
COS30008 Semester 1, 2016 Dr. Markus Lumpe 

 

 1 

 
Swinburne University Of Technology 

Faculty of Science, Engineering and Technology 

ASSIGNMENT COVER SHEET 
 

 

Subject Code:    COS30008    

Subject Title:    Data Structures and Patterns 

Assignment number and title:   1, Solution Design in C++  

Due date:     March 21, 2016, 16:30 

Lecturer:     Dr. Markus Lumpe 

 

 

Your name:         Your student id:    

Check Tutorial 
Tues 17:30 Wed 12:30 Wed 14:30 Thurs 12:30 

    

 

 

Marker's comments: 

 

Problem Marks Obtained 

1 16+16+10 = 42  

Total 42  

 

 

 

  

 

Extension certification: 

 

This assignment has been given an extension and is now due on         

      

Signature of Convener:     



COS30008 Semester 1, 2016 Dr. Markus Lumpe 

 

 2 

Problem Set 1: Solution Design in C++  

The goal of this problem set is to extend the solution of tutorial 3. In particular, we wish to 
add methods to calculate a polynomial and to determine a polynomial’s indefinite and 
definite integral.  

Start with the solution of tutorial 3 (see Blackboard). Do not edit the provided files. Rather 
create a new .cpp unit, called PolynomialPS1.cpp, to implement the new methods. 
Please note that in C++ the implementation of a class does not need to occur in just one 
compilation unit (i.e., a .cpp file). As long as the compiler and the linker see all definitions, 
the build process should succeed, if the program does not contain any errors. 

Remember, a polynomial can be expressed concisely by using summation notation: 
n∑

i=0

aix
i

 

That is, a polynomial can be written as the sum of a finite number of terms aixi. Each term 
consists of the product of a number ai, called the coefficient, and a variable x raised to 
integer powers – xi. The exponent i in xi is called the degree of the term aixi. The degree of 
a polynomial is the largest degree of any one term with a non-zero coefficient. 

To calculate a polynomial, we need to provide a value for the variable x. Mathematically, we 
can write 

f(x) =
n∑

i=0

aix
i

 

to denote the result of calculating a polynomial for a given value of x. Again, this allows for 
a straightforward mapping to a for-loop is C++. To compute the xi, we need to use the 
function pow, called raise-to-power, which is defined in cmath. For more details and 
example uses of pow, see http://www.cplusplus.com/reference/cmath/pow/. 

Polynomials appear in many areas of mathematics and science. They are used, for example, 
in calculus, numerical analysis, and algebraic geometry. We can use polynomials to describe 
non-regular shaped objects and to determine, for instance, their volume. 

xlow xhigh

f

 
Figure 1: A curvy bottle. 



COS30008 Semester 1, 2016 Dr. Markus Lumpe 

 

 3 

To compute the volume of an object whose shape is given by a polynomial, we need to 
compute its area under the curve. There exist numerical methods to approximate the area. 
However, the most precise way of finding the area is to calculate the integral of the 
polynomial. 

The indefinite integral of a polynomial is the sum of the integrals of its terms. A general 
term of a polynomial can written axn, read the term at nth degree, and the indefinite integral 
of that term is ∫

ax
n
dx =

a

n+ 1
x
n+1

 

 

In other words, we obtain the indefinite integral of the nth degree polynomial term by raising 
it to the power n+1 and dividing it by n+1. Using the summation notation, we have 

 
Z nX

i=0

aix
n
dx =

nX

i=0

ai

i+ 1
x

i+1

 

 

A key observation here is that the terms in the indefinite integral move one position to the 
right – the next higher degree. The term at index 0 becomes 0. For example, 

 ∫
−0.25x+ 4.0 dx = −0.125x

2
+ 4.0x

1
+ 0

 

 

To implement indefinite integrals for polynomials, the corresponding method has to create a 
new Polynomial object, assign to it fDegree+1, and run a for-loop from fDegree to 0 
including (a top-down-loop) to set the polynomial coefficients according to the above rule.  

