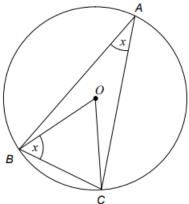

All questions are taken from AQA Level 2 Further Maths papers that are free to find online and are questions that could be found on a <u>non-calculator</u> GCSE Maths exam.

This resource is designed for students revising GCSE maths and not Level 2 Further Maths. The paper numbers are given for refrence only.

Practice Paper Set 1 Paper 1

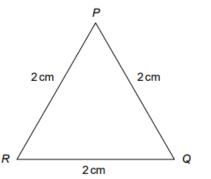

3 The diagram shows a tree of height 18 metres and a mast on level ground.

The mast is about to fall over, pivoting about its base.

Could it hit the tree?	
Show clearly how you decide.	
	(4 marks

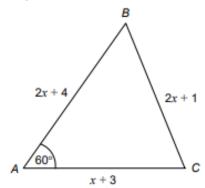
8 A, B and C are points on a circle, centre O. Angle BAC =angle OBC = x.

Not drawn accurately


	С
	Prove that angle BOC = 90°
	(4 marks)
10	Simplify fully $\frac{3x^2 - x - 14}{9x^2 - 4} \div \frac{x + 2}{3x^2 + 2x}$
	Answer (5 marks)

12	Make x the subject of	12	_ 4	1
12	Make A tile subject of	\overline{y}	x	3

	 									 																							•••					
•••	 ••••	•••	• • •	• • • •	•••	•••	•••	•••	• • •	 •••	• • •	• • •	•••	•••	• • •	•••	•••	• • • •	•••	•••	•••	•••	•••	•••	• • •	•••	• • •	•••	• •	• • •	•••	•••	•••	•••	•••	•••	•	


Answer (5 marks)

15 (a) Use the equilateral triangle PQR to show that $\cos 60^{\circ} = \frac{1}{2}$

Not drawn accurately

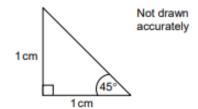
(2 marks)

Not drawn accurately

Use the cosine rule to show that $x = 4 + 2\sqrt{7}$
(6 marks)
(b marks)

3	$(\tan x) = \frac{18}{30} = \frac{m}{65}$	M1	oe eg, $\frac{65}{30} = \frac{m}{18}$
	$m=\frac{18}{30}\times 65$	M1	
	39	A1	
	(65 – 30 =) 35 and their 39 and Yes	B1ft	

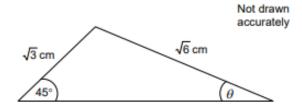
8	Angle $BOC = 2x$ Angle at centre = 2 × angle at circumference	M1	
	Angle BCO = x Isosceles triangle	M1	Isosceles triangle
	x + x + 2x = 180 Angle sum of triangle = 180	M1	
	2x = 90	A1	


10	$\frac{(3x-7)(x+2)}{(3x-2)(3x+2)}$	B2	B1 For numerator B1 For denominator
	$(3x^2 + 2x =)$ $x(3x + 2)$	B1	
	(their fraction) $\times \frac{x(3x+2)}{x+2}$	M1	
	$\frac{x(3x-7)}{3x-2}$ or $\frac{3x^2-7x}{3x-2}$	A1	

12	Multiplies throughout by x or y or 3 or xy or 3x or 3y or 3xy	M1	
	36x = 12y - xy	A1	
	Collects terms in x on one side from their equation eg, $36x + xy = 12y$	M1	
	Factorises to $x(\dots)$ eg, $x(36 + y) = 12y$	M1	
	$x = \frac{12y}{36 + y}$	A1	ое

