
Leopold-Franzens-Universität Innsbruck

Institute of Computer Science

Interactive Graphics and Simulation Group

Bachelor Thesis

Real-Time Screen Space Fluid Rendering
with Scene Re�ections

Andreas Moritz
andreas.moritz@student.uibk.ac.at

advised by
Prof. Dr. Matthias Harders

Innsbruck, November 14, 2016

Abstract

In this thesis we explore the real-time capability of rendering SPH simulated �uid with light
attenuation approximation. We extend upon existing approaches by adding the capability for
re�ecting scene geometry with screen space ray tracing. Using binary re�nement, we are able
to trace re�ections across high distances while keeping the performance impact low and still
providing good results.

Keywords SPH, Screen Space Rendering, Fluid, Re�ection, Real-Time.

i

Contents

1 Introduction 1

2 Related Work 3

2.1 Mesh Triangulation with Scalar Fields . 3
2.2 Explicit Meshes . 3
2.3 Screen Space Methods . 3
2.4 Volumetric Methods . 4

3 Methods 5

3.1 Overview . 5
3.2 Particle Splatting . 6

3.2.1 Depth Map . 6
3.2.2 Thickness Map . 7

3.3 Depth Smoothing . 8
3.3.1 Spatial Filter . 8
3.3.2 Bilateral Blur . 8
3.3.3 Curvature Flow . 9

3.4 Normal Calculation . 11
3.5 Rendering . 12

3.5.1 Light Attenuation . 12
3.5.2 Re�ection . 13
3.5.3 Refraction . 14
3.5.4 Transparency . 15

4 Results and Discussion 19

4.1 Memory . 19
4.2 Performance . 20

5 Conclusion & Future Work 27

iii

List of Figures

3.1 Overview of the rendering stages . 6
3.2 Thickness map . 7
3.3 Comparison of constant and adaptive kernel radius 9
3.4 Calculation of normals from the view space position 11
3.5 Attenuation of light traveling through water . 13
3.6 Comparison of skybox-only re�ections and our method 15
3.7 Re�ection quality with di�erent stride settings 16
3.8 Approximated refractions through thickness map 17

4.1 Wave test scene . 23
4.2 Crown test scene . 23
4.3 Waterfall test scene . 24
4.4 Comparison of �uid at full resolution to �uid at half resolution 25

v

List of Tables

3.1 Approximate extinction coe�cients and percentile attenuation for water 12

4.1 Performance in our three sample scenes, full res 20
4.2 Performance in our three sample scenes, half res 21
4.3 Performance for various re�ection settings . 21
4.4 Performance in our worst case scenario . 22

vii

Declaration

By my own signature I declare that I produced this work as the sole author, working indepen-
dently, and that I did not use any sources and aids other than those referenced in the text.
All passages borrowed from external sources, verbatim or by content, are explicitly identi�ed
as such.

Signature: Date:

ix

Chapter 1

Introduction

Simulation of �uid is used in a wide area of applications such as medical simulations for
training, special e�ects for movies, games, �ood simulations, petroleum simulations and many
more. Most simulation models can generally be broken down into two categories. The Eulerian
approach de�nes a �xed grid in space. Eulerian methods then observe the change of quantities
(such as pressure) at the voxels as �uid passes through. On the contrary in Lagrangian
methods the �uid is modeled by a loose set of particles, each carrying information about its own
quantities. This has the advantage that we are not bound to a �nite space for simulating �uid
such as the Eulerian methods. Furthermore particles can intrinsically collide with an existing
geometry in a physics engine, like any other object. These properties make Lagrangian methods
preferable to Eulerian ones in dynamic and interactive applications in computer graphics,
although hybrid solvers do exist that try to take the best from both models [18, 1, 19]. For
a more in-depth explanation of the various �uid simulation models we refer to the extensive
book of Robert Bridson [8].

SPH Smoothed Particle Hydrodynamics is a widely used Lagrangian �uid solver. Originating
in the �eld of astrophysics [10], Desbrun and Gascuel [9] introduced the SPH formalism
into the �eld of computer graphics. Mueller et al. [16] extended SPH for use in interactive
applications. Since then it has been extensively researched and is nowadays used for
state-of-the art �uid animations, including the simulation of foam, air bubbles and other
features. Simulation in complex scenes (e.g. for movies and games) can consist of a
large number of particles (up to a million and more). However, the loose set of particles
that represent the �uid do not form an implicit surface that can be used for rendering.
The main challenge hereby lies in achieving smooth surfaces without eliminating surface
details such as capillary waves. To date numerous techniques have been presented to
extract such surfaces, for o�ine as well as real-time applications [13].

In this paper we will implement a real-time rendering method for SPH �uids, based on the pro-
posed screen space methods of van der Laan et al. [22] and Green [11]. When we speak of real-
time we mean e�ective rendering times of <16.666 ms per frame for the �uid, preferably less to
account for rendering of the scene geometry and other application speci�c tasks on the GPU.
The SPH simulations for this thesis are created with RealFlow 2015, an �industry-standard,
out-of-the-box �uid simulation software� [21]. However, our methods are not restricted to
RealFlow and can be applied to any arbitrary SPH simulation.

In Chapter 2 we will explain some related methods for surface extraction and rendering
of SPH �uids. As Ihmsen et al. [13] provide an extensive recent state-of-the art survey about

1

SPH simulation as well as rendering, we will only brie�y explain the methods that are already
covered by their survey and refer to it for further details.

In Chapter 3 we will provide a quick overview about our method and follow with a more
in-depth explanation.

