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Abstract
Feature Selection as Reinforcement Learning applied to

Raman spectra for cancer diagnosis

Over the past decades, there has been a very active research in the de-
velopment of Raman spectroscopy techniques for oncological applications,
and there is currently an interest at finding the most relevant wavenumbers
in the Raman spectra for disease identification. To this end, information
theory is used to study correlation between the wavenumbers, and high
redundancy between many wavenumbers is observed. A hierarchical clus-
tering algorithm is then trained to classify the wavenumbers in different
information clusters. Furthermore, feature selection methods are applied
to Raman spectra to find the most informative wavenumbers for diseases
diagnosis, and two different feature selection approaches based on reinforce-
ment learning and bandit strategies are presented: Greedy-SR and FUSE-2
; both algorithms are tested on various dataset and proves to be remarkably
more efficient than major filtering approaches. Using a feature set evalua-
tion based on a k nearest neighbors classifier, we find that 5 wavenumbers
are enough to diagnosis follicular thyroid cancer with 98 % accuracy.
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Notations

F Feature set
F ⊂ F Feature subset
L Training set
V ⊂ L Small subset of L
f ∈ F Feature in the feature set
d = |F | Number of features in the feature subset
n = |L| Number of examples in the training set
m = |V| Number of examples in V
k Number of nearest neighbors

T Feature lattice
NF ∈ T Node corresponding to feature subset F

FS Feature Selection
MAB Multi Armed Bandit
ACC Accuracy
AUC Area Under ROC Curve
k-NN k Nearest Neighbours
HAC Hierarchical Agglomerative Clustering



Introduction

Raman spectroscopy is a powerful characterization technique that provides information on
molecular vibrations and crystal structures, it is non destructive and has relatively high spatial
resolution, which makes it widely used in physics, chemistry and biology. Over the past decades,
there has been a very active research in the development on Raman techniques for oncological
applications [1], such as for example the early detection of pre-malignant lesions. Particularly,
there is a considerable clinical requirement for a noninvasive real-time Raman probe [2] that
can perform accurate and repeatable measurement of pathological state.

Figure 1: In vivo Raman spectrometer system for cancer diagnosis [2].

Machine learning has proven notably useful regarding clinical applications, because it can
provide highly accurate disease diagnosis as well as personalized treatment (e.g. Google Deep-
Mind Health [3]), which makes the combination of Raman spectroscopy with machine learning
particularly successful. There is currently an interest at finding the most relevant wavenumbers
in the Raman spectra for disease diagnosis because it could speed up Raman measurements [4]
and simplify algorithms training, thus making the pathological diagnosis faster. To this end,
a feature selection methods has to be applied to Raman spectra to find the most informative
wavenumbers for diseases diagnosis.

The aim of this work is not only to perform wavenumber selection on Raman spectra, but
also to develop novel general methods for feature selection. We summarize in Chapter I some
basic notions in computer science and more specifically machine learning so that non specialist
can understand the work presented in this thesis. In Chapter II, we present two different feature
selection approaches based on Reinforcement learning and bandit strategies. The first method,
known as Greedy, starts from the empty feature set and repeatedly add the best additional
feature to the set until no additional feature further improves the set evaluation. The other
method, known as FUSE, uses a Monte Carlo tree search with bandit strategy to look for the
optimal feature set. Finally, Chapter III is dedicated to the Raman spectroscopy applied to
living cells, and focus on the wavenumbers selection for follicular thyroid cancer diagnosis.
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I Preamble for non specialist

Computational complexity
In theoretical computer science, the computational complexity refers to the quantity of re-

sources needed (generally time or storage) by an algorithm to be executed. As the amount of
needed resources varies with the input, the complexity is given as a function of the input size n,
and commonly written as O(f(n)), which correspond to the asymptotic quantity of resources
needed as a function of its input size. Computational complexity theory allows classification of
computational problems according to their inherent difficulty, which makes it a key aspect in
algorithm analysis.

As an example, the security of our online transactions (RSA cryptosystem) rests on the
assumption that factoring integers with a thousand or more digits is practically impossible. It
is because the most efficient classical factoring algorithm currently known (General number field
sieve) has an exponential asymptotic runtime to the number of digits d: O(ed1/3). However in
1995, Shor introduced a quantum algorithm [5] (today known as the Shor’s algorithm), which
has an asymptotic runtime polynomial in d: O(d3), making quantum computers a threat to our
current transaction systems.

Fixed Budget vs Fixed Confidence
When it is practically impossible to find the exact solution of a computational problem in

a reasonable time, the algorithm is looking for an approximated solution. The search is then
stopped when the stopping condition for the algorithm is fulfilled, which can be spitted into
two different types:

• Fixed budget: The algorithm is given a certain amount of fixed computational budget
(for example time) and returns its output when it used all of it.

• Fixed confidence: The algorithm has an unlimited budget but stop when the current
solution has a probability of at least δ to be the exact solution, where δ is the confidence
bound fixed by the user.
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I. PREAMBLE FOR NON SPECIALIST

I.1 Machine learning

Machine Learning (ML) refers to a technology where computers learn to perform a
task without being explicitly programmed to do so. This approach is in stark contrast with the
traditional procedure of explicitly defining a sequence of steps to be carried out in order to reach
a specified goal. It also represents a key advantage in applications such as pattern recognition,
where it may be very difficult to capture the rules that allow humans to discriminate patterns
[6]. One can distinguish three main machine learning types, namely supervised, unsupervised
and reinforcement learning (Figure 2).

Figure 2: Different types of machine learning algorithms, adapted from [7].

• The most common machine learning approach is Supervised Learning [6], where labeled
training data, i.e. a set of inputs and desired outputs, is fed to the algorithm. The
goal of the learning algorithm is to infer a function that maps the inputs to the desired
outputs. This class of algorithms can be applied to perform regression (e.g. linear, logistic,
polynomial) and classification tasks (e.g. decision trees, support vector machines).

• In contrast to this, Unsupervised Learning deals with unlabelled data where no output
is provided to the algorithm. Instead, the goal is to extract the underlying structure of the
input data, by either clustering the input samples (e.g. k-means clustering, hierarchical
clustering), obtaining a lower-dimensional representation of the data (e.g. PCA, ICA)
or estimating the underlying density distribution (e.g. maximum likelihood estimation,
nearest-neighbors).

• Finally, inReinforcement Learning, the system is trained to make a sequence of actions
in order to maximize its performance, defined in terms of a cumulative reward (e.g. monte
carlo methods, temporal difference learning).

Figure 3: Overview of some widely used machine learning and deep learning algorithms
classified according to their learning frameworks.
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I. PREAMBLE FOR NON SPECIALIST

Classification vs Regression problem
In machine learning, classification is about predicting a label and regression is about predict-

ing a quantity. A classification task involves taking an input and labelling it as belonging to
a given class, so the output is categorical (or discrete). On the other hand, a regression task
involves the prediction of a continuous valued output.

Training set and test set
When one wants to build a model, the dataset is usually splitted into at least two subdatasets:

the training set and the test set. The model is initially trained on the training set, and the test
set is then used to provide an unbiased evaluation of the model.

Overfitting
Overfitting appears when a model learns the detail and noise in the training data to the

extent that it negatively impacts the performance of the model on new data. This means that
the noise or random fluctuations in the training data is picked up and learned as concepts by
the model, but the problem is that these concepts do not apply to new data and negatively
impact the models ability to generalize. This is a very important concern in machine learning
because overfitting is sometimes not easily detectable and the negative impact on the model
can be considerable.

Figure 4: (a)Well fitted data and (b)Overfitted data shown on both the training and
test set. A higher degree polynomial function fits the data better on the training set
but then perform poorly on the test set. The training set and test set both contains 30
examples (blue points) and the continuous line represent the fitted function.

In particular, overfitting generally appears when the number of features is relatively large
compared to the number of examples (Figure.4, 16 features are used for only 30 training exam-
ples). In practice, having a training set at least 5 to 10 times larger than the number of feature
does not generally leads to over fitting. Although there exist various techniques to reduce the
risk of overfitting, the best way to avoid it is to simply get more training data or to decrease
the number of features.
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I. PREAMBLE FOR NON SPECIALIST

I.2 Motivation for Feature Selection

Feature Selection (FS) refers the process of selecting a subset of relevant features for
the construction of a model. Decreasing the number of feature have the advantage of reduc-
ing overfitting, simplifying models, and also involve shorter training time which makes it an
unavoidable concern in machine learning. It is important to highlight that redundant and
irrelevant features are two distinct notions, an irrelevant feature does not gives any useful
information, while a redundant feature is relevant but does not bring additional information
because the information is already contained in other inputs.

An overview of existing methods
The feature selection methods are typically presented in three classes based on how they

combine the selection algorithm and the model building:

• Filter methods: They proceed by independently scoring features using some score func-
tion (based on correlation with the labels), and usually return a ranking of the features
rather than a feature subset, the feature subset is then selected by choosing the top f

ranked features. One advantage of such method is that it is relatively fast and also in-
dependent from the prediction model, however filter methods tend to select redundant
variables because they generally do not account for the feature inter-dependencies.

