DFT and EFT: Recent developments and ideas

Dick Furnstahl

Department of Physics Ohio State University

Bridging nuclear ab-initio and energy density functional theories
 October, 2017

Collaborators: S. Bogner (MSU), A. Dyhdalo (OSU), R. Navarro-Perez (LLNL),
N. Schunck (LLNL), Y. Zhang (OSU) plus discussions with T. Papenbrock (UT) and many others

Outline

Viewpoint: nuclear reduction and emergence

Progress report on new DME implementation

Nuclear DFT and effective actions (EFT)

Outline

Viewpoint: nuclear reduction and emergence

Progress report on new DME implementation

Nuclear DFT and effective actions (EFT)

Hierarchy of nuclear degrees of freedom

Hierarchy of nuclear degrees of freedom

Multiple phenomenologies

- Constituent quarks
- Meson exchange models
- Cluster models
- Collective models
- Nuclei as Fermi liquids
- Nuclear pairing

Hierarchy of nuclear degrees of freedom

Reductive and Emergent
\Longrightarrow EFT (see 2017 Saclay workshop)
Multiple phenomenologies

- Constituent quarks
- Meson exchange models
- Cluster models
- Collective models
- Nuclei as Fermi liquids
- Nuclear pairing
"Behind every successful emergent phenomenology there is an EFT (or EFTs) waiting to be uncovered"

Hierarchy of nuclear degrees of freedom

Reductive and Emergent
\Longrightarrow EFT (see 2017 Saclay workshop)

- Chiral quark model
- Chiral EFT: nucleons, [Δ 's,] pions; [within HO basis]
- Pionless EFT: nucleons only (low-energy few-body) or nucleons and clusters (halo)
- EFT for deformed nuclei: systematic collective dofs (Papenbrock et al.)
- EFT at the Fermi surface (Landau-Migdal theory; superfluidity): quasi-nucleons

Hierarchy of nuclear degrees of freedom

Reductive and Emergent
\Longrightarrow EFT (see 2017 Saclay workshop)

- Chiral quark model
- Chiral EFT: nucleons, [Δ 's,] pions; [within HO basis]
- Pionless EFT: nucleons only (low-energy few-body) or nucleons and clusters (halo)
- EFT for deformed nuclei: systematic collective dofs (Papenbrock et al.)
- EFT at the Fermi surface (Landau-Migdal theory; superfluidity): quasi-nucleons

Where does EDF/DFT fit in?

Bestiary of [universal] nuclear energy functionals

- Nonrelativistic [HFB] functionals
- Skyrme - local densities and $\nabla \mathrm{s}$
- Gogny - finite range Gaussians

- Fayans - self-consistent FFS
- Relativistic [covariant Hartree + pairing = RHB] functionals
- RMF - meson fields (generalized Walecka model)
- point coupling Lagrangian
(1) Repeat cycle until stops changing (self-consistent): densities $\rho_{i} \rightarrow$ potential that minimizes energy $E\left[\rho_{i}\right] \rightarrow$ s.p. states $\rightarrow \rho_{i}$ Densities (or density matrices) from single-particle wave functions Includes pairing densities, i.e., $\left\langle\psi_{i} \psi_{j}\right\rangle$ as well as $\left\langle\psi_{i}^{\dagger} \psi_{j}\right\rangle$
(2) [Restore symmetries, beyond-mean-field correlations (or SR $\rightarrow \mathrm{MR}$)]
(3) Evaluate observables (masses, radii, β-decay, fission ...)

Often interpreted as Kohn-Sham density functional theory

Motivations for doing better than empirical EDFs

- Apparent model dependence (systematic errors?)
- Extrapolations to driplines, large A, high density are uncontrolled
- Breakdown and failure mode is unclear: e.g., should EDFs work to the driplines?
- More accuracy wanted for r-process: is this even possible?
- What observables? Coupling to external currents? $0 \nu \beta \beta$ m.e.?
- Connect to nuclear EFTs (and so to QCD)
- ...

Emergent features of nuclear energy density functionals

- Precise liquid drop systematics
- Shell structure
- Superfluidity
- Low-lying collectivity (RPA)
- Naturalness of parameter values reflect underlying chiral physics
- But SVD analyses reflect hierarchy of physics

Emergent features of nuclear energy density functionals

- Precise liquid drop systematics
- Shell structure
- Superfluidity
- Low-lying collectivity (RPA)
- Naturalness of parameter values reflect underlying chiral physics
- But SVD analyses reflect hierarchy of physics
- Multiple studies show relatively few important parameters and they reflect emergent properties

See also Toivanen et al., PRC (2008)

- Bulgac et al., "A Minimal Nuclear Energy Density Functional"

Fine-tuned potentials based on chiral EFT [from G. Hagen]

Accurate BEs from light \rightarrow heavy \rightarrow infinite matter from a chiral interaction

1.8/2.0 (EM) from K. Hebeler et al PRC (2011)

The other chiral NN + 3NFs are from Binder et al, PLB (2014)

- Accurate binding energies up to mass 100 from a chiral NN + 3NF
- Fit to nucleon-nucleon scattering and BEs and radii of $A=3,4$ nuclei
- Reproduces saturation point in nuclear matter within uncertainties

Fine-tuned potentials based on chiral EFT [from G. Hagen]

What is the take-away message from phenomenological success?

General questions for phenomenological EDFs

- Are density dependencies too simplistic? How do you know?
- How should we organize possible terms in the EDF?
- Where is pion physics resolved? Does near-unitarity matter?
- What is the connection to many-body forces?
- How do we estimate a priori theoretical uncertainties?
- What is the theoretical limit of accuracy?
- and so on...
\Longrightarrow Extend or modify EDF forms in (semi-)controlled way
\Longrightarrow Use microscopic many-body theory for guidance
There are multiple paths to a nuclear EDF \Longrightarrow What about EFT?