In Chapter 4 we will discuss the performance of our test scenes as well as the general
memory requirements.

2

Chapter 2

Related Work

2.1 Mesh Triangulation with Scalar Fields

The Marching Cubes method [14] is one of the most utilized techniques for surface reconstruc-
tion due to its simplicity. It triangulates the surface of a point cloud by creating a voxel grid
around the speci�ed data of interest. In essence, for each voxel's corner vertices we assign a
scalar value in relation to the surface value. These scalars at the vertices determine whether
the vertex is inside/on or outside of the surface. Using the information of this scalar �eld allows
for the creation of various triangle con�gurations, making up the polygonized surface. The
surface quality of Marching Cubes depends highly on the resolution of the grid and the chosen
method for the scalar �eld computation [3]. Producing high quality surfaces requires high
resolution grids, resulting in large memory footprints and slow computation times. Zhou et al.
[25] provide a parallelized algorithm that runs entirely on the GPU and is based on octree data
structure for increased performance. Akinci et al. [4] use a di�erent method of subdividing the
uniform grid into a three level grid system depending on the surface curvature. This allows for
preserving surface details during the triangulation while reducing memory consumption and
computation time.

While providing high quality results, these methods still require substantial computation
time and memory, which makes them not suitable for real-time applications without sacri�cing
much of their quality.

2.2 Explicit Meshes

Because the �uid particles are changing every simulation step, a new mesh for the �uid surface
has to be constructed every frame. Explicit meshes circumvent this restriction. Yu et al. [24]
create an initial surface. The vertices of this surface are changed by nearby particle velocities
and thus carry the mesh forward in time.

2.3 Screen Space Methods

The aforementioned methods all reconstruct the �uid surface in 3D world space. Reconstructed
�uid meshes can be potentially huge, containing more than a million triangles and requiring
multiple GB of memory [4]. What we are generally interested in is the front-most surface that
can be seen from the camera. By operating mainly in 2D, screen space methods are much
more e�cient and can be utilized for real-time applications. Usually screen space methods

3

2.4. VOLUMETRIC METHODS CHAPTER 2. RELATED WORK

start to render the particles into a depth map as spheres and apply some smoothing to reduce
the resulting bumps. Mueller et al. [17] smooth the depth map by using a binomial �lter and
proceed to create a two dimensional triangle mesh by utilizing a Marching Square algorithm,
a 2D version of the Marching Cubes. The resulting mesh is then transformed back into world
space and rendered as a normal 3D mesh. Our method is based on [22, 11], where the image
bu�ers are directly rendered to the screen without the creation of an intermediate mesh, by
reconstructing the normals and view space position from the smoothed depth bu�er. Bagar et
al. [6] introduce a physically foam based rendering method for water. By separating the water
into a front and back layer, foam can appear underneath the surface, causing a volumetric
appearance.

2.4 Volumetric Methods

For rendering shadows and advanced lighting, refractions and re�ections, we require volumet-
ric information about the �uid to approximate scattering and other �uid properties. Only
considering the front-most surface is not good enough for this. Van der Laan et al. and Green
[22, 11] generate a volumetric representation by blending the particles with a thickness kernel.
This can be used for approximating light attenuation through the �uid. Zirr and Dachsbacher
[26] present a promising screen space voxelization technique that generates a true volumetric
view dependent representation of the �uid in a reasonable amount of time.

4

Chapter 3

Methods

In this chapter we present and describe the individual rendering stages of our method. Our
rendering is based on an SPH simulation. We assume that the simulation has already been
carried out and provides us with the particles as input. The background scene is rendered
separately to a color and depth texture and composited with the �uid at the end.

For the following sections we assume a right handed coordinate system. This means that the
negative z-axis points from the camera towards the screen. We use a column-major perspective
projection matrix M of the form:

M =


fx 0 0 0
0 fy 0 0

0 0
zf+zn
zn−zf

2·zf ·zn
zn−zf

0 0 −1 0

 , (3.1)

where fx = cot(fov·0.5)
aspect and fy = cot(fov · 0.5) are the focal lengths in the x and y dimension,

aspect is the aspect ratio of the viewport and fov is the �eld of view in the y dimension. zn
is the distance from the camera to the near plane and zf the distance from the camera to the
far plane.

3.1 Overview

Figure 3.1 shows a high level overview of our rendering stages:

1. Particle Splatting: The particles are rendered as spheres. The view space depth is
used for a depth map. To approximate the �uid volume we are blending the particles to
a thickness map, usually rendered at a lower resolution.

2. Smoothing: The depth map is smoothed, either with a separated bilateral �lter or
curvature �ow, to reduce the bumpy appearance of the spheres. The thickness map is
smoothed with a bilateral �lter to provide a smoother thickness distribution.

3. Shading: We recreate the view space surface normals and view space positions from
the smoothed depth map. The �uid color is a composition of screen space re�ections,
light attenuation, approximate refractions and specular highlights. The stages can all
be done in one render-pass, for better clarity we separated them in Figure 3.1.

5

3.2. PARTICLE SPLATTING CHAPTER 3. METHODS

Figure 3.1: Overview of the rendering stages

3.2 Particle Splatting

To avoid rendering expensive geometry when splatting the particles as spheres, we render them
as impostor spheres instead. For every particle a screen-aligned quad (point sprite) is created.
Depending on the distance to the camera the point sprite size is scaled, so that nearer particles
are larger than those far away. The quad is then passed to the fragment shader. We calculate
the x and y component of the quad normal nq from the texture coordinates (u, v) ∈ [0, 1] of
the quad.

nq =

nqxnqy
nqz

 =

u · 0.5− 0.5
v · 0.5− 0.5

nqz

 (3.2)

We can then discard the pixels that lie outside of the projected sphere radius. This is the case
if nqxy · nqxy > 1. For pixels inside the sphere radius we calculate the z component of nq, so
that

nqz =
√
1− nqxy · nqxy . (3.3)

3.2.1 Depth Map

To create the illusion of a sphere the view space position P′ of the point sprite at pixel (x, y)
is adjusted towards the viewer in relation to the quad normal.