15(a)	Shows 60° angle and a right-angled triangle (with right angle marked) and side 1 (cm) marked	B2	B1 Any 2 of the 3 criteria shown
Alt 15(a)	$2^2 = 2^2 + 2^2 - 2 \times 2 \times 2 \cos 60$	M1	oe
	4 = 8 cos60	A1	
15(b)	$(2x+1)^2 = (2x+4)^2 + (x+3)^2 - 2(2x+4)(x+3)\frac{1}{2}$	M1	
	$4x^{2} + 2x + 2x + 1 = 4x^{2} + 8x + 8x + $ $16 + x^{2} + 3x + 3x + 9 - (2x^{2} + 4x + 6x + $ $+ 12)$	M1	Any of the 4 term expansions or all four with ≤ 3 errors
	$4x^{2} + 2x + 2x + 1 = 4x^{2} + 8x + 8x + $ $16 + x^{2} + 3x + 3x + 9 - (2x^{2} + 4x + 6x + $ $+ 12)$	A1	All correct
	$x^2 - 8x = 12$ or $x^2 - 8x - 12 = 0$	A1	oe Must be simplified to 3 terms
	$(x - \frac{\text{their 8}}{2})^2 = \text{their 12} + (\frac{\text{their 8}}{2})^2$	M1	oe Substitutes $x = 4 + 2\sqrt{7}$ in their equation
	or $\frac{-(-8) \pm \sqrt{(-8)^2 - 4 \times 1 \times -12}}{2 \times 1}$		
	$x = 4 + \sqrt{28}$ Must reject the other solution	A1	Shows substitution satisfies the correct equation.

Practice Paper Set 2 Paper 1


11 (a) Here is a right-angled triangle.

Show clearly that $\sin 45^\circ = \frac{1}{\sqrt{2}}$

(1 mark)

11 (b) Here is a triangle.

Work out the value of θ .

Answer degrees (5 marks)

13	Work out the value of x if $\frac{\sqrt{x} \times \sqrt{8}}{\sqrt{3}} = 4\sqrt{5}$
	Answer x = (4 marks)
16	n is a positive integer.
	Prove that $(n+2)^2 + (n+1)^2 - 1$ is always a multiple of 4.
	(6 marks)

11(a)	$\sqrt{(1^2+1^2)}=\sqrt{2}$	B1	
11(b)	$\frac{\sin\theta}{\sqrt{3}} = \frac{\sin 45 \circ}{\sqrt{6}}$	M1	or $\frac{\sqrt{6}}{\sin 45 \circ} = \frac{\sqrt{3}}{\sin \theta}$
	$\sin \theta = \frac{\sqrt{3}}{\sqrt{6}} \times \frac{1}{\sqrt{2}}$	M1	
	$\sin \theta = \frac{\sqrt{3}}{\sqrt{12}}$ or $\frac{\sqrt{3} \times \sqrt{12}}{12}$ or $\sqrt{\frac{1}{4}}$	M1	
	$\sin \theta = \frac{1}{2}$	A1	
	θ = 30°	A1	

13	$\frac{\sqrt{(8x)}}{\sqrt{3}} = 4\sqrt{5}$	M1	
	$\sqrt{(8x)} = 4\sqrt{15}$	M1	
	8x = 16 × 15	M1	
	(x =) 30	A1	
Alt 1 13	$\frac{\sqrt{x} \times 2\sqrt{2}}{\sqrt{3}} = 4\sqrt{5}$	M1	
	$\sqrt{x}\sqrt{2} = 2\sqrt{15}$	M1	$x = \frac{15 \times 4}{2}$
	$\sqrt{(2x)} = \sqrt{60}$	M1	
	(x =) 30	A1	
Alt 2 13	$\sqrt{x} = \frac{4\sqrt{5}\sqrt{3}}{\sqrt{8}}$	M1	
	$\sqrt{\chi} = \frac{4\sqrt{15}}{\sqrt{8}}$	M1	
	$x = \frac{16 \times 15}{8}$	M1	
	(x =) 30	A1	
Alt 3	$\sqrt{(8x)} = 4\sqrt{5}\sqrt{3}$	M1	
13	$\sqrt{(8x)} = \sqrt{(240)}$	M1	
	$x = \frac{240}{8}$	M1	
	(x =) 30	A1	
Alt 4 13	$\sqrt{\frac{8x}{3}} = 4\sqrt{5}$	M1	
	$\sqrt{\frac{8x}{3}} = \sqrt{80}$	M1	
	$x = \frac{3 \times 80}{8}$	M1	
	(x =) 30	A1	