The definite integral of a polynomial is a function with two arguments: xlow and xhigh – the 
limits of the integral. We can write, without loss of generality,  

 
x

highZ

x

low

nX

i=0

a

i

x

n

dx =
nX

i=0

a

i

i+ 1
x

high

i+1 �
nX

i=0

a

i

i+ 1
x

low

i+1

 

 

That is, to compute the definite integral of a polynomial between xlow and xhigh, we need to 
construct its indefinite integral first, calculate it for xlow and xhigh, and subtract the result for 
xlow from that obtained for xhigh. 



COS30008 Semester 1, 2016 Dr. Markus Lumpe 

 

 4 

The extended specification of class Polynomial is shown below. You only need to implement 
the last three methods. The other features (i.e., constructor and operators) are given as 
part of the solution for tutorial 3. In the .cpp file for the new methods you need to include 
cmath that contains the definition of pow – raise to power.  

#pragma once 
 
#include <iostream> 
 
#define MAX_DEGREE 20+1+1 // max degree 0 to 20 plus 1 for integral 
 
class Polynomial 
{ 
private: 
  int fDegree;   // the maximum degree of the polynomial 
  double fCoeffs[MAX_DEGREE]; // the coefficients (0..10, 0..20, 0..21) 
 
public: 
 
  // tutorial 3 interface 
 
  // the default constructor (initializes all member variables) 
  Polynomial(); 
 
  // binary operator* to multiple to polynomials 
  // arguments are read-only, signified by const 
  // the operator* returns a fresh polynomial with degree i+j 
  Polynomial operator*( const Polynomial& aRight ) const; 
 
  // input operator for polynomials 
  friend std::istream& operator>>( std::istream& aIStream,  
                                   Polynomial& aObject ); 
 
  // output operator for polynomials 
  friend std::ostream& operator<<( std::ostream& aOStream, 
                                   const Polynomial& aObject ); 
 
  // new methods in problem set 1  
 
  // calculate polynomial for a given x (i.e., parameter aX) 
  double calculate( double aX ) const; 
 
  // build indefinite integral 
  // the indefinite integral is a fresh polynomial with degree fDegree+1 
  // the method does not change the current object 
  Polynomial buildIndefiniteIntegral() const; 
 
  // build definite integral 
  // the method does not change the current object 
  // the method computes the indefinite integral and then calculates it 
  // for xlow and xhigh and returns the difference 
  double buildDefiniteIntegral( double aXLow, double aXHigh ) const; 
}; 
 

Please note the changed value of MAX_DEGREE. Since we wish to build integrals, we need 
to reserve one more slot it the array for the coefficients of a polynomial. Our program 
supports polynomials up to the 10th degree. Multiplying them results in a polynomial up to 
the 20th degree, whose integral is up to the 21st degree. Hence, we need 22 entries in the 
array of coefficients (21+1). 



COS30008 Semester 1, 2016 Dr. Markus Lumpe 

 

 5 

Use as main program the following code: 
#include <iostream> 
 
#include "Polynomial.h" 
 
using namespace std; 
 
int main() 
{ 
  Polynomial A; 
  cout << "Specify polynomial:" << endl; 
  cin >> A; 
  cout << "A = " << A << endl; 
 
  double x; 
  cout << "Specify value of x:" << endl; 
  cin >> x; 
 
  cout << "A(x) = " << A.calculate( x ) << endl; 
 
  cout << "Indefinite integral of A = "  
       << A.buildIndefiniteIntegral() << endl; 
 
  cout << "Definite integral of A(xlow=0, xhigh=12.0) = "  
       << A.buildDefiniteIntegral( 0, 12.0 ) << endl; 
 
  return 0; 
} 

Using -0.25x + 4.0 and 16 for the first calculation, the test code should produce the 
following result.  

 

 

The solution requires 20-40 lines of low density C++ code.  

Submission deadline: Monday, March 21, 2016, 16:30. 

Submission procedure: on paper, code of PolynomialPS1.  