P = P′ + nq · pr (3.4)

where P is the adjusted view space position for the sphere and pr is the particle radius. If the
particle is near to the camera, the new depth may be outside the near plane. We cut o� the

6

CHAPTER 3. METHODS 3.2. PARTICLE SPLATTING

depth in these cases:

Pz =

{
−zn, if |Pz| < zn

Pz, otherwise
. (3.5)

For proper depth testing we also have to replace the fragment depth of the shader. The view
space depth Pz is then saved to our depth map. Saving the position and normal is not required
because we have to recalculate them anyway after smoothing the depth map later on.

3.2.2 Thickness Map

The thickness map is an approximation for the volume of the �uid at the current viewpoint.
We use it for attenuating the color and refracting the background scene later on. The per
pixel thickness value T of a particle is calculated as

T = pr · nqz · 2. (3.6)

If a particle is behind the background scene we set the thickness to 0 as the particle is not
visible and thus does not contribute to the volume from the camera's perspective. We save
T to our thickness map, with blending on and depth test o� for proper accumulation. The
thickness map only has to be an approximation, so rendering the particles at half or even
quarter resolution still produces su�cient results (Figure 3.2). To create a smoother thickness
distribution we additionally apply bilateral �ltering.

Figure 3.2: Thickness map of �uid at quarter resolution with bilateral �ltering applied

7

3.3. DEPTH SMOOTHING CHAPTER 3. METHODS

3.3 Depth Smoothing

The resulting surface of the depth map is very bumpy due to rendering the particles as spheres.
To create a more natural surface, the depth texture is smoothed by applying a smoothing kernel
S to each pixel (x, y).

z(x, y) = S(x, y) (3.7)

Since we are smoothing in screen-space, nearer particles cover more pixels than distant particles
in the depth texture. A constant kernel radius will thus smooth far particles stronger than near
particles and the �uid appears over-/under smoothed depending on the camera distance. To
approximate a constant smoothing in screen space we chose to vary the number of smoothing
iterations per pixel depending on the view space depth as in [6]. The number of required
iterations it(x, y) at pixel (x, y) is calculated based on the viewport height h, focal length and
view space depth z(x, y).

it(x, y) =
h · fy · %
z(x, y)

, (3.8)

in which % is the desired overall world space kernel radius. The number of required iterations
can be quite high for near particles. To save performance we limit the number of maximum
iterations by itmax. Thus a smoothing step i at pixel (x, y) is only applied if

itmax > it(x, y) > i.

Figure 3.3 shows the di�erence between constant smoothing and adaptive smoothing. At far
distances we avoid over smoothing the surface by reducing the number of applied iterations
and thus the kernel radius. In the following subsections we describe di�erent smoothing kernels
that can be applied.

3.3.1 Spatial Filter

The spatial �lter kernel is simply replacing each depth value with a weighted sum of the
pixel neighborhood in a certain radius. Spatial �lters (e.g. box �lter, Gaussian �lter) can be
implemented in a separable way, allowing the image to be blurred in one dimension and the
resulting image in the other dimension.

This reduces the complexity to (O)(2 ·kernelsize ·texturewidth ·textureheight) as opposed to
a non-separable pass with complexity of (O)(kernel2size ·texturewidth ·textureheight). Since only
spatial information is considered, silhouettes and multiple patches of surface merge together,
creating a single surface with low to no details. In most cases this is undesirable.

3.3.2 Bilateral Blur

A bilateral �lter consists of a spatial kernel as well as a range kernel. Samples of similar
intensity as the center have a stronger in�uence on the end result. This preserves silhouettes
and surface details.

z(x, y) =

N/2∑
i,j=−N/2

Gs(i, j) ·Gr(|z(x, y)− z(x+ i, y + j)|) · z(x+ i, y + j), (3.9)

where Gs is the spatial kernel Gr the range kernel and N the kernel radius.

8

CHAPTER 3. METHODS 3.3. DEPTH SMOOTHING

Figure 3.3: Comparison of constant- (top) and adaptive kernel radius (bottom).

The range component of this �lter makes the blur non-separable. Implementing this
nonetheless as a separated kernel leads to some artifacts, though their in�uence on the �-
nal appearance of the �uid is not very noticeable after applying the remaining shader stages
[11], especially when looking at the �uid in motion.

3.3.3 Curvature Flow

Van der Laan et al. [22] address the smoothing by taking a di�erent approach. Instead of
blurring directly over the depth texture, they are minimizing the curvature that results from
the spheres. In each integration step the view space depth values z are adjusted in time
according to the mean curvature H. The integration is carried out using a simple forward
Euler method. The spatial derivatives of z are calculated using �nite di�erencing with central
di�erences.

z = z +H · dt, (3.10)

where dt is the integration time step. The mean curvature is calculated from the divergence
of the unit normal as

H =
∇ · n̂
2

.