Some current strategies for nuclear EDFs guided by EFT

Extend or modify conventional EDF forms in (semi-)controlled ways
(1) Long-distance chiral physics from Weinberg PC expansion

- Density matrix expansion (DME) applied to NN and NNN diagrams
- [Re-fit residual Skyrme parameters and test description]
- MBPT expansion justified by phase-space-based power counting
(2) In-medium chiral perturbation theory [Munich group]
- ChPT loop expansion becomes EOS expansion
- Apply DME to get DFT functional
(3) Extend existing functionals following EFT principles
- Non-local regularized pseudo-potential [Raimondi et al., 1402.1556]
- Optimize pseudo-potential to experimental data and test
- [See also J. Dobaczewski arXiv:1507.00697 for ab initio \rightarrow EDF]
(4) RG evolution of effective action functional [Jens Braun et al.]
- See H. Liang et al. [arXiv:1710.00650] for recent implementation

Can we develop bottom-up EFT for DFT using a QFT formulation?
[See expansion about unitary limit in talks at this workshop!]

Outline

Viewpoint: nuclear reduction and emergence

Progress report on new DME implementation

Nuclear DFT and effective actions (EFT)

Density matrix expansion (DME) revisited [Negele/Vautherin]

- Dominant chiral EFT MBPT contributions can be put into form

$$
\langle V\rangle \sim \int d \mathbf{R} d \mathbf{r}_{12} d \mathbf{r}_{34} \rho\left(\mathbf{r}_{1}, \mathbf{r}_{3}\right) K\left(\mathbf{r}_{12}, \mathbf{r}_{34}\right) \rho\left(\mathbf{r}_{2}, \mathbf{r}_{4}\right)^{\rho\left(\mathbf{r}_{1}, \mathbf{r}_{3}\right)} \int_{\mathbf{r}_{3}} \mathbf{K}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}-\mathbf{r}_{4}\right) \int_{\rho\left(\mathbf{r}_{2}, \mathbf{r}_{4}\right)}
$$

- Earlier work: momentum space with non-local interactions

Density matrix expansion (DME) revisited [Negele/Vautherin]

- Dominant chiral EFT MBPT contributions can be put into form

$$
\langle V\rangle \sim \int d \mathbf{R} d \mathbf{r}_{12} d \mathbf{r}_{34} \rho\left(\mathbf{r}_{1}, \mathbf{r}_{3}\right) K\left(\mathbf{r}_{12}, \mathbf{r}_{34}\right) \rho\left(\mathbf{r}_{2}, \mathbf{r}_{4}\right){ }_{\mathbf{r}_{3}}^{\rho\left(\mathbf{r}_{1}, \mathbf{r}_{3}\right)} \overbrace{\mathbf{r}}^{\mathbf{r}_{1}} \mathbf{K}\left(\mathbf{r}_{1}-\mathbf{r}_{2}, \mathbf{r}_{3}-\mathbf{r}_{4}\right) \overbrace{\mathbf{r}_{4}}^{\mathbf{r}_{2}} \int_{\left(\mathbf{r}_{2}, \mathbf{r}_{4}\right)}
$$

- Earlier work: momentum space with non-local interactions
- DME: Expand ρ in local operators w/factorized non-locality
with $\left\langle\mathcal{O}_{n}(\mathbf{R})\right\rangle=\left\{\rho(\mathbf{R}), \nabla^{2} \rho(\mathbf{R}), \tau(\mathbf{R}), \cdots\right\}$ maps $\langle\boldsymbol{V}\rangle$ to Skyrme-like EDF!

Density matrix expansion (DME) revisited [Negele/Vautherin]

- Dominant chiral EFT MBPT contributions can be put into form

$$
\langle V\rangle \sim \int d \mathbf{R} d \mathbf{r}_{12} d \mathbf{r}_{34} \rho\left(\mathbf{r}_{1}, \mathbf{r}_{3}\right) K\left(\mathbf{r}_{12}, \mathbf{r}_{34}\right) \rho\left(\mathbf{r}_{2}, \mathbf{r}_{4}\right)^{\rho\left(\mathbf{r}_{1}, \mathbf{r}_{3}\right)} \overbrace{\mathbf{r}_{3}}^{\mathbf{r}_{1}} \mathbf{K (r _ { 1 } - \mathbf { r } _ { 2 } , r _ { 3 } - \mathbf { r } _ { 4 })} \int_{\rho\left(r_{2}, \mathbf{r}_{4}\right)}^{\mathbf{r}_{2}}
$$

- Earlier work: momentum space with non-local interactions
- DME: Expand ρ in local operators w/factorized non-locality
with $\left\langle\mathcal{O}_{n}(\mathbf{R})\right\rangle=\left\{\rho(\mathbf{R}), \nabla^{2} \rho(\mathbf{R}), \tau(\mathbf{R}), \cdots\right\}$ maps $\langle V\rangle$ to Skyrme-like EDF!
- Original NV DME expands about nuclear matter (k-space + NNN)
$\rho(\mathbf{R}+\mathbf{r} / 2, \mathbf{R}-\mathbf{r} / 2) \approx \frac{3 j_{1}\left(r k_{\mathrm{F}}\right)}{r k_{\mathrm{F}}} \rho(\mathbf{R})+\frac{35 j_{3}\left(r k_{\mathrm{F}}\right)}{2 r k_{\mathrm{F}}^{3}}\left(\frac{1}{4} \nabla^{2} \rho(\mathbf{R})-\tau(\mathbf{R})+\frac{3}{5} k_{\mathrm{F}}^{2} \rho(\mathbf{R})+\cdots\right)$

DME vs. Operator Product Expansion (OPE)