• Wrapper methods: They evaluate feature subsets by training a predictive model with
the selected features and checking how well it performs when making predictions (the
score is for example the error rate of the model). This makes possible the detection of the
interactions between features and guaranty that the selected feature set is well adapted
specifically to our model. The main downsides of such methods is that it increases the
risk of overfitting when the number of observations is insufficient, and also that it involves
a relatively heavy computation time when the number of features is large.

• Embedded methods: They perform feature selection as part of the model construction
process with the combination of learning and feature selection through prior or posterior
regularization. They tend to be between filters and wrappers in terms of computational
complexity.

Feature selection techniques should be distinguished from feature extraction. Feature ex-
traction creates new features from functions of the original features, whereas feature selection
methods return a subset of the original feature set.
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II Feature selection as Reinforcement Learning

II.1 The Multi-Armed Bandit problem applied to feature selection

In probability theory, the multi-armed bandit problem is a problem in which we have to find
how to allocate a fixed limited budget between alternative possible action in order to maximize
the total expected gain. The crucial trade-off in bandit problem is between the exploitation of
the arm that has the highest expected payoff and the exploration of the other arms.

Figure 5: Example of a MAB arm choice for feature selection with 4 possible new
features.

For our feature selection problem, it means that from a feature subset F , the agent has
multiples choices and have to select the feature which maximize its expected reward after a
limited number of visit. it can either add a new feature f ∈ F \ F , or decide to stop there.
Formally, we introduce a virtual stopping feature fs, where the agent can chose the arm fs to
avoid choosing any additional features.

The feature lattice
Given a feature set F , we define a graph T for which each node NF ∈ T correspond to a

feature subset F ⊂ F , the number of nodes in the graph is then |P (F)| = 2|F|. For a node
F , we define the parent node set ParentNodes(F ) and the child nodes set ChildNodes(F ) as
follow:

ChildNodes(F ) = {Fc ⊂ F , ∃f ∈ F \ F, Fc = F ∪ {f}}
ParentNodes(F ) = {Fp ⊂ F , ∃f ∈ F, Fp = F \ {f}}

(1)

We also define the depth of a node NF in the feature lattice as d = |F |, the node then has d
parents and |F| − d children:

|ChildNodes(F )| = |F| − |F |
|ParentNodes(F )| = |F |

(2)

Figure 6: Example of a
feature lattice with a fea-
ture set of cardinal |F| =
4, containing 24 = 16
nodes.
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II. FEATURE SELECTION AS REINFORCEMENT LEARNING

II.1.1 The reward : How to evaluate a feature subset ?

The search for the optimal arm requires a scoring metric that grades a subset of features, and
the choice of this evaluation metric heavily influences the algorithm. Because a computationally
heavy reward considerably affects the performance of the algorithm, it is also important to
account for the computational cost of the evaluation, and this section discuss the choice of the
reward evaluation for our problem.

Evaluation with statistical methods (Filter metrics)
The evaluation of a feature set can be done by different approach. For example, the Correlation-

based Feature Selection (CFS) [8, 9] is using information theory to account for features-labels
correlation as well as the features-features correlations. The score of a feature subset F is
evaluated by calculating its merit:

Merit(F ) =
frcf√

d+ d(d− 1)rff
(3)

Where, rcf denotes the average value of all feature-classification correlations, and rff the average
value of all feature-feature correlations. The advantage of such methods is that it is independent
from the prediction model, and also that it accounts for redundancy in the feature subset.
Furthermore, the merit computation has a complexity of O(nd2) [9] (where n is the training set
size), which is not heavy when the number of features d = |F | is not relatively large.

Evaluation with a classifier (Wrapper metrics)
Another way to evaluate a feature subset is to train a classifier with the selected features and

see how well it performs when making predictions on the examples. The reward can then be
taken as the Accuracy (ACC) or as the Area under Curve (AUC) of the classifier (see A.1). The
most commons classifier are summarized in Table 7:

Figure 7: Most common classifier with their respective training and prediction com-
plexity.

Along with the computational cost, it is also important to account for the boundaries of the
classifiers. While the Naive Bayes and Nearest centroid classifier has very cheap computational
cost, their predictions has very limited boundaries, making them very interesting for some spe-
cific training set, but not ideal in the general case. On the other hand, Random forest or Neural
Networks has proven very accurate for considerably complex boundaries, but their computa-
tional cost is too heavy for our feature set evaluation.
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II. FEATURE SELECTION AS REINFORCEMENT LEARNING

The k-Nearest Neighbour (k-NN) classifier can make accurate predictions on relatively com-
plex boundaries, and also have the advantage of requiring no training. Thus, it seems to be a
good trade-off between computational cost and boundary’s complexity.

Dealing with large training sets
The computational complexity of one prediction for the k-NN classifier is O(nd), and to

classify each example in the training set, n predictions are necessary. Thus, the complexity
for evaluating a feature subset with k-NN is O(n2d), and this polynomial computation time
becomes a problem when dealing with large data-set.

To solve this problem, it has been proposed [10] to make predictions on an uniformly selected
small subsamble of L, denoted V, instead of the whole training set. The complexity of the
reward computation then becomes O(mnd) (with m = |V|). By doing so, the feature set
evaluation indeed have some variance, but still gives a reliable score for the feature subset,
while considerably reducing the computational cost (m is usually taken as 100 or even 1000
times smaller than n).

The k-Nearest Neighbour reward
We have chosen to evaluate the feature subsets with the AUC (details section A.1) on a k-NN

classifier, and the reward attached to a feature subset F is computed as follows:

Algorithm FUSE , Greedy-SR

function Reward (F )
• Compute V by uniformly selecting m examples in the training set L.

for each labeled example (x, y) in V do

• Compute the Euclidean distances to other examples in L based on features in F .

• Find the k nearest neighbours NF ,k(x) and count for the number of positively
labeled examples among these neighbours: sF (x) = |{x ∈ NF ,k(x), y > 0}|.

• Compute the Reward (Area Under the ROC curve) as follow:

V =
∣∣{(x, x′) ∈ V2, sF (x) < sF (x′) , y < y′

}∣∣
|{(x, x′) ∈ V2, y < y′}|

(4)

return V

Reward calculation for Feature Selection performed by algorithms FUSE and Greedy-SR.

The optimized implementation details as well as a detailed complexity study are discussed in
B.2. The nearest neighbour search is done considering Euclidean distances, but other distances,
like Cosine similarity, are also possible. To gain computation time, it is also worth to consider
alternative nearest neighbour search, like the KD-tree algorithm, or approximated solution like
Local Sensitive Hashing (LSH). These possible improvements are discussed in II.2.4).
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II. FEATURE SELECTION AS REINFORCEMENT LEARNING

II.2 Finding the best node in the feature lattice

Now that we have a metric to evaluate a feature subset, we want to find the one which
maximize the score (= finding the best arm in the MAB problem). The simplest strategy is to
test each possible feature subset to find the one with the highest score, however, as the number
of subset to test grows exponentially with the number of features: |P (F)| = 2|F|, it becomes
computationally intractable for all but the smallest of feature sets. Thus, it is necessary to
define a strategy to find an approximate optimal solution in a reasonable amount of time.

II.2.1 An overview of existing strategies

As shown in part II.1, all the features subset can be associated to a node that is part of the
feature lattice, and different strategies can be used to explore the graph.

• Greedy Method:
This is the strategy used by most of the feature selection algorithm. It is relatively simple
and generally leads to relatively good approximated solution in a reasonable time. It
consists of making step by step the optimum local choice until a stopping condition is
fulfilled.

• Monte Carlo Search Tree (MCST) :
While relatively unused for feature selection, MCST is widely used when it comes to game
play algorithm (such as Go or Chess). The algorithm is playing a relatively large number
of random games and select the node which maximize the reward at the end of the search.

The Exploration / Exploitation trade-off
The crucial trade-off in bandit problem is between the exploitation of the arm that has the

highest expected payoff and the exploration of the other arms. The strategy that determine
if an arm has to be pulled or not is called the tree policy. From the current node, each arm are
rated with a score which account for both the current arm average and uncertainty, and the
one with the highest score is pulled. As an example, the two most widely used policies are:

• Upper Confidence Bound (UCB) [11]:
For a node with a total of N pulls, each arm is rated considering its average µ̂a and its
number of pull ta. The UCB score is supported by a robust theory based on Hoeffding’s
inequality.

UCB = µ̂a +

√
ln (N)

2ta
(5)

• Thomson sampling [12]:
Each arm is associated to a Beta distribution Pα,β(x) and a number is randomly pulled
from this distribution at each round, the arm with the highest pulled value is then played.
The parameters α and β are updated at each iteration according to the outcomes.

Pα,β(x) = 1
B(α, β)x

α−1(1− x)β−1 (6)

Where B(α, β) is the Beta function to ensure
that the total probability integrates to 1.
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II. FEATURE SELECTION AS REINFORCEMENT LEARNING

II.2.2 Greedy algorithm with successive elimination (Greedy-SR)

The forward Greedy strategy , as illustrated on Figure.10, is an algorithm paradigm that
makes the locally optimal choice at each stage starting from the root node. For our feature
selection problem, it means starting from the empty feature set and repeatedly adding the best
additional feature to the set until no additional feature further improves the set evaluation.