The component ∂n̂z
∂z of the divergence is always zero, because z is a function of x and y and

does not change when these are kept constant [22]. Thus we can rewrite the above equation
as

H =

∂n̂x
∂x +

∂n̂y

∂y

2
. (3.11)

9

3.3. DEPTH SMOOTHING CHAPTER 3. METHODS

The normal is calculated by the cross product of the partial derivatives of the view space
position P in the x and y direction.

n(x, y) =
∂P

∂x
× ∂P

∂y
(3.12)

We can regain the view space position at pixel (x, y) from the depth texture by inverting
the projection transformation. We �rst map the pixel coordinates back to normalized device
coordinates:

ndcx =
2 · x
w
− 1, ndcy =

2 · y
h
− 1, (3.13)

where w and h are the viewport width and height respectively. We reverse the perspective
division to regain clip space coordinates:

clipx = ndcx · −z, clipy = ndcy · −z. (3.14)

Then we regain the view space coordinates by dividing the clip space coordinates with the
focal lengths:

viewx =
clipx
fx

, viewy =
clipy
fy

. (3.15)

The view space position is then

P(x, y) =

 viewx
viewy
z(x, y)

 =

(1
fx
− 2·x

w·fx) · z(x, y)
(1
fy
− 2·y

h·fy) · z(x, y)
z(x, y)

 =

Wx

Wy

1

 · z(x, y). (3.16)

Plugging Equation 3.16 into 3.12 gives us

n(x, y) =

Cx · z(x, y) +Wx · ∂z∂x
Wy · ∂z∂x

∂z
∂x

×
 Wx · ∂z∂y
Cy · z(x, y) +Wy · ∂z∂y

∂z
∂y

 , (3.17)

in which Cx = − 2
w·fx and Cy = − 2

h·fy . The terms that depend on Wx and Wy are ignored
�because it simpli�es the computations a lot and the di�erence is negligible as the contributions
are small� [22]. Thus we get

n(x, y) ≈

−Cy · ∂z∂x · z(x, y)−Cx · ∂z∂y · z(x, y)
Cx · Cy · z(x, y)2

 =

 −Cy · ∂z∂x
−Cx · ∂z∂y

Cx · Cy · z(x, y)

 · z(x, y) (3.18)

and

n̂(x, y) =
n(x, y)

|n(x, y)|
=

(−Cy · ∂z∂x ,−Cx ·
∂z
∂y , Cx · Cy · z(x, y))

T√
C2
y · ∂z∂x

2
+ C2

x · ∂z∂y
2
+ C2

x · C2
y · z(x, y)2

(3.19)

Plugging Equation 3.19 into 3.11 �nally leads to

H =
Cy · (12 ·

∂z
∂x ·

∂D
∂x −

∂2z
∂x2
·D) + Cx · (12 ·

∂z
∂y ·

∂D
∂y −

∂2z
∂y2
·D)

2 ·D ·
√
D

, (3.20)

in which D = C2
y · ∂z∂x

2
+ C2

x · ∂z∂y
2
+ C2

x · C2
y · z2.

10

CHAPTER 3. METHODS 3.4. NORMAL CALCULATION

Since an explicit integration scheme is used, this method becomes unstable at higher
timesteps. Thus a low timestep at a high number of iterations is required. We empirically
chose a timestep of 0.005 at up to 60 iterations.

We also found that particles near the camera (for z > −3.0 in our samples) tend to become
unstable very fast. At these points we calculate D as

D = C2
y ·

∂z

∂x

2

+ C2
x ·

∂z

∂y

2

+ C2
x · C2

y · (z − κ)2,

where κ is a user de�ned constant. We chose κ = 3 to sustain a stable integration at all depth
values.

3.4 Normal Calculation

After smoothing the depth map, we have to recalculate the normals of the surface. The view
space position at pixel (x, y) is regained with Equations 3.13�3.16. We get the normal n(x, y)

with Equation 3.12 and calculate the unit normal n̂(x, y) = n(x,y)
|n(x,y)| for every pixel.

The partial derivatives are calculated using �nite forward di�erencing. At edges (where
a large di�erence in depth occurs between one pixel and the next) the normals may not be
well-de�ned for forward di�erencing, so we use the backward di�erence instead [11].
Figure 3.4 shows the calculated normals, encoded as RGB colors.

Figure 3.4: Calculation of normals from the view space position. The normals are visualized
as (red, green, blue) colors with minimum intensity of 0 and maximum intensity of 1. The
mapping to the visualized color ĉ is done as ĉ = n̂ · 0.5 + 0.5.

11

3.5. RENDERING CHAPTER 3. METHODS

3.5 Rendering

The �nal color cfinal is a composition of the attenuated �uid color cfluid, the refracted scene
color crefract and the re�ected scene color creflect with a specular highlight component σ.

cfinal = mix(cfluid, crefract · (1− F (v̂,n, ρ)), τ) + creflect · F (v̂,n, ρ) + σ (3.21)

in which v̂ is the view vector from the camera to the surface and n the surface normal.
F is the Fresnel term, resulting in stronger re�ections at grazing view angles and stronger
refractions when looking towards the surface normal. The amount of re�ection and refraction
also depends on the refractive index of the �uid (we assume that the surrounding medium is
air with a refractive index of ≈ 1. For our sample scenes we used the refractive index of water
(1.33) and employed Schlick's approximation [20] for the Fresnel term. The specular highlight

σ = ks · (max(0.0,n · h))α

is computed from the surface normal, halfway vector and specular constants.

3.5.1 Light Attenuation

As light travels through a sample of �uid, a percentage of it gets absorbed and scattered. This
diminution of radiant energy is referred to as light attenuation. The amount of attenuation
increases in relation to the extinction coe�cient η and the sample depth z in meters [23].