- DME: Expand ρ in local operators w/factorized non-locality
- Cf. OPE for unitary gas contact properties [E. Braaten arXiv:1008.2922]

$$
\begin{gathered}
O_{A}\left(\mathbf{R}+\frac{1}{2} \mathbf{r}\right) O_{B}\left(\mathbf{R}-\frac{1}{2} \mathbf{r}\right)=\sum_{C} f_{A, B}^{C}(\mathbf{r}) O_{C}(\mathbf{R}) \\
\Longrightarrow \quad \psi_{\sigma}^{\dagger}\left(\mathbf{R}+\frac{1}{2} \mathbf{r}\right) \psi_{\sigma}\left(\mathbf{R}-\frac{1}{2} \mathbf{r}\right)= \\
\psi_{\sigma}^{\dagger} \psi_{\sigma}(\mathbf{R})+\frac{1}{2} \mathbf{r} \cdot\left[\psi_{\sigma}^{\dagger} \nabla \psi_{\sigma}(\mathbf{R})-\nabla \psi_{\sigma}^{\dagger} \psi_{\sigma}(\mathbf{R})\right] \\
-\frac{r}{8 \pi} g_{0}^{2}(\Lambda) \psi_{1}^{\dagger} \psi_{2}^{\dagger} \psi_{2} \psi_{1}(\mathbf{R})+\cdots
\end{gathered}
$$

DME vs. Operator Product Expansion (OPE)

- DME: Expand ρ in local operators w/factorized non-locality
- Cf. OPE for unitary gas contact properties [E. Braaten arXiv:1008.2922]

$$
\begin{gathered}
O_{A}\left(\mathbf{R}+\frac{1}{2} \mathbf{r}\right) O_{B}\left(\mathbf{R}-\frac{1}{2} \mathbf{r}\right)=\sum_{C} f_{A, B}^{C}(\mathbf{r}) O_{C}(\mathbf{R}) \\
\Longrightarrow \psi_{\sigma}^{\dagger}\left(\mathbf{R}+\frac{1}{2} \mathbf{r}\right) \psi_{\sigma}\left(\mathbf{R}-\frac{1}{2} \mathbf{r}\right)=\psi_{\sigma}^{\dagger} \psi_{\sigma}(\mathbf{R})+\frac{1}{2} \mathbf{r} \cdot\left[\psi_{\sigma}^{\dagger} \nabla \psi_{\sigma}(\mathbf{R})-\nabla \psi_{\sigma}^{\dagger} \psi_{\sigma}(\mathbf{R})\right] \\
-\frac{r}{8 \pi} g_{0}^{2}(\Lambda) \psi_{1}^{\dagger} \psi_{2}^{\dagger} \psi_{2} \psi_{1}(\mathbf{R})+\cdots
\end{gathered}
$$

- OPE is short-distance expansion including interactions; DME is resummed (with "freedom") but non-interacting ρ (HF only)

$$
\sum_{\alpha} \phi_{\alpha}^{\dagger}\left(\mathbf{r}_{1}\right) \phi_{\alpha}\left(\mathbf{r}_{2}\right)=\left.e^{\mathbf{r} \cdot\left(\nabla_{1}-\nabla_{2}\right) / 2} \sum_{\alpha} \phi_{\alpha}^{\dagger}\left(\mathbf{R}_{1}\right) \phi_{\alpha}\left(\mathbf{R}_{2}\right)\right|_{\mathbf{R}_{1}=\mathbf{R}_{2}=\mathbf{R}}
$$

- Is there anything to learn here? E.g., about going beyond HF?

Adaptation of chiral EFT MBPT to Skyrme HFB form

$$
\begin{aligned}
\mathcal{E}_{\text {SKyrme }} & =\frac{\tau}{2 M}+\frac{3}{8} t_{0} \rho^{2}+\frac{1}{16} t_{3} \rho^{2+\alpha}+\frac{1}{16}\left(3 t_{1}+5 t_{2}\right) \rho \tau+\frac{1}{64}\left(9 t_{1}-5 t_{2}\right)|\nabla \rho|^{2}+\cdots \\
& \Longrightarrow \mathcal{E}_{\text {DME }}=\frac{\tau}{2 M}+A[\rho]+B[\rho] \tau+C[\rho]|\nabla \rho|^{2}+\cdots
\end{aligned}
$$

Orbitals and Occupation \#'s
$V_{\mathrm{KS}}(\mathbf{r})=\frac{\delta E_{\mathrm{int}}[\rho]}{\delta \rho(\mathbf{r})} \Longleftrightarrow\left[-\frac{\nabla^{2}}{2 m}+V_{\mathrm{KS}}(\mathbf{x})\right] \psi_{\alpha}=\varepsilon_{\alpha} \psi_{\alpha} \Longrightarrow \rho(\mathbf{x})=\sum_{\alpha} n_{\alpha}\left|\psi_{\alpha}(\mathbf{x})\right|^{2}$

Adaptation of chiral EFT MBPT to Skyrme HFB form

$$
\begin{aligned}
\mathcal{E}_{\text {SKyrme }}= & \frac{\tau}{2 M}+\frac{3}{8} t_{0} \rho^{2}+\frac{1}{16} t_{3} \rho^{2+\alpha}+\frac{1}{16}\left(3 t_{1}+5 t_{2}\right) \rho \tau+\frac{1}{64}\left(9 t_{1}-5 t_{2}\right)|\nabla \rho|^{2}+\cdots \\
& \Longrightarrow \mathcal{E}_{\text {DME }}=\frac{\tau}{2 M}+A[\rho]+B[\rho] \tau+C[\rho]|\nabla \rho|^{2}+\cdots
\end{aligned}
$$

Orbitals and Occupation \#'s
$V_{\mathrm{KS}}(\mathbf{r})=\frac{\delta E_{\mathrm{int}}[\rho]}{\delta \rho(\mathbf{r})} \Longleftrightarrow\left[-\frac{\nabla^{2}}{2 m}+V_{\mathrm{KS}}(\mathbf{x})\right] \psi_{\alpha}=\varepsilon_{\alpha} \psi_{\alpha} \Longrightarrow \rho(\mathbf{x})=\sum_{\alpha} n_{\alpha}\left|\psi_{\alpha}(\mathbf{x})\right|^{2}$

Full ab-initio: Is Negele-Vautherin DME good enough?