Figure 8: Example of a Greedy search
with a feature set of cardinal f = 4. The
feature subset 1010 is selected because
its children have lower scores.

Even though Greedy strategies does not in gen-
eral find an optimal solution, they always lead
to locally optimal solutions that approximate a
global optimal solution in a reasonable time. Thus
Greedy strategies are widely used in Feature Se-
lection problems because they are relatively sim-
ple to implement and provide a reasonable solu-
tion.

However, if the reward function does not always re-
turn the same score for a specific feature subset (which
is our case since the reward is computed each time with
a different subsample of L), then it might be difficult
to apply greedy strategy as the real value of each arm
can not be fully known. Fortunately, it is possible to
estimate the probability that one arm is better than the
other with a defined confidence δ.

Dealing with the limited budget
The probability distribution of each arm is not known, and we only have a limited number

of iteration (budget) to find the best one. Instead of applying the same number of iteration to
each arm and select the one with the highest average at the end, we can use the limited budget
in a more clever way and eliminate arms when the likelihood that they are not the best becomes
larger than a threshold δ [13].

Hoeffding’s inequality and arm elimination
Under the condition that the reward has a [0,1] value, the probability P that the estimated

arm mean µ̂ is within ε of the true mean µ̂true is bounded by the Hoeffding’s inequality (this
inequality holds for any distribution):

P (|µ̂true − µ̂| > ε) < 2e−2nµε2 = 1− δ
2

nµ denotes the number of time the arm µ has been selected.
(7)

Then, The value of µ̂true is known with confidence δ for:

ε =

√
log (4/(1− δ))

2nµ
(8)

By checking the inequality (µ̂1 + ε < µ̂2 − ε)? at each iteration, we can keep track on the arms
mean values and uncertainties and decide whether or not it should be eliminated. For example,
one could decide to eliminate the arm when the probability reach a confidence threshold of
δ = 99%.
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II. FEATURE SELECTION AS REINFORCEMENT LEARNING

The Greedy-SR algorithm
We propose to use the bandit elimination policy described in [13] to perform the Greedy

search in the feature lattice. The elimination strategy in [13] is initially proposed with a Thom-
son sampling policy, but we have chosen to handle the exploration / exploitation trade-off with
UCB, as it is more adapted when the reward function takes continuous values (which is the case
of the k-NN reward).

We introduce the Greedy strategy with Successive Reduction of arm as Greedy-SR: At each
stage, we deal with the limited computational budget with an elimination policy based on Ho-
effding’s inequality to find the best child. At each iteration, the exploration / exploitation
trade-off is handled by the UCB policy, and the search is stopped when the selected child has
an average lower than its parent (it means that adding more feature does not further improve
the feature subset evaluation).

We denotes NF the node associated to the feature subset F , it contains all of the information
about its children (such as average, number of visits, etc..), more details are available in II.2.3.

Algorithm Greedy-SR

procedure Main
Initialize T = ∅
Find Best Child (T , ∅, 0)

function FindBestChild (T , F , µ̂parent)
T ← T ∪ {NF }
SuccessiveElimination (F ) . Explore the children
fmax ← argmax µ̂F,f . Select the child with highest average

f ∈ ChildNodes(NF )

if µ̂F,fmax < µ̂parent then . Stop the search if child is weaker
return

else
Find Best Child (T , F ∪ {fmax}, µ̂F,fmax)

function SuccessiveElimination (F )
while within computational budget per node do

f∗ ← argmax UCB(F , f) . Select arm that maximize UCB
f ∈ ChildNodes(NF )

V ← Reward (F ∪ {f∗}) . Pull arm
Update NF . Update the node with V
for Child f in ChildNodes(NF ) do . Check for children to eliminate

if (µ̂F,f + εF,f < µ̂F,f∗ − εF,f∗) then
ChildNodes(NF ) ← ChildNodes(NF ) \ {f}

The function FindBestChild is recursive, it is calling itself until the stopping condition is fulfilled. After the
algorithm execution, the best feature subset is the one at the end of the tree T .
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II. FEATURE SELECTION AS REINFORCEMENT LEARNING

II.2.3 UCT-based Feature Selection (FUSE)

It has been proposed in [10] to find an approximated optimal feature subset with a one
player game approach relying on the Monte-Carlo Tree search UCT (Upper Confidence Tree
[14]). The paper [10] also propose some improvement to UCT to deal with the finite unknown
horizon (the target number of relevant features) and the huge branching factor of the search
tree (when the number of features is large). This algorithm have the advantage of converging
to the general optimal feature subset for infinite budget, and this section provide the details
about how the FUSE algorithm works.

The algorithm aims at finding the best approximated optimal feature subset in a limited
budget. To do so, it iterates within the available computational budget with the following
process:

• Selection: Starting at the root node, the UCT child selection policy is recursively applied
to descend through the tree until an unvisited or a final node is reached.

• Simulation: If unvisited, the node is added to expand the tree, and simulation is run
according to the random policy to produce an outcome.

• Backpropagation: The simulation result is backpropagated through the selected nodes
to update their statistics.

Figure 9: One iteration
of the FUSE search:
(1) Selection
(2) Simulation
(3) Backpropagation
Adapted from [15].

After the search, the approximated optimal node is taken as the node at the end of the most
visited path.

The Nodes and stopping feature
The FUSE algorithm is seeking for the best feature subset in the feature lattice, which

contains 2|F| nodes NF , each associated with a feature subset F (see part II.1). When the
search algorithm is at a current node NF , it has the possibility to select a child node NFc :

with Fc ∈ {Fc ⊂ F , ∃f ∈ F \ F, Fc = F ∪ {f}} (9)

In addition to its children, we also consider for each node a virtual stopping feature fs, which
allows the search to stop at the current node instead of adding new features to the subset. The
stopping feature is included in the feature set fs ∈ F , and can thus be chosen any time during
the search. If the stopping feature is chosen, then the node is considered final, and the selection
phase is stopped to evaluate the node.
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II. FEATURE SELECTION AS REINFORCEMENT LEARNING

Object for FUSE, Greedy-SR
Class Node(F ) = NF

F B The feature subset
TF B The number of visit
tF,f B The number of visit of each child node
µ̂F,f B The reward average of each child node
σ̂F,f B The reward variance of each child node
AllowedFeatures B The allowed features subset

A node NF contains all the necessary information to perform the search during the UCT phase.
The word Class refers to object oriented languages like C++.

The UCT selection phase
During the selection phase, all the child nodes are evaluated according to their UCB1-tuned

score and the one that has the maximum value is selected. Even though there is no theoretical
proof supporting UCB1-tuned, it demonstrated better performances than the original UCB
when dealing with large number of arms [16].

UCB1-tuned(F, f) = µ̂F,f +

√
ce ln (TF )
tF,f

min
(

1
4 , σ̂

2
F,f + 2 ln (TF )

tF,f

)
(10)

TF Number of times node F has been visited
tF,f Number of times feature f has been selected from node F
µ̂F,f Average reward collected when selected feature f from node F
σ̂F,f Variance of the reward collected when selected feature f from node F
ce Exploration parameter (set to 2 in the original UCB formula)

The Random phase
When an unvisited node is selected (TF = 0), it is necessary to produce an outcome to

evaluate the arm. However, as the number of features contained in the optimal feature subset
is not known, it is not wise to stop the random phase always at the same depth. To better deal
with this finite unknown horizon, a good way is to uniformly select features until the stopping
feature is selected [10]. At each round in the random phase, the stopping feature is selected
with probability 1− qd, where q ∈ [0, 1] is a parameter of the algorithm.

Backpropagation
The simulation result is backpropagated through the selected nodes to update their statistics

and thus inform future UCT decisions. The backpropagation in the FUSE algorithm is only
updating the nodes in the current path, and does not update all node contained by F due to
the high branching factor of the graph.
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The Many-armed Issue
The problem when dealing with a large number of feature is that the algorithm must resist to

over-exploration at each level of the tree, and basic UCT has demonstrated poor performances
when dealing with a huge branching factor.

Allowed Features
To have a better control on the exploration, a discrete heuristic has been proposed [17], it re-
stricts the number of considered child nodes depending on TF . Formally, a new child is added
whenever bT bF c is incremented, where b ∈ [0, 1] is a parameter of the algorithm. The child node
to be added to AllowedFeatures is the one maximizing its g-RAVE score among the remaining
child nodes that are not already in AllowedFeatures.

Figure 10:
size of AllowedFeatures
as a function of the
number of visit TF for
b = 0.26. The table on the
right represent the value
of TF for which a feature
is added.

For b = 0.26, after 106 iterations, the number of allowed arms is only 36, whereas it is not
uncommon to see large training with more than 1000 features. This shows how important the
impact of RAVE is on the search because it will determine which features are explored and
which are not.

Algorithm FUSE

procedure DiscreteHeuristic (NF )
if bT bF c − b(TF − 1)bc 6= 0 then

f∗ ← argmax RAVEF,f
f /∈ AllowedF eatures

AllowedFeatures ← AllowedFeatures ∪ {f∗}
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RAVE score
The discrete policy adds the number of considered child nodes logarithmically with the number
of visit (II.2.3), which means that, for a limited budget, only few of the child nodes are actually
considered at each node, making the choice of the child nodes to be considered a major concern,
particularly when the number of redundant features is large.