Because η di�ers for each wavelength the transmitted light Iz at depth z is of a di�erent
color than the incoming light I0 at the �uid surface. Table [3.1] and Figure [3.5] show the
approximate attenuation of wavelengths in the visible spectrum for water, causing its color to
appear mostly as blue at increasing depths. The percentile transmittance is given by the ratio
of Iz to I0 [23]:

Iz
I0

= e−η·z · 100% (3.22)

By putting z at the eye we can relate the sample depth directly to our thickness map T . Thus
we get the �uid color cfluid(x, y) = Iz(x, y) by

Iz(x, y) = e−η·T (x,y) · I0, (3.23)

where I0 is the incident light; We assume that the main light source is a directional light,
leading to a constant light color I0.

Table 3.1: Approximate extinction coe�cients and percentile attenuation for water;
Data taken from [23]

Wavelength [nm] η attenuation [% ·m−1]
680.0 (red) 0.555 42.59
526.2 (green) 0.041 4.017
465.0 (blue) 0.0208 2.058

12

CHAPTER 3. METHODS 3.5. RENDERING

Figure 3.5: Attenuation of light traveling through water
Plotted data from Table 3.1

3.5.2 Re�ection

Re�ections of the scene geometry on the �uid can substantially enhance the �nal result, as
can be seen in Figure 3.6. For each pixel (x, y) we send a ray from the camera to the view
space position P of the �uid surface at that pixel and calculate the re�ected direction

R = v̂ − 2 · n̂ · v̂ · n̂, (3.24)

in which v̂ = −P
|−P| is the view vector. Van der Laan et al. and Green [22, 11] sample the

re�ected color directly from an environment map. We extend upon this by implementing a
screen space ray tracer based on [15] to also re�ect the scene geometry.

Let us look �rst at a conventional linear 3D ray tracer in view space. Our ray starts at
the view space position P. Knowing the ray direction we can calculate the endpoint E by
multiplying R with the desired maximum ray distance d and add it to P. Taking the delta
of the two points E − P and dividing it by the desired number of trace iterations gives us
a step vector dP. In each tracing iteration we can advance along R with P = P + dP and
check for a depth bu�er intersection by sampling the depth bu�er at the current point. If the
ray is behind the sample (within some range) we consider it an intersection and return the
scene color at this point. This approach has one major drawback. Linear marching in view
space does not equal linear marching in screen space. Many points along R may be mapped to
the same pixel. A large amount of iterations, thus small step sizes, will lead to oversampling
the same pixels in screen space while larger step sizes may miss depth bu�er intersections
completely.

Linearly traversing the ray in 2D as in [15] circumvents this problem by guaranteeing that
in each iteration we move at least one pixel in screen space. We start by projecting the start
and end point of our ray using a standard projection matrix M such that H0 = M · P and
H1 = M · E is in homogeneous clip space. After perspective divide we get the respective

13

3.5. RENDERING CHAPTER 3. METHODS

start and end point in screen space. Rasterization and tracing of the line between these two
points is in e�ect a simple 2D line rendering problem and can be done by using standard, well
known and understood, DDA (Digital Di�erential Analyzer) methods such as Bresenham's
[7] line algorithm. This method considers eight cases. Due to the excessive branching, the
performance on a GPU is considerably limited. McGuire and Mara [15] provide an optimized
version for the GPU that uni�es these cases and avoids expensive branching by ensuring that
the primary traversal axis in every iteration is the x-axis. Linear interpolation of a property
in homogeneous space will result in linear interpolation of the corresponding 3D value [15].
This means that we can keep track of the view space depth of any point on the line by linearly
interpolating between k0 = H−10w and k1 = H−11w as we traverse it. We get the corresponding
view space depth z for value k on a given point as

z =
−1.0
k

. (3.25)

Checking z against the depth bu�er for our given point, like in the 3D approach, we can
determine if the ray intersects the bu�er and, if so, return the scene color for this point as our
re�ected color. If no intersection is detected we sample from an environment map instead.

creflect(x, y) =

{
Scene(HP), if raytrace(P,R, I)

Env(R), otherwise
, (3.26)

in which Scene(x, y) returns the scene color of a point and Env(x, y, z) the environment color
of a vector. I is the maximum amount of steps, after which we abort the trace. HP is the
pixel at which we determined an intersection with the depth bu�er.

We can further improve the performance of the ray tracer by sacri�cing visual quality.
Scaling the derivatives of the DDA with a stride value (dP ·stride and dk ·stride), we increase
the number of pixels that we traverse at each step. Some of the lost quality can be regained
by using a simple binary search re�nement [12]. If our stride is >1 and an intersection with
the depth bu�er is detected we take one step back and halve the stride. Then we check if
the depth bu�er is still intersected. If so, take another step back and repeat. If not, we take
a step forward and repeat. Each time we detect an intersection HP is updated accordingly.
The regained accuracy greatly improves the �nal result (Figure 3.7) with almost no impact on
performance (Table 4.3).

Although we stop tracing after one hit, the method can be trivially extended to allow for
more bounces by additionally returning the respective 3D point of the hit pixel.

3.5.3 Refraction

While the screen space ray tracer could also be used for refractions, we have no accurate
volume information of the �uid to take scattering into account. Approximating the refractions
as in [22] gives good results with the added bene�t of saving computational expenses. The
sample coordinates for the background scene are o�set in accordance to the view space normal
and thickness, so that increased thickness leads to higher refraction. We limit the amount of
refraction by β to reduce highly unrealistic refraction at high thickness values.

crefract = Scene((x, y) + nxy ·max(T (x, y) · α, β)), (3.27)

in which α is a �uid-speci�c constant to control the amount of refraction. Figure 3.8 shows
the approximated refractions when the scene is covered by high thickness �uid.