- Try best nuclear matter with RG-softened χ-EFT NN/NNN

- Do densities look like nuclei from Skyrme EDF's? Yes!
- Are the error bars competitive? No! $1 \mathrm{MeV} / \mathrm{A}$ off in ${ }^{40} \mathrm{Ca}$ \Longrightarrow rethink application of DME

Improved DME for pion exchange tests

- Phase-space averaging for finite nuclei [Gebremariam et al.]

Improved DME for pion exchange tests

- Phase-space averaging for finite nuclei [Gebremariam et al.]

- Can we see pions? Revised gameplan: [Stoitsov et al., Bogner et al.]
- Add NN/NNN pion exchange through $\mathrm{N}^{2} \mathrm{LO}$ at HF level
- Optimized refit of Skyrme parameters for short-range parts
- Assess global results and isotope chains (e.g., 2π NNN effects)

Improved DME for pion exchange tests

- Phase-space averaging for finite nuclei [Gebremariam et al.]

- Can we see pions? Revised gameplan: [Stoitsov et al., Bogner et al.]
- Add NN/NNN pion exchange through $\mathrm{N}^{2} \mathrm{LO}$ at HF level
- Optimized refit of Skyrme parameters for short-range parts
- Assess global results and isotope chains (e.g., 2π NNN effects)
- New developments: use local regulated NN + NNN [Alex Dyhdalo, OSU]

Long-range parts of chiral expansion with and without $\Delta \mathrm{s}$

	$N N$ force		$3 N$ force	
	Δ-less EFT	Δ contributions	Δ-less EFT	Δ contributions
LO		-	-	-
NLO			-	f--
$\mathrm{N}^{2} \mathrm{LO}$	$x=-\quad$			-

See A. Dyhdalo, S. K. Bogner and R. J. Furnstahl, "Applying the Density Matrix Expansion with Coordinate-Space Chiral Interactions," Phys. Rev. C 95, 054314 (2017) for details.

Implementation by R. Navarro Pérez and N. Schunck (LLNL)

Microscopically constrained EDF
 Implementing Chiral Interactions in DFT

- Hartree-Fock fields from Chiral interactions

- Start with a 'conservative' regulator, $r_{c}=2.0 \mathrm{fm}$
- Refit skyrme parameters
- Move to a 'less conservative' regulator
- Rinse and repeat

Implementation by R. Navarro Pérez and N. Schunck (LLNL)

Microscopically constrained EDF

Density Matrix Expansion

- Non-local densities when working with finite range potentials

$$
\begin{aligned}
& V_{H}^{N N} \sim \int d R d r\langle r| V^{N N}|r\rangle \rho_{1}\left(R+\frac{r}{2}\right) \rho_{2}\left(R-\frac{r}{2}\right) \\
& V_{F}^{N N} \sim \int d R d r\langle r| V^{N N}|r\rangle \rho_{1}\left(R-\frac{r}{2}, R+\frac{r}{2}\right) \rho_{2}\left(R+\frac{r}{2}, R-\frac{r}{2}\right) P_{12}
\end{aligned}
$$

- Density Matrix Expansion

$$
\begin{gathered}
\rho\left(R+\frac{r}{2}, R-\frac{r}{2}\right) \approx \Pi_{0}^{\rho}\left(k_{F} r\right) \rho(R) \\
\frac{r^{2}}{6} \Pi_{2}^{\rho}(k F r)\left[\frac{1}{4} \Delta \rho(R)-\tau(R)+\frac{3}{5} k_{F}^{2} \rho(R)\right]
\end{gathered}
$$

Implementation by R. Navarro Pérez and N. Schunck (LLNL)

Microscopically constrained EDF

Finite Range Chiral Potentials

- Chiral potentials are regulated

$$
V_{c}(r) \propto\left[1-e^{\left.-r^{2} / r_{c}^{2}\right]^{n}} \frac{e^{-2 x}}{r^{6}}(\ldots)\right.
$$

" Expand as a sum of Gaussians

$$
V_{G}(r)=\sum_{i=1}^{N-1} V_{i}\left(e^{-\mu_{r} r^{2}}-e^{-\mu_{N} r^{2}}\right)
$$

Allows to use the already implemented Gogny machinery

Implementation by R. Navarro Pérez and N. Schunck (LLNL)

Microscopically constrained EDF

Density Dependent Couplings

" Expensive numerical integrals

$$
\begin{gathered}
g_{t}^{\rho \rho}(\rho) \propto \int d r r^{2}\left\{\left[\Pi_{0}^{\rho}\left(k_{F} r\right)\right]^{2}+\ldots\right\} \\
{\left[V_{c}(r)+3 W_{c}(r)+\ldots\right]}
\end{gathered}
$$

- Interpolating function
$g_{t}^{\rho \rho}(\rho)=g_{0}+\sum_{i=1}^{M} a_{i}\left[\tan ^{-1}\left(b_{i} \rho^{c_{i}}\right)\right]^{i}$
- The same for 3 N forces

Derivatives with respect of ρ are available

Implementation by R. Navarro Pérez and N. Schunck (LLNL)

Microscopically constrained EDF

Density Dependent Couplings

- Expensive numerical integrals

$$
\begin{gathered}
g_{t}^{\rho \rho}(\rho) \propto \int d r r^{2}\left\{\left[\Pi_{0}^{\rho}\left(k_{F} r\right)\right]^{2}+\ldots\right\} \\
{\left[V_{c}(r)+3 W_{c}(r)+\ldots\right]}
\end{gathered}
$$