16	$n^2 + 4n + 4$	M1	
	$n^2 + 2n + 1$	M1	
	$2n^2 + 6n + 4$	A1	
	$2(n^2 + 3n + 2)$	A1	
	2(n+1)(n+2)	M1	Explaining that $2n^2 + 6n + 4$ or $2(n^2 + 3n + 2)$ is divisible by 2 scores this mark
	(n + 1) and (n + 2) are consecutive numbers so one of them is even.	A1	
	So two factors of 2 hence divisible by 4		

Practice Paper Set 3 Paper 1

4 O is the centre of this circle.

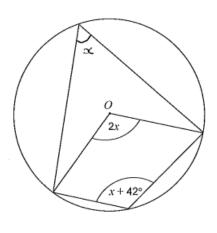
Work out the value of x.

O 2x x + 42°

Not drawn accurately

	x = degrees (3 marks)
8	$x^{\frac{1}{2}} = 6$ and $y^{-3} = 64$
	Work out the value of $\frac{x}{y}$
	Answer (4 marks)

9	A and B are regular po	lygons.	
	An exterior angle of A	is x.	Not drawn accurately
	A		В
	Here is some informati	on about them.	
			A : B
		Ratio of exterior angles	1:3
		Ratio of interior angles	7:6
9 (a)	Write down an express	Answer	of polygon <i>B</i> (1 mark)
9 (b)	Prove that polygon A h	as 30 sides.	


(5 marks)

$$2x^2 - 4x + 5 \equiv a(x+b)^2 + c$$

Work out the values of a, b and c.

a = b = c = (4 marks)

4 O is the centre of this circle.

Not drawn accurately

Work out the value of x.

Angle at circumporace = 1/2 angle at centre = 3C

 $x + x + 42 = 180^{\circ}$ (By clix quadrilater) 2x + 42 = 186

2x = 138

x = 69 x = 69 degrees (3 marks)

8 $x^{\frac{1}{2}} = 6$ and $y^{-3} = 64$ $x^{\frac{1}{2}} = 6$ Work out the value of $\frac{x}{y}$ x = 36

= 36 × 4 = 144

9a)

3x

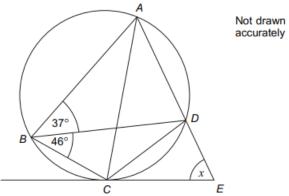
9b)

$$\frac{180 - 3x}{180 - x} = \frac{6}{7}$$

$$1080 - 6x = 1260 - 21x$$

$$15x = 180$$

$$x = 12$$

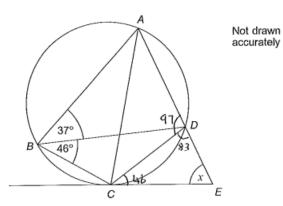

$$\frac{360}{12} = 30$$

15	$2x^{2} - 4x + 5 \equiv a(x + b)^{2} + c$ Work out the values of a , b and c . $2 \left[x^{2} - 2x + 2.5 \right]$			squ ar!
	$2\left[\left((x-1)^{2}+1.5\right) \right]$			
	⇒ 2(x-1) ³ + 3			
	a =, b =	-1	, <i>c</i> =	

June 2012 Paper 1

7 The diagram shows a cyclic quadrilateral ABCD.

ADE is a straight line. CE is a tangent to the circle.