The selection of new nodes can benefit from any knowledge gained within the search. It has
been proposed [18] to define a RApid Value Estimation (RAVE) score for the features, that are
used to focus the search and avoid a (hopeless) uniform exploration of the feature space. The
global RAVE score of a feature f is defined as follow:

g-RAVEf = average{V (F ), f ∈ F} (11)

The problem is that g-RAVE only provides a global indication on feature relevance, but can
not account for redundancy relatively to the current node, thus it also makes sense to consider
the feature conditionally to those selected within the current node [10], yielding to the `-RAVE
factor:

`-RAVEF,f = average{V (Ft), F ⊂ Ft, f ∈ Ft} (12)

To calculated the RAVE score, [10] propose to consider both g-RAVE and `-RAVE with the
following expression:

RAVEF,f = (1− βF,f ) . `-RAVEF,f + βF,f . g-RAVEf
with βF,f = cl

cl + tF,f

(13)

tF,f Number of iterations involved in `-RAVEF,f computation
cl g-RAVE vs `-RAVE weight parameter

When the information about `-RAVEF,f is inaccurate due to a low number of computation, we
consider the g-RAVE score instead, but gradually account for `-RAVEF,f as its value gets more
reliable.
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Algorithm FUSE

procedure Main
Initialize T = {N∅}
Initialize ∀f ∈ F , g-RAVE(f) = 0
while within computational budget do

V ← Iterate (T , g-RAVE, ∅)

function Iterate (T , g-RAVE , F )
if fs ∈ F then

V ← Reward (F \ fs)
Update g-RAVE

else
Initialize NF = Node(F )
if TF 6= 0 then

DiscreteHeuristic (NF )
f∗ ← argmax UCB1-tuned(F , f)

f ∈ AllowedF eatures(NF )

V ← Iterate (T , g-RAVE , F ∪ {f∗})
else
T ← T ∪ {NF }
V ← IterateRandom (g-RAVE , F )

Update NF

return V

function IterateRandom (g-RAVE , F )
while rand(0,1) < q|F | do

f∗ ← uniformly select feature in F \ (F ∪ {fs})
F ← F ∪ {f∗}

V ← Reward (F )
Update g-RAVE
return V

The function Iterate is recursive, it is calling itself until the stopping feature is selected or a new node is visited,
backpropagation can then occur by backward recursive calls. After the algorithm execution, the best feature
subset is taken as the one at the end of most visited path.
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II.2.4 FUSE-2: Proposals to improve FUSE

This sections showcases the limitations of the FUSE algorithm [10], and propose various im-
provements to enhance its performances. The improved version of FUSE algorithm is introduced
as FUSE-2.

The stopping feature problem
Efficiently evaluating the RAVE score of the stopping feature is not an easy problem. If we

simply consider the stopping feature as a normal feature for its g-RAVE calculation:

g-RAVEfs = average{V (F )} (14)

Then roughly half of the features has a g-RAVE score higher than the stopping features, and
this means that in average, |F|/2 child nodes will be explored before the stopping feature is
selected (because of the discrete heuristic policy discussed in II.2.3). if the number of feature
is large, this behavior is very harmful for the algorithm because it explores at very high depth
and leads to extremely unbalanced tree.

Let o be the optimal number of features and r the number of relevant features, the number
of redundant features is thus ru = r − o. If r � |F|, then all of the relevant features has a
g-RAVE score higher than the stopping features.

Figure 11: The g-RAVE score of the
stopping feature fs is lower than the
one of all relevant features (f1..fr).

This means that all of the relevant features will be explored before the stopping feature is added,
discarding the fact that they might be redundant. The fact that the algorithm keep exploring
deeper until all the redundant features are selected is not what we hope for.

A way to limit the depth search of the lattice would be to increase the value of g-RAVEfs .
In [10], it is suggested to consider a different RAVE score for the stopping feature at each depth
of the nodes:

g-RAVE
f

(d)
s

= average{V (F ), |F | = d+ 1} (15)

While the g-RAVE score for depth d > o slightly increases because the score of lower depth
nodes is not accounted, it is still not solving the problem. It seems like it is not possible to
correctly evaluate the stopping feature RAVE score, thus we propose the following.

Since it is preferable for the algorithm to search at low depth rather than high depth (at
least at the beginning), we propose to consider for the stopping feature fs an infinite g-RAVE
score.

g-RAVEfs =∞ (16)

Thus the stopping feature will always be the first to be added to AllowedFeatures, and even
though the expansion might be slow at the beginning, the tree will gradually explore at higher
depth and stay balanced.
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Accurate node evaluation
The problem caused by always exploring first the stopping feature is that, at the beginning

on the search, the node average is only represented by it’s associated feature subset and not
by it’s children. Thus, the nodes are not accurately evaluated and the search then allocates
unnecessary resources to irrelevant nodes because of miss-evaluation.

To solve this problem, we force the search to perform random exploration from the node a
certain amount of time Trand before allowing the selection of any child nodes, so that the node
average always accurately represent the real value of the node.

Algorithm FUSE-2

procedure DiscreteHeuristic (NF )
if ( TF > Trand ) and ( b(TF − Trand)bc − b(TF − Trand − 1)bc 6= 0 ) then

f∗ ← argmax RAVEF,f
f /∈ AllowedF eatures

AllowedFeatures ← AllowedFeatures ∪ {f∗}

Improved version of the discrete heuristic described in II.2.3.

Efficient Backpropagation
While the nodes usually have only one single parent in trees, they can have multiple in

lattices. Thus, by updating information only in the current path instead of all the ancestors, we
are missing an opportunity to propagate the information in a more efficient way. We propose
to update all the parent nodes instead of only the current path during the bakpropagation.

Figure 12: (a) Linear and (b) Exponential backpropagation in a feature lattice.

Assuming that, in average, the number of node’s updates to find an optimal feature subset
is constant, exponential backpropagation will theoretically make the algorithm converge up to
2d/d faster than with linear backpropagation (in iteration unit).

Although the number of ancestors to update scales exponentially with the depth (O(2d)),
and can become problematic for high depth, it is in practice not limiting the algorithm, because
as described above, we make sure that the FUSE-2 algorithm does not explore at high depth
by enforcing the selection of stopping feature when exploring a new node.
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Elimination of irrelevant children
As explained in II.2.4, the number of children considered at each node is considerably limited.

During the search, it is possible that arms that has been explored at the beginning turns out to
be bad arms, but they will remain in the AllowedFeatures set and thus prevent the algorithm
to search for new child that might be more relevant.

To solve this problem, we propose to use a successive elimination policy based on Hoeffding’s
inequality as described in II.2.2. When the condition for elimination is fulfilled, the arm is
removed from AllowedFeatures and a new one is added.

Algorithm FUSE-2

procedure EliminationPolicy (NF )
µ̂max = max µ̂F,f

f /∈ AllowedF eatures

for f in AllowedFeatures do
if (µ̂F,f + εF,f < µ̂max − εmax) then

f∗ ← argmax RAVEF,f
f /∈ AllowedF eatures

AllowedFeatures ← AllowedFeatures ∪ {f∗} \ {f}

Successive child elimination policy as described in II.2.2.

Alternative k-NN search
The reward computation currently scales with O(mn(d+ 1)) for the naive k-NN search, and

this can become heavy for large training set, we propose to use alternative an algorithm for the
nearest neighbor search. The most commonly used are the following:

• k-dimensional trees (KD-trees) which has a query complexity of O(log(N)d), it has
proven relatively efficient, but suffer from the Curse of dimensionality, and can becomes
worse than brute k-NN search if d is too large. In practice, the KD-tree algorithm becomes
irrelevant when the dimensionality is higher than d ≈ 15 [19].

• Local Sensitive Hashing (LSH)[20] is an approximate searching method for high di-
mensional space. It is based on locality-preserving hashing functions, so points that are
close to each other in space have a high probability to have the same hashing value.

Additional comment
Due to a lack of time, a rigorous analysis of the FUSE-2 algorithm performances compared to
the one of FUSE has not been conducted yet, mainly because the code for the FUSE implemen-
tation has to be written almost from scratch. It is however one of the primary concerns for my
further research. Particularly, I will try to show empirical evidences of the effectiveness of each
of my proposal in FUSE-2 to that of the original FUSE.
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Algorithm FUSE-2

procedure Main
Initialize T = {N∅}
Initialize ∀f ∈ F , g-RAVE(f) = 0
while within computational budget do

V ← Iterate (T , g-RAVE, ∅)

function Iterate (T , g-RAVE , F )
if fs ∈ F then

V ← Reward (F \ fs)
UpdateParents (NF )
Update g-RAVE

else
Initialize NF = Node(F )
if TF < Trand then

EliminationPolicy (NF )
DiscreteHeuristic (NF )
f∗ ← argmax UCB1-tuned(F , f)

f ∈ AllowedF eatures(NF )

V ← Iterate (T , g-RAVE , F ∪ {f∗})
else

if TF = 0 then
T ← T ∪ {NF }

V ← IterateRandom (g-RAVE , F )
UpdateParents (NF )

return V

function IterateRandom (g-RAVE , F )
while rand(0,1) < q|F | do

f∗ ← uniformly select feature in F \ (F ∪ {fs})
F ← F ∪ {f∗}

V ← Reward (F )
Update g-RAVE
return V

function UpdateParents (NF )
if (NF already updated) or (NF = N∅) then

return
Update NF

for NFp in ParentNodes (NF ) do
Update NFp
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Object for FUSE-2
Class Node(F ) = NF

F B The feature subset
TF B The number of visit
µ̂F B The reward average
σ̂F B The reward variance
ChildAddress B The tree addresses of the child nodes
AllowedFeatures B The allowed features subset
`-RAVEF,f B The local RAVE score of all child nodes
tF,fs , µ̂F,fs , σ̂F,fs B The stopping feature information
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II.3 Tests on benchmark datasets

The Greedy-SR and FUSE-2 Algorithm described above has been implemented in C++ and
tested on benchmark dataset to check for their relevancy and suitability. It is challenging be-
cause the search in the feature lattice involve very large tree and high branching factors, details
about the code and implementation choices are described in B.1.