- Interpolating function
$g_{t}^{\rho \rho}(\rho)=g_{0}+\sum_{i=1}^{M} a_{i}\left[\tan ^{-1}\left(b_{i} \rho^{c_{i}}\right)\right]^{i}$

Derivatives with respect of ρ are available

Implementation by R. Navarro Pérez and N. Schunck (LLNL)

Microscopically constrained EDF

Infinite Nuclear Matter Properties

- Used to constrain the Skyrme phenomenological parameters
- Energy density in nuclear matter

$$
\begin{aligned}
W\left(\rho_{0}\right) & =\left[C_{0}^{\rho \rho}+g_{0}^{\rho \rho}\left(\rho_{0}\right)+\rho_{0} h_{0}^{\rho \rho}\left(\rho_{0}\right)\right] \rho_{0} \\
& +\left[C_{0}^{\rho \tau}+g_{0}^{\rho \tau}\left(\rho_{0}\right)+\rho_{0} h_{0}^{\rho \tau}\left(\rho_{0}\right)\right] \tau_{0}+W_{F R}\left(\rho_{0}\right)
\end{aligned}
$$

- Taylor expansion around saturation density

$$
W\left(\rho_{0}\right)=\frac{E^{N M}}{A}+\frac{P^{N M}}{\rho_{c}^{2}}\left(\rho_{0}-\rho_{c}\right)+\frac{K^{N M}}{18 \rho_{c}^{2}}\left(\rho_{0}-\rho_{c}\right)^{2}+\cdots
$$

- Calculate derivatives of $\mathrm{W}\left(\rho_{0}\right)$ and solve for $C_{0}^{\rho \rho}, C_{0}^{\rho \tau}, C_{1}^{\rho \rho}, C_{1}^{\rho \tau}, \ldots$

> Use NMP as inputs to obtain Skyrme couplings

Preliminary results: Single-particle levels

Can we conclude anything from this? Are fine details important?

Preliminary results: Single-particle levels

Can we conclude anything from this? Are fine details important?

Preliminary results: Mass residuals (single reference)

NOTE: Residuals for interactions with 3NF not complete yet

What can conclude from these? Is MR necessary to judge DME?

Preliminary results: Mass residuals (single reference)

NOTE: Residuals for interactions with 3NF not complete yet

What can conclude from these? Is MR necessary to judge DME?

Preliminary results: Mass residuals (single reference)

NOTE: Residuals for interactions with 3NF not complete yet

What can conclude from these? Is MR necessary to judge DME?

Preliminary results: Mass residuals (single reference)

NOTE: Residuals for interactions with 3NF not complete yet

What can conclude from these? Is MR necessary to judge DME?

Preliminary results: Mass residuals (single reference)

NOTE: Residuals for interactions with 3NF not complete yet

What can conclude from these? Is MR necessary to judge DME?

Preliminary results: Mass residuals (single reference)

NOTE: Residuals for interactions with 3NF not complete yet

What can conclude from these? Is MR necessary to judge DME?

Preliminary results: Mass residuals (single reference)

NOTE: Residuals for interactions with 3NF not complete yet

What can conclude from these? Is MR necessary to judge DME?

Cf. effect on Gogny HFB mass residuals of (some) BMF

$$
\begin{aligned}
V(1,2)= & \sum_{j=1,2} e^{-\frac{\left(r_{1}-r_{2}\right)^{2}}{\mu_{j}^{2}}}\left(W_{j}+B_{j} P_{\sigma}-H_{j} P_{\tau}-M_{j} P_{\sigma} P_{\tau}\right) \quad\left\{\mu_{j}\right\}=\{0.5,1.0\} \mathrm{fm} \\
& +t_{0}\left(1+x_{0} P_{\sigma}\right) \delta\left(\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right) \rho(\overline{\boldsymbol{r}})^{\alpha}+i W_{L S} \overleftarrow{\nabla}_{12} \delta\left(\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right) \times \vec{\nabla}_{12} \cdot\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right)
\end{aligned}
$$

- ≈ 14 parameters
- quadrupole correlations included self-consistently
- D1M: $\delta B_{\mathrm{rms}}=0.8 \mathrm{MeV}$ for 2353 masses
- $\sigma \approx 0.65 \mathrm{MeV}$ for 2064 β-decay energies
- radii, giant resonances and fission properties
- does not include particle-vibration coupling

Goriely et al., Eur. Phys. J. A 52, 202 (2016)

DME: going forward

- Clearly we need to include beyond-mean-field physics to address EDF needs!

DME: going forward

- Clearly we need to include beyond-mean-field physics to address EDF needs!
- Test systematics along isotope chains. E.g., role of 2π 3NF

[Old calculations from Hergert et al., Cipollone et al. (2013). Now also SCGF and AFDMC!]

DME: going forward

- Clearly we need to include beyond-mean-field physics to address EDF needs!
- Test systematics along isotope chains. E.g., role of 2π 3NF

[Old calculations from Hergert et al., Cipollone et al. (2013). Now also SCGF and AFDMC!]