١	Work out the size of angle x.
•	
	x = degrees (3 marks)
	Write this ratio in its simplest form $\sqrt{12} : \sqrt{48} : \sqrt{300}$
	V 12 : V 40 : V 300
	Answer: :: :: :

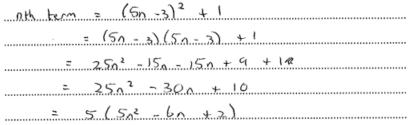
10	The n^{th} term of the linear sequence 2 7 12 17 is $5n-3$
	A new sequence is formed by squaring each term of the linear sequence and adding 1.
	Prove algebraically that all the terms in the new sequence are multiples of 5.
	(4 marks)
11	OABC is a kite.
11 (a)	Work out the equation of AC. Answer
11 (b)	Work out the coordinates of B.

Answer (..... ,) (6 marks)

7 The diagram shows a cyclic quadrilateral ABCD.

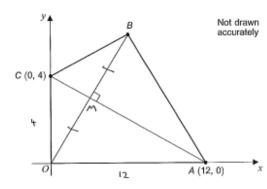
ADE is a straight line.
CE is a tangent to the circle.

Work out the size of angle x.
ADL = (180 - (37+46)) = 97° (oppossie angles in cyclic gread
add to 180°)
-: CDE = 180 - 97 = 83°
ECD = 46° (alternate segment theorem)
== 3C = 180 - 83 - 4b
$x = \frac{5}{5}$ degrees (3 marks)


9 Write this ratio in its simplest form

 $\sqrt{12}$: $\sqrt{48}$: $\sqrt{300}$

J12 = J	4 x J3	= 2J3				
J48 = JH	=	453				
J300 = J100	, J3	= 10J3				
→	253 :	453 :	1053		J3)	
		لو -				
	Answer	: :	8.⊋	: :	5	(3 marks)


A new sequence is formed by squaring each term of the linear sequence and adding 1.

Prove algebraically that all the terms in the new sequence are multiples of 5.

Anything multiplied by 5 must be a multiple & 5

OABC is a kite.

11 (a) Work out the equation of AC.

gradient = -4/12 = -1/3	
y-interest = (O,4)	

Answer 9 = - 1/3 = + 4 (2 marks)

11 (b)

Work out the coordinates of B.

OB is perpendicular to AC

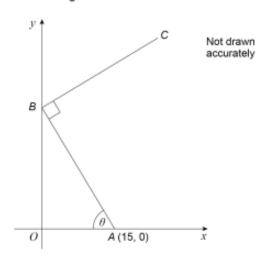
i.g. gradient = 3

y-intocept =
$$(0,0)$$
 > Equation 6 OB = $y = 3x$

A = crossing point & OB = AC

At M : $3x = -7/3x + 4$

B must be $2 \times M$
 $41/3x \rightarrow 3/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$
 $31/3 = 4$


June 2018 Paper 1

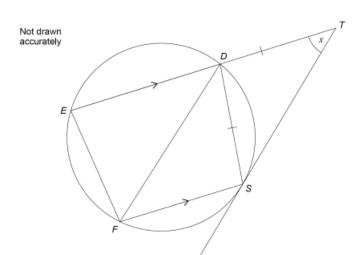
Q dec	Q = 7x eases by 25% reases by 40% g greater than Q.		
Work out the	e value of x.		[4
	Answer		
Rearrange	$\frac{1}{xy} = 4 - \frac{3}{y}$	to make x the subject.	
			[3 mar

12 In the diagram,

A is the point (15, 0) and B lies on the y-axis.

Angle ABC = 90° and $\tan \theta = \frac{5}{3}$

Work out the equation of the line BC.


m		

Answer

14 Work out the value of $\left(3^{\frac{1}{2}} + 3^{\frac{3}{2}}\right)^2$

You must show your working.

[3 marks]

Prove that FD is parallel to RST. Use angle DTS as x to help you.