14

CHAPTER 3. METHODS 3.5. RENDERING

Figure 3.6: Comparison of skybox-only re�ections (left) and screen space scene re�ections
(right) for smooth (top) and rough (bottom) �uid

3.5.4 Transparency

We expect the background scene to be increasingly hidden behind larger amounts of �uid. The
transparency τ is used to interpolate between the �uid color and the refracted scene color in
relation to our thickness map. Because the accumulated thickness may theoretically have any
value in the range [0,∞) we map it into the range [0, 1] by using an exponential function

τ(x, y) = e−T (x,y)·γ , (3.28)

where γ can be used to control the fallo�, depending on the �uid opaqueness.

15

3.5. RENDERING CHAPTER 3. METHODS

(a) Stride = 1 (b) Stride = 8;
No binary search re�nement

(c) Stride = 8;
With binary search re�nement

Figure 3.7: Re�ection quality with di�erent stride settings. Some of the lost quality that is
caused by higher strides can be regained with binary search re�nement.

16

CHAPTER 3. METHODS 3.5. RENDERING

Figure 3.8: Approximated refractions through thickness map

17

Chapter 4

Results and Discussion

In this chapter we will present and discuss the performance of our three test scenes in various
situations and the general memory requirements of our textures.

4.1 Memory

The required memory for our data structures is fairly low, since we work mainly with textures.
We use openGL color formats [2] to describe the memory usage of the textures. For exam-
ple, R32F denotes a single channel texture with 32 bit/pixel, R16F uses 16 bit/pixel and an
RGBA8 texture has four channels, each with 8 bit/pixel. The required memory per texture
for our application is:

� Depth Texture : TextureSizedepth ·R32F

� Smoothed Depth Texture (PingPong rendering): 2 · TextureSizesmoothed ·R32F

� Thickness Texture : TextureSizethickness ·R32F

� Normal Texture :TextureSizenormal ·RGBA32F

� Scene Color Texture :TextureSizescene ·RGBA8

� Scene Depth texture : TextureSizesdepth ·R32F

If we are rendering the �uid at a resolution of 1920× 1080 = 2 073 600 pixel, an R32F texture
would require

4B/pixel · 2 073 600 pixel ≈ 7.91MB.

An RGBA8 texture would require the same amount, because each channel uses 1B/pixel,
leading to a total of 4B/pixel. The RGBA32F normal texture amounts to

16B/pixel · 2 073 600 pixel ≈ 31.65MB.

Rendering the thickness texture at half resolution (960× 540 = 518 400 pixel) requires

4B/pixel · 518 400 pixel ≈ 1.98MB.

All textures combined would then require

5 · 7.91MB+ 31.65MB+ 1.98MB ≈ 83.08MB.

19

4.2. PERFORMANCE CHAPTER 4. RESULTS AND DISCUSSION

Considering the possible performance breakdown for rendering at 1920× 1080 (Table 4.4),
we usually render everything at half resolution. Thus a more realistic value would be

6 · 1.98MB+
31.65MB

4
≈ 19.79MB.

In addition to the textures, we also have to account for the particles that are required in the
splatting stage. Each particle comes with three �oat values for the position. Considering 4B
per �oat, that would be 3 · 4B = 12B per particle.

Considering that modern GPUs come with at least 4GB of VRAM, the memory footprint
of our data structures is negligible at half-resolution.

4.2 Performance

We used three scenes for measuring the required render time in milliseconds per frame.

a) The wave scene starts as a cube of 143.944k particles and quickly dissolves into a stream,
forming small-scale waves along the way. We also provided a few environment objects
for this scene to show the application and performance of screen space re�ections in
comparison to the other scenes without much scene geometry.

b) The crown scene (Figure 4.2) exists in two versions. One has a low amount of particles
(38.146k) distributed over a relatively large space. The second version has a higher
particle resolution (157.944k with a smaller particle radius over the same amount of
space), thus leading to a more detailed surface and more potential individual surfaces
through splashes and water tension.

c) The waterfall scene (Figure 4.3) has a large amount of particles (819.417k) over a large
space, giving a good idea about the scaling of our method in regards to the number of
particles.

Tables 4.1 and 4.2 show the performance measurements of the various scenes at full and
half resolution. In all scenes the �uid made up about a quarter of the screen. The screen
space re�ections were done with a maximum of 100 tracing steps and a stride of 8 with four
binary re�nement iterations. We used curvature �ow smoothing with up to 60 iterations. The
measured times are purely for the �uid rendering, not taking the scene rendering into account.
All measurements are reproducible on home systems as they were taken on an Intel Core i7-
5820K CPU 3.30 GHz with 16GB RAM and an NVIDIA GTX 980.