DME: going forward

- Clearly we need to include beyond-mean-field physics to address EDF needs!
- Test systematics along isotope chains. E.g., role of $2 \pi 3 N F$
- Beyond HF in DME \Longrightarrow are higher orders resolved?
- Cf. local counterterms for T-matrix contributions above cutoff \wedge (here: $\wedge \rightarrow k_{F}$)
- Y. Zhang (OSU):

Higher-order G-matrix well represented by gradient terms up to ∇^{4} near $k_{\text {Fsat }}$

Outline

Viewpoint: nuclear reduction and emergence

Progress report on new DME implementation

Nuclear DFT and effective actions (EFT)

Many questions to address about EFT for DFT

- What are the relevant degrees of freedom? Symmetries? [Can we have quasiparticles in the bulk?]
- Power counting: what is our expansion? Breakdown scale?
- Is there an RG argument to apply? (cf. scale toward Fermi surface)
- How should the EFT be formulated? Effective action? How do I think about parameterizing a density functional?
- How can we implement/expand about liquid drop physics?
- How do we reconcile the different EDF representations?
- Dealing with zero modes - can we adapt methods for gauge theories (for constraints)? What about collective surface vibrations?
- Can we implement such an EFT without losing the favorable computational scaling of current nuclear EDFs?

Effective actions and broken symmetries

- Natural framework for spontaneous symmetry breaking
- e.g., test for zero-field magnetization M in a spin system
- introduce an external field H to break rotational symmetry

- if $F[H]$ calculated perturbatively, $M[H=0]=0$ to all orders

Effective actions and broken symmetries

- Natural framework for spontaneous symmetry breaking
- e.g., test for zero-field magnetization M in a spin system
- introduce an external field H to break rotational symmetry

- if $F[H]$ calculated perturbatively, $M[H=0]=0$ to all orders
- Legendre transform Helmholtz free energy $F(H)$:

$$
\text { invert } M=-\partial F(H) / \partial H \quad \xrightarrow{H(M)} \quad \Gamma[M]=F[H(M)]+M H(M)
$$

- since $H=\partial \Gamma / \partial M \longrightarrow 0$, stationary points of $\Gamma \Longrightarrow$ ground state
- Can couple source "H" many ways (and multiple sources)

DFT and effective actions (Fukuda et al., Polonyi,...)

- External field \Longleftrightarrow Magnetization
- Helmholtz free energy $F[H]$ \Longleftrightarrow Gibbs free energy 「[M]

Legendre transform

$$
\Longrightarrow \Gamma[M]=F[H]+H M
$$

$$
H=\left.\frac{\partial \Gamma[M]}{\partial M} \xrightarrow[\text { state }]{\text { ground }} \quad \frac{\partial \Gamma[M]}{\partial M}\right|_{M_{\mathrm{gs}}}=0
$$

DFT and effective actions (Fukuda et al., Polonyi,...)

- External field \Longleftrightarrow Magnetization
- Helmholtz free energy $F[H]$
\Longleftrightarrow Gibbs free energy 「[M]
Legendre transform $\Longrightarrow \Gamma[M]=F[H]+H M$

$$
H=\left.\frac{\partial \Gamma[M]}{\partial M} \xrightarrow[\text { state }]{\text { ground }} \quad \frac{\partial\ulcorner[M]}{\partial M}\right|_{M_{\mathrm{gs}}}=0
$$

source magnet

- Partition function with sources J that adjust (any) densities:

$$
\mathcal{Z}[J]=e^{-W[J]} \sim \operatorname{Tr} e^{-\beta(\widehat{H}+J \hat{\rho})} \quad \Longrightarrow \quad \text { e.g., path integral for } W[J]
$$

- Invert to find $J[\rho]$ and Legendre transform from J to ρ :

$$
\rho(\mathbf{x})=\frac{\delta W[J]}{\delta J(\mathbf{x})} \Longrightarrow \quad\left[[\rho]=W[J]-\int J \rho \quad \text { and } \quad J(\mathbf{x})=-\frac{\delta \Gamma[\rho]}{\delta \rho(\mathbf{x})}\right.
$$

$\Longrightarrow \Gamma[\rho] \propto$ energy functional $E[\rho]$, stationary at $\rho_{\mathrm{gs}}(\mathbf{x})$!

Partition function in $\beta \rightarrow \infty$ limit [see Zinn-Justin]

- Consider Hamiltonian with time-independent source $J(\mathbf{x})$:

$$
\widehat{H}(J)=\widehat{H}+\int J \widehat{\phi} \quad \text { or } \hat{H}(J)=\widehat{H}+\int J \psi^{\dagger} \psi
$$

- If ground state is isolated (and bounded from below),

$$
e^{-\beta \widehat{H}(J)}=e^{-\beta E_{0}(J)}\left[|0\rangle\left\langle\left. 0\right|_{J}+\mathcal{O}\left(e^{-\beta\left(E_{1}(J)-E_{0}(J)\right)}\right)\right]\right.
$$

- As $\beta \rightarrow \infty, \mathcal{Z}[J] \Longrightarrow$ ground state of $\widehat{H}(J)$ with energy $E_{0}(J)$

$$
\mathcal{Z}[J]=e^{-W[J} \sim \operatorname{Tr} e^{-\beta(\hat{H}+J \hat{\rho})} \Longrightarrow E_{0}(J)=\lim _{\beta \rightarrow \infty}-\frac{1}{\beta} \log \mathcal{Z}[J]=\frac{1}{\beta} W[J]
$$

Partition function in $\beta \rightarrow \infty$ limit [see Zinn-Justin]

- Consider Hamiltonian with time-independent source $J(\mathbf{x})$:

$$
\widehat{H}(J)=\widehat{H}+\int J \widehat{\phi} \quad \text { or } \hat{H}(J)=\widehat{H}+\int J \psi^{\dagger} \psi
$$

- If ground state is isolated (and bounded from below),

$$
e^{-\beta \hat{H}(J)}=e^{-\beta E_{0}(J)}\left[|0\rangle\langle 0| J+\mathcal{O}\left(e^{-\beta\left(E_{1}(J)-E_{0}(J)\right)}\right)\right]
$$