[5 marks]

	Alternative method 1			
	$1.25 \times 4x$ or $5x$	M1	oe	
	$0.6 \times 7x$ or $4.2x$	M1	oe	
,	their $5x$ – their $4.2x = 28$ or $0.8x = 28$	M1dep	oe eg their $5x$ = their $4.2x + 28$ dep upon at least one of previous M marks earned	
	<i>x</i> = 35	A1		
	Alternative method 2			
	two numbers in the ratio 4:7	M1		
4	correct increase by 25% and decrease by 40% calculations and comparison with 28	M1dep	If difference is not 28, then first numbers must be clearly rejected	
	second trial with correct calculations and comparison	M1dep	correct first trial means 2nd and 3rd M marks scored automatically	
	<i>x</i> = 35	A1		

			Here are some of the possible alternatives
	A correct first step using algebra		$\frac{1}{x} = y \left(4 - \frac{3}{y} \right)$ multiplying through by y
			$1 = xy \left(4 - \frac{3}{y}\right)$ multiplying through by xy
		M1	$1 = 4xy - \frac{3xy}{y}$ multiplying through by xy
			$y = 4xy^2 - 3xy$ multiplying through by xy^2
			$\frac{1}{xy} = \frac{4y - 3}{y}$ making the RHS an algebraic fraction
			$\frac{1+3x}{xy}$ = 4 rearranging and making the LHS an algebraic fraction
			Following two of the above alternatives
10	Further correct algebra which leads to an equation that is one step from the final answer.	M1dep	$y = 4xy^2 - 3xy$ $y = x(4y^2 - 3y)$ M1dep gained
			$\frac{1+3x}{xy} = 4$
			1 + $3x = 4xy$ 1 = $4xy - 3x$ 1 = $x(4y - 3)$ M1dep gained
			$x = \frac{1}{4y - 3} \qquad x = \frac{-1}{3 - 4y}$
			$x = \frac{y}{4y^2 - 3y} \qquad x = \frac{-y}{3y - 4y^2}$
	A correct final answer in any form		$x = \frac{1}{y\left(4 - \frac{3}{y}\right)} \qquad x = \frac{-1}{y\left(\frac{3}{y} - 4\right)}$
			$x = \frac{1}{\left(4 - \frac{3}{y}\right)} \div y$

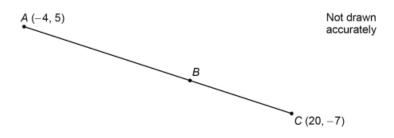
			Г		
	5 × 15 3	M1			
	or				
	25 seen as the length of OB or the coordinates of B				
	gradient $AB = 0$ - their 25 or - 5 15 - 0 3	M1	oe		
	gradient $BC = -1 \div (\text{their} - \frac{5}{3}) \text{ or } \frac{3}{5}$	M1	oe		
	$y = \frac{3}{5}x + 25$	A1	oe eg $y = \frac{15}{25}x + 25$ or $5y = 3x + 125$		
	Additional Guidance				
	We must see y = for A1 (or any	other corr	rect equation)		
12	Look for this in their working if it isn't written on the answer line.				
	A sign error in their gradient AB, after a correct expression, can be recovered.				
	eg gradient $AB = \frac{0-25}{15-0} = \frac{25}{15} = \frac{5}{3}$				
	gradient $BC = \frac{3}{E}$ (positive gradient because they can see it from the diagram)				
	equation BC is $y = 3x + 25$ this s	scores 4 r	narks		
	similarly, recovery can be from				
	gradient $AB = \underline{25} = \underline{5}$ without seeing $\underline{0-25}$ 15 3 and can still lead to 4 marks				

	Alternative method 1		
	$3^{\frac{1}{2}} \times 3^{\frac{1}{2}} + 3^{\frac{1}{2}} \times 3^{\frac{3}{2}} + 3^{\frac{1}{2}} \times 3^{\frac{3}{2}} + 3^{\frac{3}{2}} \times 3^{\frac{3}{2}}$ or $\sqrt{3}\sqrt{3} + \sqrt{3}\sqrt{27} + \sqrt{3}\sqrt{27} + \sqrt{27}\sqrt{27}$	M1	oe allow an error in one term
	3 or 9 or 27	M1dep	
	48	A1	
	Alternative method 2		
	√3 and 3√3	M1	$3\sqrt{3}$ must come from correct working
	(4√3)²	M1dep	
٠	48	A1	
14	Alternative method 3		
	$\left(3^{\frac{1}{2}}\right)^2 \left(1+3\right)^2$	M1	oe
	3 × 4 ²	M1dep	oe
	48	A1	