Table 4.1: Performance in our three sample scenes at full resolution

Scene Wave Crown 1 Crown 2 Waterfall

Fluid Resolution 1920×1080 1920×1080 1920×1080 1920×1080
Particles [#] 143944 38146 157944 819417
Splat [ms] 0.387 0.465 0.752 1.801

Smoothing [ms] 3.101 2.991 3.058 3.627
Normals [ms] 0.122 0.123 0.124 0.132
Raytrace [ms] 0.650 0.72 1.003 1.302

Composition [ms] 0.225 0.23 0.247 0.307
Total [ms] 4.485 4.529 5.184 7.169

20

CHAPTER 4. RESULTS AND DISCUSSION 4.2. PERFORMANCE

Table 4.2: Performance in our three sample scenes at half resolution

Scene Wave Crown 1 Crown 2 Waterfall

Fluid Resolution 960×540 960×540 960×540 960×540
Particles [#] 143944 38146 157944 819417
Splat [ms] 0.342 0.386 0.674 0.999

Smoothing [ms] 0.925 0.884 0.924 0.906
Normals [ms] 0.036 0.036 0.0359 0.034
Raytrace [ms] 0.579 0.799 0.962 1.217

Composition [ms] 0.209 0.192 0.235 0.306
Total [ms] 2.091 2.297 2.831 3.462

Table 4.3 shows the performance impact on ray tracing by stride and binary re�nement.
Increased stride allows for a reduction in maximum trace iterations while providing at least
the same tracing distance. All measurements were taken for our wave scene.

Table 4.3: Performance for various re�ection settings in wave scene

Stride 1 4 4 8 8

Binary re�nement [iterations] 0 0 2 0 4
Max steps [iterations] 280 180 180 100 100

Raytrace [ms] 1.913 1.055 1.065 0.627 0.650

We conclude that the performance of our rendering method is mainly in�uenced by four factors:

Particle Radius Because we are rendering the particles as impostor spheres, we have to
overwrite the depth value in the fragment shader. This will turn o� early depth tests
for the hardware, thus resulting in many unnecessary fragment shader invocations. A
higher particle radius covers more fragments per particle and will result in more wasted
shader invocations. This is especially true for very dense sets of particles where most
particles would be hidden by another. Enabling early depth tests (no depth replacement
in shader) for the worst case scene (Table 4.4) increased the splatting performance from
7.865 ms to 1.380 ms.

Amount of Splatted Fluid Most of our shaders work directly in screen space. Texels that
do not contain any �uid information can be mostly ignored, save for silhouette detection.
The computational cost increases substantially in relation to the amount of visible �uid,
because the shaders have more work to do. This point has the most impact on the
�nal performance, because it in�uences the more cost extensive shader stages. The
main performance bottleneck is the smoothing stage, because it has to be run multiple
times (up to 60 iterations in our sample scenes) to achieve a smooth surface without
disregarding surface details.

Particle Distance to the Viewer In direct relation to the amount of visible particles, their
distance to the viewer also in�uences the performance of the smoothing stage. As ex-
plained in Section 3.3 near particles have a larger screen space radius than far particles
and require a higher kernel radius for the same amount of smoothing.

Average Ray Trace Distance For each �uid texel on the screen we trace a re�ection ray as
described in Section 3.5.2. Depending on the amount of rays not hitting any geometry,

21

4.2. PERFORMANCE CHAPTER 4. RESULTS AND DISCUSSION

the amount of iteration steps can increase substantially. We found that by choosing the
function parameters carefully, the performance drop can be mitigated considerably while
still providing su�cient quality. Increasing the stride has the most impact, because it
allows for a reduction in maximum iteration steps while maintaining the same tracing
distance. Although increased stride causes a drop in quality, some of it can be recovered
with binary re�nement (Figure 3.7) at little additional cost.

Thus we can conclude that the worst case performance happens when a screen is completely
�lled with �uid that hides a lot of particles behind its surface. We produced such a scenario by
taking the starting cube of �uid in the wave scene and zooming in until it covered the whole
camera. Although these cases should be rare in an actual application (unless the camera
is positioned inside the �uid), the performance drop at these occasions is very notable, as
shown in the table entry. To sustain real-time performance of our application throughout
the simulation, save for the most extreme situations, we propose to render the �uid at half
resolution. The upscaling results in artifacts, mainly at the edges, and blurs the silhouettes
slightly as can be seen in Figure 4.4. However, we found that these artifacts are barely visible
in the �nal shading, especially when the �uid is in motion. Table 4.4 shows the performance
for our worst case scenario at full and half resolution.

Table 4.4: Performance in our worst case scenario
(Fluid as a dense cube and �lling up whole screen)

Fluid Resolution 1920×1080 960×540
Splat [ms] 7.865 2.364

Smoothing [ms] 8.031 2.813
Normals [ms] 0.235 0.060
Raytrace [ms] 1.831 1.544

Composition [ms] 0.329 0.101
Total [ms] 18.291 6.882

22

CHAPTER 4. RESULTS AND DISCUSSION 4.2. PERFORMANCE

Figure 4.1: Wave test scene: 143.944k particles, rendered at 1920× 1080 in 5.79ms

Figure 4.2: Crown test scene: 38.146k particles, rendered at 1920× 1080 in 6.22ms

23

4.2. PERFORMANCE CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.3: Waterfall test scene: 819.417k particles, rendered at 1920× 1080 in 7.18ms

24

CHAPTER 4. RESULTS AND DISCUSSION 4.2. PERFORMANCE

Figure 4.4: Comparison of �uid at full resolution (left) to �uid at half resolution (right).
Normal maps, as in Figure 3.4, are used for the comparison because they show the artifacts
most intensely (especially at the hole in the top right corner).

25

Chapter 5

Conclusion & Future Work

In this thesis, we implemented a real-time application for rendering SPH �uids with screen
space re�ections. Because of the missing information in screen space, only scene geometry
that is actually visible by the camera can be re�ected. The performance can be expected to
be < 7ms per frame at half resolution (960x540) throughout the application. This allows
for additional extensions and work on the GPU while still providing 60 frames per second.
The memory usage is also fairly low since we are only operating in screen space and should
not in�uence the overall application noticeably. Our method does not take transparent scene
geometry into account. To extend it to one transparent layer we have to splat the �uid into
two separate textures for �uid in front of and behind the transparent object.