- As $\beta \rightarrow \infty, \mathcal{Z}[J] \Longrightarrow$ ground state of $\widehat{H}(J)$ with energy $E_{0}(J)$

$$
\mathcal{Z}[J]=e^{-W[J]} \sim \operatorname{Tr} e^{-\beta(\widehat{H}+J \hat{\rho})} \Longrightarrow E_{0}(J)=\lim _{\beta \rightarrow \infty}-\frac{1}{\beta} \log \mathcal{Z}[J]=\frac{1}{\beta} W[J]
$$

- $\lceil[\rho]$: expectation value of \widehat{H} in ground state generated by $J[\rho]$

$$
\begin{aligned}
& \frac{1}{\beta} \Gamma[\rho]=E_{0}(J)-\int J \rho=\langle\widehat{H}+J \widehat{\rho}\rangle_{J}-\int J \rho=\langle\widehat{H}\rangle_{J} \xrightarrow{J \rightarrow 0} E_{0} \\
& J(x)=-\left.\frac{\delta \Gamma[\rho]}{\delta \rho(x)} \xrightarrow{J \rightarrow 0} \frac{\delta \Gamma[\rho]}{\delta \rho(x)}\right|_{\rho_{g s}(\mathrm{x})}=0 \Longrightarrow \quad \text { variational } F_{\mathrm{HK}}[\rho]
\end{aligned}
$$

But there are different effective action formulations

- Couple source to local Lagrangian field, e.g., $J(x) \phi(x)$
- $\lceil[\varphi]$ where $\varphi(x)=\langle\phi(x)\rangle \Longrightarrow$ 1PI effective action
- Arises from fermion \mathcal{L} 's by introducing auxiliary (HS) fields
- See nucl-th/0208058 for dilute EFT in large $N \Longrightarrow$ loop expansion
- Couple J to non-local composite op, e.g., $J\left(x, x^{\prime}\right) \phi(x) \phi\left(x^{\prime}\right)$
- $\Gamma[G, \varphi] \Longrightarrow$ 2PI effective action [CJT]

- Cf. Baym-Kadanoff conserving (" Φ-derivable") approximations
- Cf. self-consistent Green's functions or RG-evolved effective action
- Source coupled to local composite operator, e.g., $J(x) \phi^{2}(x)$
- 2PPI (two-particle-point-irreducible) effective action

- Kohn-Sham DFT from order-by-order inversion method
- Careful: new divergences arise (e.g., pairing)

Pairing in Kohn-Sham DFT [rjf, Hammer, Puglia, nucl-th/0612086]

- Add source j coupled to anomalous density:

$$
Z[J, j]=e^{-w[J, /]}=\int D\left(\psi^{\dagger} \psi\right) \exp \left\{-\int d x\left[\mathcal{L}+J(x) \psi_{\alpha}^{\dagger} \psi_{\alpha}+j(x)\left(\psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger}+\psi_{\downarrow} \psi_{\uparrow}\right)\right]\right\}
$$

- Densities found by functional derivatives wrt J, j :

$$
\rho(\mathbf{x})=\left.\frac{\delta W[J, j]}{\delta J(\mathbf{x})}\right|_{j}, \quad \phi(\mathbf{x}) \equiv\left\langle\psi_{\uparrow}^{\dagger}(\mathbf{x}) \psi_{\downarrow}^{\dagger}(\mathbf{x})+\psi_{\downarrow}(\mathbf{x}) \psi_{\uparrow}(\mathbf{x})\right\rangle_{J, j}=\left.\frac{\delta W[J, j]}{\delta j(\mathbf{x})}\right|_{J}
$$

- Find $\Gamma[\rho, \phi]$ from $W\left[J_{0}, j_{0}\right]$ by inversion ($\left.\Delta=\Delta_{0}+\Delta_{1}+\cdots\right)$
- Kohn-Sham system \Longrightarrow short-range HFB with j_{0} as gap

$$
\begin{gathered}
\left(\begin{array}{cc}
h_{0}(\mathbf{x})-\mu_{0} & j_{0}(\mathbf{x}) \\
j_{0}(\mathbf{x}) & -h_{0}(\mathbf{x})+\mu_{0}
\end{array}\right)\binom{u_{i}(\mathbf{x})}{v_{i}(\mathbf{x})}=E_{i}\binom{u_{i}(\mathbf{x})}{v_{i}(\mathbf{x})} \\
\text { where } \quad h_{0}(\mathbf{x}) \equiv-\frac{\nabla^{2}}{2 M}+J_{0}(\mathbf{x})
\end{gathered}
$$

- New renormalization counterterms needed (e.g., $\frac{1}{2} \zeta j^{2}$)

Pairing in Kohn-Sham DFT [rjf, Hammer, Puglia, nucl-th/0612086]

- Add source j coupled to anomalous density:

$$
Z[J, j]=e^{-w[J, /]}=\int D\left(\psi^{\dagger} \psi\right) \exp \left\{-\int d x\left[\mathcal{L}+J(x) \psi_{\alpha}^{\dagger} \psi_{\alpha}+j(x)\left(\psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger}+\psi_{\downarrow} \psi_{\uparrow}\right)\right]\right\}
$$

- Densities found by functional derivatives wrt J, j :

$$
\rho(\mathbf{x})=\left.\frac{\delta W[J, j]}{\delta J(\mathbf{x})}\right|_{j}, \quad \phi(\mathbf{x}) \equiv\left\langle\psi_{\uparrow}^{\dagger}(\mathbf{x}) \psi_{\downarrow}^{\dagger}(\mathbf{x})+\psi_{\downarrow}(\mathbf{x}) \psi_{\uparrow}(\mathbf{x})\right\rangle_{J, j}=\left.\frac{\delta W[J, j]}{\delta j(\mathbf{x})}\right|_{J}
$$

