
new menu item, s/he will sign out of the program, and the initial login interface will be provided
to the user. The user here may sign in with a different account. Any operation that was done before
the user signs out should be kept in your corresponding data structures.

Implementation Notes:

 You need to create a class to represent a User. It should have type of user (may be one of

“regular”, “admin”), user name, and password as its attributes.

 You need to create a class to represent an Account. It should have user, balance, and

transactions as its attributes. User attribute should be an instance of the User class.

Transactions attribute should be a list which keeps the past user transactions where each

transaction should be an instance of the Transaction class. Whenever an operation is

performed by the user in the below-listed class methods, a new transaction should be

added properly. It should provide the following methods:

o deposit

o withdraw

o transfer

o get_latestN_transactions

 You need to create a class to represent a Transaction. It should have type, amount,

additional_info as attributes. additional_info attribute should be dictionary where the key

should be type/name of some additional info (e.g., ‘recipient’ in transfer transactions) and

the value would be the value of that information field (e.g., the recipient’s name in

transfer transactions). It is up to you to add methods into this class.

 You need to create a class which will represent a Bank. It will have a dictionary of

accounts as an attribute where dictionary will store all accounts as objects (i.e., key would

be account holder’s user name and value would be an Account instance). It should

provide the following methods:

o create_account

o close_account

o compute_and_print_statistics

o load_accounts_from_file

o search_for_an_account

2 | P a g e

 You need to create a class which will represent a MenuEntry. Each option on any menu

that you provide to the user will be an instance of MenuEntry class. It will have

option_number and text as its attributes.

 You need to create another class which will represent a Menu. It will have a list of

MenuEntry objects. In your interface, you have four different menus (regular main menu,

admin menu, the small menu that you show after each operation for regular users, and the

small menu that you show after each operation for admin user). Each of these menus

should be represented as separate Menu objects. Menu class should provide the following

methods:

o add_menu_entry – this method should take a text for the new menu entry as

input, and create a new instance of MenuEntry object with the provided text.

Option_number of the new menu item object should be assigned automatically

based on the current size of the Menu. For instance, if the menu currently

contains 1 entry, the new MenuEntry will have option_number 2.

o print_menu_and_get_user_selection – this method should print the menu as

in previous project, ask the user to make a selection, handle any invalid selections

that the user may do, and return the selection option number to the caller.

Warnings:

 Do not talk to your classmates on project topics when you are implementing your projects.

Do not show or email your code to others. If you need help, talk to your TAs or myself,

not to your classmates. If somebody asks you for help, explain them the lecture slides, but

do not explain any project related topic or solution. Any similarity in your source codes will

have serious consequences for both parties.

 Carefully read the project document, and pay special attention to sentences that involve

“should”, “should not”, “do not”, and other underlined/bold font statements.

 If you use code from a resource (web site, book, etc.), make sure that you reference those

resource at the top of your source code file in the form of comments. You should give

details of which part of your code is from what resource. Failing to do so may result in

plagiarism investigation.

 Even if you work as a group of two students, each member of the team should know every

line of the code well. Hence, it is important to understand all the details in your submitted

code. You may be interviewed about any part of your code.

How and when do I submit my project? :

 Projects may be done individually or as a small group of two students (doing it individually
is recommended for best learning experience). If you are doing it as a group, only one of
the members should submit the project. File name will tell us group members (Please see
the next item for details).

 Submit your own code in a single Python file. Name your code file with your and your
partner’s first and last names (see below for naming).
o If your team members are Deniz Barış and Ahmet Çalışkan, then name your code file

as deniz_baris_ahmet_caliskan.py (Do not use any Turkish characters in file name).

o If you are doing the project alone, then name it with your name and last name similar
to the above naming scheme.

3 | P a g e

o Those who do not follow the above naming conventions will get 5 pts off of their
grade.

 Submit it online on LMS (Go to the Assignments Tab) by 5 pm on Monday, Jan. 2,
2017.

Late Submission Policy:

 -10%: Submissions between 17:01 – 18:00 on the due date

 -20%: Submissions between 18:01 – midnight (00:00) on the due date

 -30%: Submissions which are 24 hour late.

 -50%: Submissions which are 48 hours late.

 Submission more than 48 hours late will not be accepted.

Grading Criteria? :

Code Organization Functionality

Meaningful
names
(4 pts)

Proper use
of classes

and objects
(22 pts)

Sufficient
commenting

(4 pts)
There are 14 menu items in total. Proper implementation of each of these

menu items will be 5 points.

 Interview evaluation

o Your grade from interview will be between 0 and 1, and it will be used as a coefficient
to compute your final grade. For instance, if your initial grade was 80 before the
interview, and your interview grade is 0.5, then your final grade will be 80*0.5 = 40. Not
showing up for the interview appointment will result in grade 0.

Have further questions?:
Please contact your TAs if you have further questions. If you need help with anything, please use
the office hours of your TAs and the instructor to get help. Do not walk in randomly
(especially on the last day) into your TAs’ or the instructor’s offices. Make an
appointment first. This is important. Your TAs have other responsibilities. Please
respect their personal schedules!

Good Luck!