For the following studies, the experimental setup consist of an Intel i5 CPU, 3.2 GHz, 4
Cores with 8GB physical memory. The reward is computed with a 5-NN classifier (see A.2).
For FUSE-2, parameters q = 0.98, b = 0.26, ce = 2, cl = 20 and m = 50 are used. For Greedy
-SR, due to the relatively computationally cheap cost, no subsampling is used for the reward
computation which makes it deterministic (m = n), so we compute each child only once and no
extra parameter is needed.

II.3.1 Test on a simple artificial data set

The first step to test the implementation of our algorithms is to try them on a simple
artificial dataset. A dataset with 200 features, containing 3 features x, y, z, plus 7 redundant
and 170 random features is generated. To build the data set, 2000 examples are generated
by randomly selecting uniformly (x, y, z) in [0, 1]3, and a linear classification function is used:
f(x, y, z) = (0.1x − 0.8y + 0.6z > 0)? to calculate the labels. The weight of the feature x is
voluntarily set to 0.1 to check if the algorithm is able to find it even though it’s relatively weak
compared to other features.

Figure 13: (a) Artificial linear dataset generated for testing feature selection algorithm.
(b) Results from FUSE-2 and Greedy-SR algorithm.

Figure 14: FUSE-2 reward averaged
over the last 1000 iterations as a func-
tion of the number of iterations.

For our generated dataset, a perfect feature subset
should contain only 3 features, where x, y and z should
all be present in at least one feature. Results on fig-
ure.13 shows that the FUSE-2 Algorithm found a per-
fect feature set after roughly 100 000 iterations. How-
ever, regarding the Greedy-SR algorithm, although the
first 3 selected features selected are correct, one unnec-
essary one has been added. One can also notice that
the two method selected different features, showing that
there is no particular advantage at selecting one rele-
vant feature more than the other.
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To explain why the two feature selection methods selected different feature set, we have
to understand how the reward calculation is affected by redundancy in the feature set. In
the ideal case, adding a redundant feature should not change the k nearest neighbor classifi-
cation, and as a result, adding a redundant feature leads to the same evaluation, for example
V ({x, y}) = V ({x, y, 2x}). However, as the training set contains a final number of examples, it
is possible that adding a redundant feature does slightly increase the expected reward due to
random fluctuation in the classification. As an example, the Greedy-SR added one redundant
feature because the reward increased from 0.9953 to 0.9982.

Regarding FUSE-2, figure.14 plot the evolution of the reward and depth of the search as a
function of the number of iteration. During the first 50 000 iterations, there is a clear increase in
the reward, but it quickly stagnates after that. At that moment the optimal feature subset has
already been found, but as emphasized by the fluctuations in the red curve, the search keeps
regularly exploring new feature subset with the hope of finding a better one.

It is also worth noticing that the reward of the selected feature set is 0.9970, whereas the one
selected by Greedy-SR is 0.9982, and this shows us that FUSE-2 does not necessarily select
the feature set with the highest reward. It looks like FUSE-2 does not in practice select addi-
tional features when the reward enhancement is too small. While this behavior might have a
negative impact in particular cases, it actually makes the FUSE algorithm particularly robust
to overfitting.

To understand this behavior, let’s look at the node at the end of the most visited path after
1 000 000 iterations Fbest. As expected, the highest child average reward is the one corresponding
to the stopping feature fs (Figure.15). Now let’s dive into the child node Fbest∪{5}: The average
reward of the stopping feature of the child is higher, but it has been surprisingly selected only
500 times, which is relatively low compared to other child nodes (around 4000).

Figure 15: After 1 000 000 iterations, (a) node at the end of the most visited path
Fbest and (b) one of its child nodes Fbest ∪ {5}.

This unexpected behavior comes from the exponential backpropagation: The values of the
child nodes of Fbest are regularly updated even though the node was not selected during the
UCT phase, thus preventing the stopping feature to be chosen. As a result, the high score
of the stopping feature is drowned within the values of other child nodes, thus preventing the
parent node from seeing that its child node is actually better. This seems to occur only when
the improvement in the reward is relatively low, but further analysis are necessary to truly
understand this phenomenon. One could also think of additional modifications to the FUSE-2
algorithm to prevent or reduce such behaviors.
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II.3.2 Benchmarks from NIPS 2003 feature selection challenge

As a proof of concept for our algorithms, we test them on the Madelon dataset [21], available
in the UCI machine Learning Repository, which has been designed for the NIPS 2003 feature
selection challenge [22]. It is an artificial 500-features dataset, where the target concept is set
to five relevant features. The other 495 features involve 15 redundant features, built as linear
combinations of the relevant ones, and the remaining features are irrelevant. The data set is
provided with 2000 examples for the training and 600 examples for the test.

Feature selection is performed by Greedy-SR and FUSE-2 on the Madelon training set, and
the obtained feature set are then used to train a 5-NN classifier, whose prediction performance
is plotted on the Madelon test set (Figure.16). The results are also compared with two major
filtering techniques: Fisher scoring [23] and ReliefF scoring, details about these methods are
provided in section III.3.2.

Figure 16: (a) Feature subset selected by the FUSE-2 and Greedy-SR algorithms,
from the most to least important. (b) Comparison of different feature subset with a
5-NN classifier trained on the Madelon test set, the maximum accuracy of Greedy-SR
and FUSE-2 is also written.

Even though both algorithms performed much better than simple filtering methods, an ad-
vantage of the FUSE-2 approach over Greedy strategy now becomes very clear: Greedy-SR
selected 16 features and overfitted the data by adding features which slightly improved the
reward on the training set, but actually had a negative impact on the test set. On the other
hand, FUSE-2 selected the target concept of 5 relevant features, proving that FUSE did not
overfitted the data.

One disadvantage of FUSE and Greedy-SR is that the feature subset evaluation is not
deterministic (as a subsample is generated each time), thus the output feature subset will be
different if the seed of the random generator is changed. Fortunately, although the number of
iteration needed to find a good feature set might vary if the search happens to be particularly
unlucky, experiments have shown that FUSE-2 outputs a similar feature subset after each
trials. As for Greedy-SR, the algorithm is less influenced by the uncertainties in the reward
computation thanks to its elimination policy,
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III Raman spectroscopy for cancer diagnosis

III.1 Motivation of the project

The feature selection methods presented in this thesis were primarily developed to be applied
to Raman spectra for cancer diagnosis, which is one of the concerns that aim to be solved within
the following national 5 years project [24]:

Development of Accelerated Measurement Technology for Cell Diagnosis
by bridging Single-Cell Raman Imaging and Information Science.

The technology is introduced in the diagnosis of cancer, but more generally, the project aims
for the development of a molecular measurement technique in the fields of life science, medicine,
and drug-discovery by enabling early identification of diseases that are difficult to diagnose.

Figure 17: Simplified description of the project: (1)Raman image from Osaka group,
(2)example spectrum extracted from measured data, (3)diagnosis performed by AI.

Lead-managed by Professor Tamiki Komatsuzaki, the project started in late 2016. Because it is
highly interdisciplinary and requires skills in medicine, biology, physics and computer science,
various team around Japan are cooperating.

Osaka - Raman Group
Osaka University, LASIE - Laboratory for Scientific Instrumentation and Engineering.

Diriged by Associate Professor Katsumasa FUJITA, the group is developing novel technology for
molecular Raman measurements that constantly feeds optimal conditions back to the measuring
equipment. In particular, they are now working on a fast and accurate Raman measurement
technique that can focus on specific wavenumbers and perform simultaneous measurements at
different point in the sample.

Kyoto - Medical Group
Kyoto Prefectural University of Medicine, Department of Pathology &Cell Regulation.

Led by Associate Professor Yoshinori Harada, the group provides samples from patients affected
by various disease, and also have their own Raman measurement setup. They provided Cancer
and non Cancer cells, and are currently experimenting Raman spectroscopy to diagnosis fat
liver disease on rats.

Sapporo - Information science Group
Hokkaido University, Research Institute for Electronic Science.