	Angle $DST = x$	M1	base angles of isosceles triangle DST but we do not require a reason for this mark
	Angle DFS = x angle in alternate segment or	M1	either of these angles with a correct reason scores this mark
	Angle $RSF = x$ corresponding		no reason or an incorrect reason is Mu
	Further evaluation of angles, with		Here is a complete example
	correct reasons, to arrive at a stage where		angle $DST = x$
	either it is possible to use the converse of a theorem	M1dep	angle $DSR = 180 - x$ angles on a straight line
	or which leads to the fact that		angle RSF = x corresponding
	DTSF is a parallelogram		angle FDS = x FDS = RSF, angle in alternate segment
	A statement of the angles, or the		angle DSR + angle FDS
	values of the angles, that will complete the proof the angles must be clearly identified	M1dep	= 180 - x + x = 180
18	A statement of the correct reason to accompany these angles, thus completing the proof	A1	FD is parallel to RST because these angles add to 180 using the (converse) of the co-interior angles theorem

June 2019 Paper 1

5	Solve	$\sqrt[3]{(2\sqrt{x}-10)}$	= 2


[3 marks]

8 ABC is a straight line.

A is the point (-4, 5)

C is the point (20, -7)

AB: BC = 5:3

Work out the coordinates of B.

[4 marks]

11 A cone has base radius r cm, perpendicular height h cm and slant height l cm

The curved surface area is $60\pi~\text{cm}^2$

$$l = 3r$$

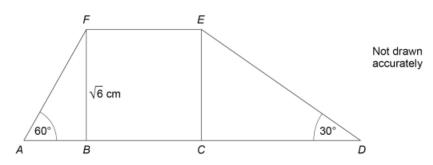
Work out the value of h.

Give your answer in the form $a\sqrt{10}$ where a is an integer greater than 1

You must show your working.

[5 marks]

Volume of cone = $\frac{1}{3}\pi r^2 h$ Curved surface area of cone = $\pi r l$



Prove that $(3x + 5)^2 - 5x(x + 10) \ge 0$ for all values of x. [4 marks]

18 ADEF is a trapezium.

ABCD is a straight line.

BCEF is a square of side $\sqrt{6}$ cm

18 (a) Show that $AB = \sqrt{2}$ cm

[1 mark]

18 (b) Show that $DE = 2\sqrt{6} \text{ cm}$

[1 mark]

18	(c)	Work out the perimeter of the	trapezium ADE	F.	
		Give your answer in the form You must show your working.		where t and w are integers.	
					[3 marks]

Answer	cm

19
$$f(x) = \frac{x-3}{2x}$$

Solve f(x + 1) - f(2x) = 0.5

You must show your working.

[6 marks]

	$2\sqrt{x} - 10 = 2^3$ or $2\sqrt{x} - 10 = 8$ or $2\sqrt{x} = 18$	M1	
5	$\sqrt{x} = \frac{2^3 + 10}{2}$ or $\sqrt{x} = \frac{8 + 10}{2}$ or $\sqrt{x} = 9$ or $4x = 18^2$ or $x = 9^2$	M1dep	
	x = 81	A1	± 81 scores A0
	Additional Guidance		

	Alternative method 1			
	± (204) or ± (57)		allow on diagram	
	or	M1		
	±24 or ±12 seen			
	using $\frac{5}{8}$ or $\frac{3}{8} \times \pm$ their 24 or \pm 15 or \pm 9		oe	
	or	M1dep		
	$\frac{5}{8}$ or $\frac{3}{8} \times \pm$ their 12 or ± 7.5 or ± 4.5			
	(11, -2.5)	A2	A1 for each	
	Alternative method 2			
	$(x =) \frac{(3(-4) + 5(20))}{8}$		oe (condone 1 numerical error)	
	or	M1		
8	$(y =) \frac{(3(5) + 5(-7))}{8}$			
	$(x =) \frac{(3(-4) + 5(20))}{8}$		oe	
	and	M1		
	$(y =) \frac{(3(5) + 5(-7))}{8}$			
	(11, -2.5)	A2	A1 for each	