In the future we would like to add additional e�ects such as proper foam [6, 5] and bubbles
which greatly improve the visual result of highly advected �uids (such as our waterfall scene).
We also think that shadows and caustics may be plausible at real-time, although this requires
to render and smooth the �uid again from the light's viewpoint, which may be expensive
because we cannot utilize early depth tests due to the impostor sphere rendering.

27

Bibliography

[1] A note on hybrid Eulerian/Lagrangian computation of compressible inviscid and viscous
�ows.

[2] openGL Color Formats, 2015.

[3] G. Akinci, M. Ihmsen, N. Akinci, and M. Teschner. Parallel Surface Reconstruction for
Particle-Based Fluids. Comput. Graph. Forum, 31(6):1797�1809, September 2012.

[4] Gizem Akinci, Nadir Akinci, Edgar Oswald, and Matthias Teschner. Adaptive surface
reconstruction for sph using 3-level uniform grids. 2013.

[5] Nadir Akinci, Alexander Dippel, Gizem Akinci, and Matthias Teschner. Screen Space
Foam Rendering. pages 173�182, 2013.

[6] Florian Bagar, Daniel Scherzer, and Michael Wimmer. A Layered Particle-Based Fluid
Model for Real-Time Rendering of Water. Computer Graphics Forum, 29(4):1383�1389,
2010.

[7] J. E. Bresenham. Algorithm for Computer Control of a Digital Plotter. IBM Syst. J.,
4(1):25�30, March 1965.

[8] Robert Bridson. Fluid Simulation for Computer Graphics. A K Peters/CRC Press, 2nd
edition, 2015.

[9] Mathieu Desbrun and Marie-Paule Gascuel. Smoothed Particles: A New Paradigm for
Animating Highly Deformable Bodies. In Proceedings of the Eurographics Workshop
on Computer Animation and Simulation '96, pages 61�76, New York, NY, USA, 1996.
Springer-Verlag New York, Inc.

[10] R.A. Gingold and J.J. Monaghan. Smoothed particle hydrodynamics: theory and appli-
cation to non-spherical stars. 181:375�389, 1977.

[11] Simon Green. Screen Space Fluid Rendering for Games, 2010.

[12] Ben Hopkins. Screen Space Re�ectionsin Unity 5, 2015.

[13] Markus Ihmsen, Jens Orthmann, Barbara Solenthaler, Andreas Kolb, and Matthias
Teschner. SPH Fluids in Computer Graphics. In Sylvain Lefebvre and Michela Spagn-
uolo, editors, Eurographics 2014 - State of the Art Reports. The Eurographics Association,
2014.

[14] William E. Lorensen and Harvey E. Cline. Marching Cubes: A High Resolution 3D
Surface Construction Algorithm. SIGGRAPH Comput. Graph., 21(4):163�169, August
1987.

29

BIBLIOGRAPHY BIBLIOGRAPHY

[15] Morgan McGuire and Michael Mara. E�cient GPU Screen-Space Ray Tracing. Journal
of Computer Graphics Techniques (JCGT), 3(4):73�85, December 2014.

[16] Matthias Müller, David Charypar, and Markus Gross. Particle-based Fluid Simulation
for Interactive Applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA '03, pages 154�159, Aire-la-Ville, Switzerland,
Switzerland, 2003. Eurographics Association.

[17] Matthias Müller, Simon Schirm, and Stephan Duthaler. Screen Space Meshes. In Proceed-
ings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
SCA '07, pages 9�15, Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Associ-
ation.

[18] Artur Palha, Lento Manickathan, Carlos Simao Ferreira, and Gerard van Bussel. A hybrid
Eulerian-Lagrangian �ow solver. arXiv preprint arXiv:1505.03368, 2015.

[19] Saket Patkar, Mridul Aanjaneya, Dmitriy Karpman, and Ronald Fedkiw. A Hybrid
Lagrangian-Eulerian Formulation for Bubble Generation and Dynamics. In Proceedings
of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA
'13, pages 105�114, New York, NY, USA, 2013. ACM.

[20] Christophe Schlick. An Inexpensive BRDF Model for Physically-based Rendering. Com-
puter Graphics Forum, 13(3):233�246, 1994.

[21] Next Limit Technologies. Real Flow, 2015.

[22] Wladimir J. van der Laan, Simon Green, and Miguel Sainz. Screen Space Fluid Rendering
with Curvature Flow. In Proceedings of the 2009 Symposium on Interactive 3D Graphics
and Games, I3D '09, pages 91�98, New York, NY, USA, 2009. ACM.

[23] Robert G. Wetzel. Limnology. Saunders College Publishing, 2nd edition, 1983.

[24] Jihun Yu, Chris Wojtan, Greg Turk, and Chee Yap. Explicit Mesh Surfaces for Particle
Based Fluids. Comput. Graph. Forum, 31(2pt4):815�824, May 2012.

[25] Kun Zhou, Minmin Gong, Xin Huang, and Baining Guo. Data-Parallel Octrees for Surface
Reconstruction. IEEE Transactions on Visualization and Computer Graphics, 17(5):669�
681, May 2011.

[26] Tobias Zirr and Carsten Dachsbacher. Memory-e�cient On-the-�y Voxelization of Par-
ticle Data. In Proceedings of the 15th Eurographics Symposium on Parallel Graphics
and Visualization, PGV '15, pages 11�18, Aire-la-Ville, Switzerland, Switzerland, 2015.
Eurographics Association.

30