Also lead-Managed by Professor Tamiki Komatsuzak, the group is using information science
and statistical mathematics techniques to analyze spectral imaging data. Particularly, machine
learning algorithm are trained to perform cancer diagnosis with relatively high accuracy.
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III.2 Raman spectroscopy

Raman spectroscopy is a characterization technique that relies on the inelastic scattering
of light and use the optical properties of the sample to gain information about its molecular
composition and strain state with a high-spatial-resolution of few hundreds nanometers. It is
also non destructive, which makes it widely used in both physics and chemistry.

Figure 18: Energy-level di-
agram showing the states in-
volved in Raman spectra.

Typically, the sample is illuminated with a laser beam,
and the electromagnetic radiation from the illuminated spot
is then collected by a detector. Because the inelastic Raman
scattering (when the kinetic energy of the incident particle is
not conserved, Figure.18) is very weak compared to the elastic
Rayleigh scattered laser light (when the kinetic energy of the
incident particle is conserved), the radiation at the wavelength
corresponding to the laser line is filtered out before the rest of
the light is collected by the detector (Figure.19). 2D Raman
images are obtained by moving the position of the laser spot
on the sample.

One downside about this technique is that the typical acquisition time of a Raman spec-
trum for a single point is relatively high (several seconds), thus making a full Raman image
considerably long to be completed (several hours or days). Therefore this technique seems
unsuitable for live-cell imaging, and there is a need to shorten the image acquisition times of
Raman microscopy for observation of living specimens.

Figure 19: Typical standard Raman experimental acquisition.

Spectrum from biological samples
Raman spectra are commonly plotted as a function of the Raman shift ∆ω, calculated from

the wavelenght λ [nm] with ∆ω =
(

1
λ0
− 1

λ

)
× 107 cm−1, where λ0 refers to the wavelength of

the excitation laser. Biological samples usually provides plenty of Raman peaks in a spectrum,
each indicating the presence of a specific molecule (Figure.20), notably contained in lipids [25]
and proteins [26] (more details in appendix C.1).

Figure 20: Typical Raman spectrum ob-
tained from a living cell by Osaka group with
a 532 nm CW laser.
(1) 750 cm−1 → cytochrome-c
(2) 1000 cm−1 → phenylalanine
(3) 1556 cm−1 → O2
(4) 2331 cm−1 → N2
(5) 2850 cm−1 → CH2 bond of lipid

26/47

https://en.wikipedia.org/wiki/Inelastic_scattering
https://en.wikipedia.org/wiki/Raman_scattering
https://en.wikipedia.org/wiki/Raman_scattering
https://en.wikipedia.org/wiki/Rayleigh_scattering


III. RAMAN SPECTROSCOPY FOR CANCER DIAGNOSIS

III.2.1 Fast Raman measurement

The Osaka’s Raman group recently developed a novel technology for Raman spectroscopy.
They built a versatile Raman microscope equipped with both a slit-scanning excitation and
a tracking system for dynamic imaging of molecules in living cells. The major advantage of
their Raman microscope platform is its ability to perform chemically specific and sensitive
Raman imaging at both high spatial and temporal resolutions for diverse applications in live-
cell imaging. Their remarkable work has been published in Nature Protocols in 2013 [4].

Figure 21: Difference between conventional (point scanning) and fast (slit scanning)
Raman measurement, courtesy of Associate Professor Katsumasa FUJITA.

The main difference between Osaka’s Raman setup from conventional Raman lies in the
shape of the excitation laser ; standard Raman is based on point-shaped illumination while the
Fast Raman method developed in Osaka uses line-shaped illumination. Thus, as emphasized
Figure.21, the slit scanning setup is able to acquire up to 400 spectra in one exposure, resulting
in a ≈ 400 times faster imaging rate than conventional exposures. This considerable improve-
ment makes it possible to observe living samples with imaging times of several minutes, which
allows for example the observation of the change in molecular distribution of lipids, proteins or
cytochrome-c.
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Motivation for wavenumber selection
Osaka’s group is currently developing a method that can focus on specific wavenumbers and

perform simultaneous measurements at different point in the sample:

→ By installing a special programmable mirror in the path of the laser, it is possible to mea-
sure different arbitrary points at once instead of a single line. However, due to the positional
relationship of the measured points, the spectra are overlapping, and the information is lost
at some wavenumbers. By limiting the number of wavenumber we want to measure, we can
increase the number of points that are measured at one time, which makes the pathological
diagnosis faster.

For cancer diagnosis, the CCD camera of the microscope currently record the wave numbers
within the range [362 cm−1, 3087 cm−1]. If it is possible to classify cancer and non cancer
sufficiently with some wavenumbers, this would have two advantages:

• Resolution: The length in the wavenumber direction reflected on the CCD could be
reduced by eliminating the wavenumber in the ranges that are not needed.

• Speed: The disease diagnosis could be sped up by measuring a small number of wavenum-
bers because it makes possible that more points are measured simultaneously.
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III.2.2 Raman data and pre-processing

The project is currently focusing on the diagnosis of Follicular thyroid cancer because is
relatively difficult to visually diagnose, and there is a motivation to diagnose it using Raman
spectroscopic imaging. The data provided by Osaka group are 3 dimensional matrices M (nx×
ny × nω) containing a spectrum of nω wavenumbers at each position (x, y). More specifically,
5 Cancer and 4 non cancer images has been provided, each with nx = 400, ny = 240 and
nω = 840. An example of a cancer measurement is shown below:

Figure 22: (a) Original Raman spectrum at position (x = 100, y = 150).
(b) Average intensity at each position (x,y) over all the wavenumbers.

Raman data originally contains strong noise, a considerable fluorescence background due to
water and glass, as well as cosmic rays and measurement errors, thus an advanced pre-process
is needed to obtain usable spectra. A pre-processing method of the Raman data from Osaka
group has been implemented in Python by Assistant Professor Koji TABATA, and proceed as
follow:

• Noise:
The intensity of each wave number in the Raman spectrum is following a Poisson distri-
bution, which creates a considerable noise. Denoising is performed by keeping the first 20
components of the measurement matrixM after its Singular Value Decomposition (SVD).

• Fluorescence background:
All the spectra contain a relatively large background do to glass and water Raman auto-
fluorescence, the baseline removal is done with a recursive polynomial fitting, as described
in [27].

• Cosmic rays:
Some measured spectra in the matrix M are altered by cosmic rays, they can be detected
when the intensity at a specific wavenumber is at least 8 times the standard deviation
higher than the average intensity at that wavenumber: I(∆ω) ≥ 8σ(∆ω) + µ(∆ω).

• Differentiation of Cells and Backgrounds:
Within a Raman image, only a part of the spectra is actually from the cell, while the other
spectra are from the background. We can differentiate them by looking at the wavenumber
∆ω = 1450 cm−1, this region reflects the existence of CH2, which is more present in cells
region than background region.
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Pre-processed data
Processed spectrum as well as Cell / Background area of the original data (Figure.22) are

plotted below. The figure highlight the efficiency of the data pre-processing, and we can clearly
distinguish on the processed spectrum various peak, each corresponding to a specific molecule.

Figure 23: (a) Processed Raman spectrum at position (x = 100, y = 150).
(b) Cells (orange), Background (blue) and Undetermined (white) area in the Raman
image.

To diagnosis diseases, we are only interested in the spectra from the cells, and not from the
background. After having removed measurement error, cosmic rays and background on the 9
provided Raman images, we are left with 160 403 cancer cell spectra and 148 285 non cancer
cell spectra, each with 840 wavenumbers.

Cancer vs non Cancer
Before involving any statistical analysis or machine learning to the problem, the first thing

we could think of is to look at the different spectra from cancer cells and non cancer cells to see
if there is any difference that we can see to the naked eye. The figure below plot the average
spectrum of all the cancer spectra and non cancer spectra, and there is no relevant difference
that can be observed.

Figure 24: Average spectrum over all the cells position for (a) cancer cells and (b) non
cancer cells, no clear difference can be seen from naked eye.

By training a machine learning algorithm with all the cancer and non cancer spectra, one
can easily obtain accuracy higher than 99 % by using for example a Recurrent Neural Net-
work. However training the algorithm with the 840 wavenumbers is relatively heavy, and as
explained in the previous section, we want reduce the number of features to speed up the Raman
measurements.
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III.3 Feature selection on Raman spectra

Feature selection on the Raman spectra from Osaka Group has been previously attempted
by Assistant Professor Koji TABATA. He applied the Recursive Feature Elimination algorithm
[28] with Guni feature importance of random forest as the criterion for removing features. Since
Raman data has a large number of features and a large learning cost, the number of features
has been reduced by 20 % at each iteration. The wavenumbers 1410 cm−1 and 1480 cm−1 has
been obtained, however it is believed that at better set of wavenumbers can be obtained using
more advance feature selection algorithms.

In this section, we aim at finding the most relevant set of wavenumbers for cancer diagnosis
with Raman spectra. We apply different feature selection approaches and then compare their
performances.

III.3.1 The high features redundancy

Before applying feature selection to the Raman spectra, it is important to have an overview
of the problem by studying redundancy within the wavenumbers, it will give us a better un-
derstanding of the question, and also some insights about how adapted some feature selection
algorithms would be.