Alternative method 1		
$\pi \times r \times 3r = 60 \pi$	M1	oe
$r^2 = 20$ or $r = \sqrt{20}$ or $r = 2\sqrt{5}$	A1	oe
$(l =) 3\sqrt{20}$ or $(l =) 6\sqrt{5}$ or $(l =) \sqrt{180}$ or $l^2 = 180$	A1	ое
$(h^2 =) (3\sqrt{20})^2 - (\sqrt{20})^2$ or $(h^2 =) (6\sqrt{5})^2 - (2\sqrt{5})^2$ or $(h^2 =) (\sqrt{180})^2 - (\sqrt{20})^2$ or $(h^2 =) 160$	M1	oe using their l and r (this is independent so l and r can be anything) condone missing brackets
$(h=)4\sqrt{10}$	A1	
Alternative method 2		
$\pi \times \frac{l}{3} \times l = 60\pi$	M1	ое
$l^2 = 180$ or $l = \sqrt{180}$ or $l = 3\sqrt{20}$ or $l = 6\sqrt{5}$	A1	ое
$r^2 = 20$ or $(r =) \sqrt{20}$ or $(r =) 2\sqrt{5}$	A1	oe
$(h^2 =) (3\sqrt{20})^2 - (\sqrt{20})^2$ or $(h^2 =) (6\sqrt{5})^2 - (2\sqrt{5})^2$ or $(h^2 =) (\sqrt{180})^2 - (\sqrt{20})^2$ or $(h^2 =) 160$	M1	oe using their l and r (this is independent so l and r can be anything) condone missing brackets
$(h=)4\sqrt{10}$	A1	

Alternative method 1	Alternative method 1						
$9x^{2} + 15x + 15x + 25 - 5$ or $9x^{2} + 30x + 25 - 5x^{2} - 5$ or $9x^{2} + 15x + 15x + 25$	50 <i>x</i> M1	allow only one error in sign, omission or coefficient but not in more than one of these could be written as 2 separate expansions or in a grid					
and $-5x^2 - 50x$ or							
$4x^{2} - 20x + 25$ $4x^{2} - 20x + 25$ and $(2x - 5)^{2} \text{ or } (2x - 5)^{2}$ or $4(x - 2.5)^{2}$ or $x = 2.5 \text{ or } b^{2} - 5$ quadratic formula	M1dep 4ac = 0 from	factorises or completes the square or uses the quadratic formula correctly. Answer required for M1 dep					
$(2x-5)^2$ or $4(x-2.5)^2$ terms) and so are always	/s≥0	oe there must be a stated conclusion eg equal roots and positive quadratic so must be greater than or equal to zero					
Alternative method 2	Not GC	SE					
13 $9x^2 + 15x + 15x + 25 = 0$ or $9x^2 + 30x + 25 - 5x^2 = 0$ or $9x^2 + 15x + 15x + 25$ and $-5x^2 - 50x$ or	$50x$ M1 $5x^2 + 50x$	allow only one error in sign, omission or coefficient but not in more than one of these could be written as 2 separate expansions or in a grid					
$4x^2 - 20x + 25$	A1						
$4x^2 - 20x + 25$ and $\frac{d}{dx} = 8x - 20$ and is $x = 2.5$		uses calculus to find stationary point					
Tests for minimum by u and $x = 3$ or by using 2 or concludes argument is a positive quadratic c minimum point (2.5, 0), ≥ 0	nd derivative by saying this urve with	oe there must be a stated conclusion					