- Find $\Gamma[\rho, \phi]$ from $W\left[J_{0}, j_{0}\right]$ by inversion $\left(\Delta=\Delta_{0}+\Delta_{1}+\cdots\right)$
- Kohn-Sham system \Longrightarrow short-range HFB with j_{0} as gap

$$
\begin{gathered}
\left(\begin{array}{cc}
h_{0}(\mathbf{x})-\mu_{0} & j_{0}(\mathbf{x}) \\
j_{0}(\mathbf{x}) & -h_{0}(\mathbf{x})+\mu_{0}
\end{array}\right)\binom{u_{i}(\mathbf{x})}{v_{i}(\mathbf{x})}=E_{i}\binom{u_{i}(\mathbf{x})}{v_{i}(\mathbf{x})} \\
\text { where } \quad h_{0}(\mathbf{x}) \equiv-\frac{\nabla^{2}}{2 M}+J_{0}(\mathbf{x})
\end{gathered}
$$

- New renormalization counterterms needed (e.g., $\frac{1}{2} \zeta j^{2}$)

In general: adding more sources improves variational probing and KS Green's function gets closer to full Green's function (see old refs)

What would a condensed matter theorist do?

From Altland and Simons "Condensed Matter Field Theory":

(a)

(b)

(c)

Figure 6.1 On the different channels of decoupling an interaction by Hubbard-Stratonovich transformation. (a) Decoupling in the "density" channel; (b) decoupling in the "pairing" or "Cooper" channel; and (c) decoupling in the "exchange" channel.

- May want to HS decouple in all three channels with $q \ll\left|p_{i}\right|$:

$$
\begin{gathered}
S_{\mathrm{int}}[\bar{\psi}, \psi] \approx \frac{1}{2} \sum_{p, p^{\prime}, q}\left(\bar{\psi}_{\sigma p} \psi_{\sigma p+q} V(\mathbf{q}) \bar{\psi}_{\sigma^{\prime} p^{\prime}} \psi_{\sigma^{\prime} p^{\prime}-q}-\bar{\psi}_{\sigma p} \psi_{\sigma^{\prime} p+q} V\left(\mathbf{p}^{\prime}-\mathbf{p}\right) \bar{\psi}_{\sigma^{\prime} p^{\prime}+q} \psi_{\sigma^{\prime} p^{\prime}}\right. \\
\left.-\bar{\psi}_{\sigma p} \bar{\psi}_{\sigma^{\prime}-p+q} V\left(\mathbf{p}^{\prime}-\mathbf{p}\right) \psi_{\sigma^{\prime} p^{\prime}} \psi_{\sigma^{\prime}-p^{\prime}+q}\right)
\end{gathered}
$$

- Or exploit freedom in saddlepoint evaluation [see Negele and Orland]

Nuclei are self-bound \Longrightarrow KS potentials break symmetries

- Conceptural issue: Is Kohn-Sham DFT well defined?
- J. Engel: ground state density spread uniformly over space
- Want DFT for internal densities
- Practical issue: what to do when KS potentials break symmetries?
- Symmetry restoration with superposition of states:

$$
|\psi\rangle=\int d \alpha f(\alpha)|\phi \alpha\rangle \Longrightarrow \text { minimize wrt } f(\alpha), \text { before or after }|\phi\rangle
$$

- Wave function method strategies for "center of mass" problem
- isolate "internal" dofs, e.g., with Jacobi coordinates
- work in HO Slater determinant basis for which COM decouples
- work with internal Hamiltonian so that COM part factors
- How to accomodate within effective action DFT framework?
- Zero-frequency modes \Longrightarrow divergent perturbation expansion
- Transformation to collective variables \Longrightarrow work with overcomplete dof's \Longrightarrow system with constraints
- Can we apply methods for gauge theories?

Zero modes: collective coordinates and functional integrals

- See Zinn-Justin, Path Integrals in Quantum Mechanics
- In general, introduce collective coordinates; if possible, switch
- If not feasible, apply Faddeev-Popov's method (cf. quantizing non-abelian gauge theories)

Zero modes: collective coordinates and functional integrals

- See Zinn-Justin, Path Integrals in Quantum Mechanics
- In general, introduce collective coordinates; if possible, switch
- If not feasible, apply Faddeev-Popov's method (cf. quantizing non-abelian gauge theories)
- Another possible approach: use BRST invariance
- Add more fermionic variables (ghosts) so more overcomplete
- Apparent complication is actually a simplification because in gauge systems there is a supersymmetry
- Examples in the literature with applications to mechanical systems
- E.g., Bes and Kurchan, "The treatment of collective coordinates in many-body systems: An application of the BRST invariance"
- Can the procedure be adapted to DFT?

Zero modes: collective coordinates and functional integrals

- See Zinn-Justin, Path Integrals in Quantum Mechanics
- In general, introduce collective coordinates; if possible, switch
- If not feasible, apply Faddeev-Popov's method (cf. quantizing non-abelian gauge theories)
- Another possible approach: use BRST invariance
- Add more fermionic variables (ghosts) so more overcomplete
- Apparent complication is actually a simplification because in gauge systems there is a supersymmetry
- Examples in the literature with applications to mechanical systems
- E.g., Bes and Kurchan, "The treatment of collective coordinates in many-body systems: An application of the BRST invariance"
- Can the procedure be adapted to DFT?
- Status report
- Past progress: negligible
- Current plan: revisiting for model problems; cautiously optimistic
- Help would be welcome!

Questions to address about EFT for DFT

- What are the relevant degrees of freedom? Symmetries? [Can we have quasiparticles in the bulk?]
- Power counting: what is our expansion? Breakdown scale?
- Is there an RG argument to apply? (cf. scale toward Fermi surface)
- How should the EFT be formulated? Effective action? How do I think about parameterizing a density functional?
- How can we implement/expand about liquid drop physics?
- How do we reconcile the different EDF representations?
- Dealing with zero modes - can we adapt methods for gauge theories (for constraints)? What about surface vibrations?
- Can we implement such an EFT without losing favorable computational scaling?