Figure 25: Estimated normalized Mutual in-
formation between wavenumbers in the Ra-
man spectra, using 2500 examples. By defi-
nition, the mutual information of a wavenum-
ber with itself if 1.

Mutual Information
In Shanon’s Information theory, to quantifies

the "amount of information" obtained about one
random variable X through the other random vari-
able Y , one can calculate the Mutual Information
(MI) between the two continuous variables, defined
as follow:

MI (X,Y ) =
∫∫

X,Y
p(x, y) log

(
p(x, y)
p(x)p(y)

)
dx dy

where p(x, y) is the joint probability density func-
tion of X and Y , and p(x) and p(y) are the
marginal probability distribution functions of X
and Y respectively. We can also define a normal-
ized version of the mutual information as [29]:

I∗(X,Y ) =
√

1− e −2×MI (X,Y )

I∗ = 0 means thatX and Y are independent, while
I∗ = 1 indicates perfectly correlated variables. The mutual information for continuous target
variables is estimated with a nonparametric methods based on entropy estimation from k-
nearest neighbors distances [30] implemented in Python (sklearn library), and the calculation
is performed between each wavenumbers using 2500 uniformly selected spectra from the original
training set (we cannot use the full training set due to the high computational cost of mutual
information estimation), results are plotted Figure.25.
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The figure clearly emphasizes an important mutual information between some wavenumbers
(close to 1), this means that, by knowing the value of one wavenumber, one can get information
about the value of other wavenumbers. This figure also indicates that a relatively important
part of the wavenumbers in the spectra are highly redundant.

Information clusters
Now that we have calculated the mutual information between each wavenumber, we can re-

group the wavenumbers within different information clusters, where two wavenumbers belonging
to the same cluster would have a mutual information relatively close to one. We need to define a
distance where two wavenumbers are at distance zero if and only if they are perfectly correlated.
We set the distance between two wavenumbers ωa and ωb as follow:

d(ωa, ωb) = 1− I∗(ωa, ωb) (17)

There exist a large panel of unsupervised clustering algorithm, however as we are dealing
with an unknown target number of clusters and an unusual distance metric, the possibilities are
restrained. The Hierarchical Agglomerative Clustering (HAC)[31] method is well adapted to our
problem because it can be used for any distance metric, gives different partitioning depending
on the level-of-resolution we are looking at, and also have the advantage to be deterministic
(always output the same result). The algorithm starts by treating all wavenumbers as singleton
cluster, and then proceeds by merging pairs of clusters recursively until all have been merged
into a single cluster that contain all wavenumbers. In order to decide which clusters should be
combined, a measure of dissimilarity between sets of observations is required. For our problem,
we define the distance between two clusters A and B as the maximum distance between their
elements, this is known as the complete-linkage clustering criterion.

d(A,B) = max{d(ωa, ωb) | ωa ∈ A, ωb ∈ B} (18)

The HAC Python implementation of the sklearn library is used, and the clustering is performed
for a threshold distance within the clusters of dmax (Figure.26). By setting this threshold
distance, we make sure that all the wavenumbers within a cluster A has a normalized mutual
information greater than I∗min = 1− dmax between each other.

∀A ∈ Clusters, min{I∗(ωa1 , ωa2) | (ωa1 , ωa2) ∈ A2} ≥ I∗min (19)

Figure.26 plot the HAC results for a threshold distance of dmax = 0.5, and 63 clusters are
obtained. However, by looking at the dendrogram Figure.26(b), it becomes clear that most
of the clusters contains very few wavenumbers and thus are irrelevant. As highlighted on
the Figure.26(c), there is actually few clusters that contains a relatively important number of
wavenumber (as an example, only 8 clusters contain more than 30 wavenumbers). As expected,
the information clusters mostly corresponds to wavenumbers which are close to each other in
the spectra, but there is also some interesting relationship between wavenumbers that are far
away to each other - cf. blue and green clusters in Figure.26(a), a deep knowledge of living cell
Raman spectroscopy would be necessary to understand how these wavenumbers are related.

A more detailed study of the HAC result is conducted in appendix C.2, clusters are studied
at different levels of precision and a video is also presented.
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Figure 26: Result for the HAC algorithm with a threshold distance of dmax = 0.5.
(a)The obtained information clusters are emphasized in different colors, (b)the corre-
sponding dendrogram is plotted to highlight the cluster hierarchies, (c)the number of
clusters with a size larger than kmin as a function of kmin is also plotted to highlight the
relatively large number of irrelevant clusters. As an example (in orange), only 8 clusters
among the 63 contains more than 30 wavenumbers.

One advantage of HAC is that we can choose the level-of-resolution we want to look at, but
it is important to highlight that the threshold distance dmax has been chosen arbitrary. The
dendrogram presented above shows that there is no clear way to chose the appropriate threshold
distance, it is because the merging behavior highly vary depending on the area in the spectrum.
As for further research, one could perform sub-clustering of the most relevant clusters (e.g. the
orange one on the dendogram) by eliminating the noisy wavenumbers that have a low mutual
information with mostly all other wavenumbers (e.g. the right part in the dendogram).

Another remark is that the HAC algorithm merges the clusters in a greedy manner, which
indicates that there might be other possible wavenumber arrangement that are more efficient
and thus split the wavenumbers in less clusters. This mean that two wavenumbers belonging
to different clusters are not necessary at a distance higher than dmax, and that the dendogram
shown above should not be granted as an absolute and/or optimal clustering result.
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III.3.2 Simple filtering approaches

As a first approach for our feature selection problem, we apply simple filtering methods (see
I.2) because it is computationally cheap and sometimes perform very well on specific problems.
However, Since filtering approaches rank the features individually, they usually poorly account
for the features redundancy ; and as explained in III.3.1, Raman spectra contain a relatively
high number of redundant features. Thus we expect filtering methods to perform poorly, but it
still gives us a good benchmark to compare with more advanced algorithm.

Two relatively commonly used filtering methods are the Fisher scoring [23] and ReliefF
scoring [32] algorithms. The first one relies on Fisher information theory while the second one
is based on the identification of feature value differences between nearest neighbor instance
pairs, ReliefF scoring is also one of the rare filtering methods that account for inter-feature
correlations. Because the two algorithms use very different approaches for the feature scoring,
it is likely that they will lead to different feature rankings. Both algorithms are implemented
in Python with the skfeature library [33], and the results are plotted below. We can see on
the graph that the result from each method are relatively different

Figure 27: Wavenumber scores obtained by (a)Relieff and (b)Fisher scoring algorithm.
The upper figure scatter a typical Raman spectra and the size/color of the markers
represent the wavenumber score, the normalized mutual information between the top
10 ranked features is also plotted.

The normalized mutual information between the features selected by each methods is also
plotted. While Fisher scoring algorithm selected features from only two clusters and thus many
highly redundant features, the mutual information between the features from ReliefF scoring is
remarkably low. This however does not mean that the features selected by the algorithm are
good features, indeed the results presented in part III.3.4 indicate that most the the features
selected by ReliefF are irrelevant.
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III.3.3 Greedy-SR and FUSE-2 results on Raman spectra

In this section, we apply the two previously presented feature selection algorithms in part
II to the Raman spectra. The original training set contains around 300 000 Raman spectra,
and it is computationally too heavy to run the feature selection algorithms on the full training
set. Thus, to involve training times on the order of 1 h, we reduce the training set to n = 5000
examples. As explained in I.1, a training set involving around 5 to 10 times more example than
the number of features is unlikely to be overfitted. 5000/840 ≈ 6 so the risk of overfitting is
relatively low.

After the feature subset selection, the importance of each selected feature f is calculated
from the gain in the k-NN error rate when the feature f was added to its parent node Fp in the
feature lattice. We chose to use a ratio instead of a difference because we want for example an
improvement from 98 % to 99 % to be considered significant:

Score(f) = 1− V (Fp ∪ {f})
1− V (Fp)

(20)

Greedy-SR is run with 1 iteration per child without subsampling of the training set for the
reward calculation because it is not too heavy computationally. FUSE-2 is run with the same
parameters as described in section II.3, and results are displayed Figure.28.

Figure 28: Results of the (a) Greedy-SR and (b) FUSE-2 algorithms on the Raman
spectra, the circle size correspond to the feature importance calculated from the gain in
the k-NN classifier error rate. The normalized mutual information between the first 10
features selected by Greedy-SR as well as the one selected by FUSE-2 is also plotted.

The first thing we observe is that the Greedy-SR algorithm selected much more features
(26 features) than FUSE-2 (4 features). However the obtained reward (0.999963) is consider-
ably better than the one obtained by UCT approach (0.9966). This can be explain by the fact
that FUSE-2 does not explore at higher depth because the (linear) reward improvement is not
considered important enough by the search (0.999963− 0.9966 = 0.0034).

Even though all methods selected different features, it looks like features tends more to be
selected in the [900 cm−1, 1600 cm−1] wavenumber area. One can also note that the first two
features selected by FUSE-2 are 1417 cm−1 and 1484 cm−1, which are the one previously found
by assistant Professor Koji TABATA (III.3).
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Regarding the mutual information, the results are relatively surprising. Figure.28(b) shows
that the features selected by FUSE are strongly correlated (they have a normalized mutual
information higher than 0.7). Thus, even though a major part of the information contained in
these features are redundant, it seems like the remaining information, which is specific to each
feature, is relatively useful for cancer diagnosis. Similarly, the feature set selected by greedy
strategy also contains non negligible redundancy.