	Alternative method 1			
	$(AB =) \frac{\sqrt{6}}{\tan 60} = \frac{\sqrt{6}}{\sqrt{3}} = \sqrt{2}$	B1	oe must see tan60 oe and some evidence of manipulation with $\sqrt{3}$ oe as well as the final answer to award B1	
	Alternative method 2			
18a	Use of 1 : 2 : $\sqrt{3}$ triangle and showing that our triangle is an enlargement scale factor $\sqrt{2}$	B1	oe must see the triangle drawn and labelled or the ratio clearly seen and the scale factor clearly stated	
	Additional Guidance			

	Alternative method 1			
	$(DE =) \frac{\sqrt{6}}{\sin 30} = \frac{\sqrt{6}}{0.5} = 2\sqrt{6}$	B1	oe must see sin30 oe and some evidence of manipulation with 0.5 oe as well as the final answer to award B1	
	Alternative method 2			
18b	Use of 1 : 2 : $\sqrt{3}$ triangle and showing that our triangle is an enlargement scale factor $\sqrt{2}$	B1	oe must see the triangle drawn and labelled or the ratio clearly seen and the scale factor clearly stated	
	Additional Guidance			

	$AF = \frac{AB}{\cos 60} = \frac{\sqrt{2}}{0.5} = 2\sqrt{2}$ or $AF = \frac{BF}{\sin 60} = \frac{\sqrt{6}}{\frac{\sqrt{3}}{2}} = 2\sqrt{2}$ or $AF^2 = (\sqrt{2})^2 + (\sqrt{6})^2$, so $AF = \sqrt{8}$ or $2\sqrt{2}$	B1	allow $2\sqrt{2}$ or $\sqrt{8}$ for this mark seen on the diagram or clearly shown in working	
18c	$CD = \sqrt{6} \times \tan 60 = \sqrt{6} \times \sqrt{3}$ $= \sqrt{18} \text{ or } 3\sqrt{2}$ or $CD = DE \cos 30^{\circ}$ $= 2\sqrt{6} \times \frac{\sqrt{3}}{2} = \sqrt{6} \times \sqrt{3}$ $= \sqrt{18} \text{ or } 3\sqrt{2}$ or $CD^{2} = (2\sqrt{6})^{2} - (\sqrt{6})^{2} = 18$ so $CD = \sqrt{18} \text{ or } 3\sqrt{2}$	B1	allow $\sqrt{6} \times \sqrt{3}$ or $\sqrt{18}$ or $3\sqrt{2}$ for this mark seen on the diagram or clearly shown in working	
	$6\sqrt{2} + 4\sqrt{6}$	B1dep	dependent on B1, B1 already awarded	
	Additional Guidance			
	Condone brackets missed off if recovered			
	AF and CD could be seen in part (a) or part (b) so could be awarded B1 in part (c) if used correctly			

	$\frac{x-2}{2x+2}$ or $\frac{x+1-3}{2(x+1)}$ or $\frac{2x-3}{4x}$	M1	oe substituting correctly in at least one expression
	4x(x-2) and $(2x+2)(2x-3)or 4x(x-2)-(2x+2)(2x-3)or 4x^2-8x-4x^2+2x+6or 6-6xor 2x(x-2) and (x+1)(2x-3)$	M1dep	oe (could be from using a different denominator) correct numerators or an expression for both, which need not be simplified do not award any follow through marks from an error in first M mark this one comes from a denominator of $4x(x+1)$
19	4x(x-2) - (2x+2)(2x-3) = 0.5 \times 4x \times 2(x+1)	M1dep	oe but needs to be the correct equation setting up the quadratic by multiplying the RHS by the product of the denominators could be scored by both sides of the equation still having the same denominator dep on both previous M marks
	$4x^{2} + 10x - 6 = 0$ or $2x^{2} + 5x - 3 = 0$	A1	
	(4x-2)(x+3) = 0 or $(2x-1)(2x+6) = 0$ or $(2x-1)(x+3) = 0$	M1dep	correct factors or correct use of quadratic formula oe
	0.5 and -3	A1	both answers needed