III.3.4 Comparison of the algorithm’s performance

To compare the performance of the feature selection methods described above, we train a
5-NN and a Random Forest classifier with the obtained feature sets (the python implementation
of the sklearn library is used). For the training, the same 5000 examples as the one used for
feature selection are used, and predictions is then performed on a test set containing 10 000
other examples. The results are displayed Figure.32.

Figure 29: Accuracy obtained with classifiers trained with the selected features from
different methods on the Raman test set (10000 examples).

As expected, the 5-NN classifier globally performed better than Random Forest (for Greedy-
SR and FUSE-2), because these methods had selected features specifically to optimize a reward
which is based on a 5-NN classifier. Globally, these results are quite remarkable, because they
indicate that it is possible to diagnosis follicular thyroid cancer with more than 98 % accuracy by
using only 5 wavenumbers from the initial 840 wavenumbers contained in the Raman spectra.
As for the performance of the Greedy approach compared to the UCT approach, two major
differences can be observed:

• While Greedy strategy only consider the local optimum choice at each node, the UCT
approach is able to find better combo of features, resulting in a higher accuracy for the
same number of feature (for 5 selected features, FUSE-2 perform 98 % accuracy while
Greedy-SR only achieve 90 %).

• FUSE-2 is stopping after 5 features because it is limited by the linear overview of the
feature subset evaluation (for example, it consider that going from 99 % to 99.5 % is a
small improvement whereas it is actually considerably significant because it improves the
error rate by a factor of two). To solve this problem, one could think of applying a function
(like the logit function) to the reward so that such a small difference will be enhanced
when the reward becomes close to 1.
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IV Conclusion & Perspectives

Feature selection
We formalized feature selection as a reinforcement learning problem, and presented different

ways to tackle the exploration/exploitation trade-off in the feature lattice. An improved version
of the original FUSE algorithm [10], which rely on the UCT strategy, has been introduced as
FUSE-2. We also presented a greedy strategy with successive elimination of irrelevant child as
Greedy-SR. Both algorithms has been implemented in C++ and tested on various dataset, they
have proven remarkably more efficient than major filtering approaches.

The strategies presented in this thesis currently relies on a feature set evaluation metric
based on naive k nearest neighbors search. As for further research, one can consider using
alternative k-NN search [19, 20] to gain computational time, or using a different evaluation
metrics such as the Correlation-based Feature Selection (CFS) [8, 9] as a different approach for
comparisons with the current evaluation method. One can also implement the original FUSE
algorithm [10] to see how it performs compared to FUSE-2 on benchmark datasets.

Raman spectroscopy
A detailed study of the relevant wavenumbers in Raman spectra for follicular thyroid can-

cer diagnosis was also presented. Redundancy analysis within the wavenumbers and informa-
tion clustering was performed using Information theory, and high correlations between many
wavenumbers have been observed. Wavenumbers selection was achieved with FUSE-2 and
Greedy-SR, and both methods have shown that less than 7 wavenumbers are enough to diag-
nosis cancer with 98 % accuracy, which is a remarkable result given the 840 initial wavenumbers
contained in Raman spectra. This will considerably speed up the Raman measurement because
it makes possible that more points are measured simultaneously by measuring only the relevant
wavenumbers.

Due to computational limitations, the wavenumbers selection was performed on a subdataset
of 5000 instances whereas ≈ 300 000 Raman spectra are available. By optimizing the algo-
rithms computational complexity, one could improve the performance of wavenumbers selection
by training the algorithms on larger dataset. It may also be possible to reach higher accuracy
by applying the inverse sigmoid function to the computed reward in the FUSE-2 algorithm.
Finally, changing the value of k in the feature set evaluation may also significantly improve the
models predictions.

Personal assessment
For 3 month, I have been able to immerse myself into the field of machine learning. Being from

a physics background, most of the concepts described in the first half of this thesis were new to
me, and this experience has proven to be an excellent introduction to the research in theoretical
computer science. Furthermore, not only this internship taught me a lot about machine learning
and programming, it also gave me the opportunity to take part into a remarkably dynamic
and ambitious project. Because wavenumber selection on Raman spectra is an interdisciplinary
problem, I found my physics background particularly useful, and I developed through my work
valuable multi-tasking skills.
I would like to add that Machine Learning could be in general a remarkably efficient tool

for many scientists, and I am glad to see that the intersection between Physics and Machine
Learning seems to be growing considerably. I do believe that Machine Learning will become an
unavoidable tool for most physicists and biologists, and I am looking forward to take part into
the artificial intelligence revolution of our century.
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A Complements on classifiers

A.1 Confusion matrix, Area Under Curve and Accuracy

From the confusion matrix of a classifier (Figure.30), one can compute the True Positive
Rate (TPR) and the False Positive Rate (FPR). Intuitively, the TPR correspond to the propor-
tion of positive data points that are correctly considered as positive, with respect to all positive
data points. On the other hand, the FPR indicates the proportion of negative data points that
are mistakenly considered as positive, with respect to all negative data points.

The AUROC, commonly written as AUC, refers to the Area Under the Receiver Operating
Characteristic Curve, which plot the False Positive Rate (FPR) as a function of the True Positive
Rate (TPR) as we change the discrimination threshold of the binary classifier. The AUC is equal
to the probability that the classifier will score a randomly chosen positive example higher than
a randomly chosen negative example, making it a relevant indicator of its performance:

AUC = P
(
s(x+) > s(x−)

)

Figure 30: Confusion matrix and typical ROC curve of different classifiers.

The ROC curve of a random classifier is a straight line going from the lower left to upper
right, which leads to AUC = 0.5. In opposition, the ROC curve of a perfect classifier will pass
to the upper left point and thus gives AUC = 1.

Another good indicator of the performance of a binary classifier is given by its Accuracy
(ACC), that measures the percentage of points correctly classified for a given threshold:

ACC = TP + TN

TP + TN + FP + FN

Although ACC and AUC measure different things and thus are complementary to each
other, ACC depends on the chosen discrimination threshold, whereas the AUC considers all
possible thresholds. Because of this, AUC is often preferred as it provides a broader view of
the performance of classifier. One shoudl also note that their is many other ways to evaluate
binary classifiers, such as Precision and Recall.

38/47

https://en.wikipedia.org/wiki/Confusion_matrix
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://datascience.stackexchange.com/questions/5023/what-is-a-discrimination-threshold-of-binary-classifier
https://en.wikipedia.org/wiki/Precision_and_recall


Implementation details
Mathematically, the AUC of a binary classifier s on a training set L containing n labeled

examples (xi, yi) where yi ∈ {0, 1}, is calculated as follow:

AUC =
∣∣{(x, x′) ∈ L2, s(x) < s(x′) , y < y′

}∣∣
|{(x, x′) ∈ L2, y < y′}|

(21)

In practice, to compute the AUC, we use an array of pairs 〈example - label〉 denoted L =
〈xi, yi〉i sorted by their score so that i < j ⇔ s(xi) < s(xj). Sorting L has a complex-
ity O(n log(n)) (with n = |L|), and the following algorithm, implemented in C++ with the
std::multimap container, then compute the AUC with complexity O(n):

Algorithm AUC

function AUC (s)
Initialize U = 0, TP = 0
for Elements 〈x, y〉 in L from lowest to highest score do

if y = 1 then
TP ← TP + 1

else
U ← U + TP

AUC = U

TP × (n− TP )
AUC computation with a sorted array of examples, U stands for Under curve and T P for True Positive.

The variable U is counting the number of examples under the curve, while TP indicates the
number of true positives for a given discrimination threshold, which is increasing as we ramp
higher in the sorted L container. The discrimination threshold is maximal when we reach the
last element in the container, making the number of true positive (TP) equals to the number
of actual positives, and thus leading to the denominator in the AUC final formula.

A.2 The choice of k in the k-NN Classifier

In general, a larger k suppresses the effects of noise, but makes the classification boundaries
less distinct, therefore the best value of k for a kNN classifier is highly data-dependent. One can
also note that k is often chosen as an odd number to avoid ambiguity in the model predictions.
The study in this report is conducted with k = 5, but a rigorous test on a cross validation set
with different values of k shall be performed to obtain optimal results on the model predictions.
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B Practical details

B.1 The C++ implementation

We want to perform feature selection on a feature set F containing nf features. This section
describes the implementation choices to deal with the large feature lattice and the high branch-
ing factor.

Feature subset F :
We have chosen to represent each feature subset with a boolean array F of length nf , where

F [f ] = 1 if f ∈ F and 0 otherwise ; the boost::dynamic_bitset container is used. We then
implement a class Node to store all the important information about the node NF (part II.2.4).

Feature lattice T :
Since dataset regularly contains about nf = 1000 features, 21000 nodes are involved in the

feature lattice. It is practically impossible to use an array of that length for our implementation
because it would require a memory of at least 21000 bits ≈ 10300 bits. One can note that it is even
orders of magnitude higher than the maximum theoretical information than can be contained
in one m3, which is currently estimated as 1070 bits.

The lattice T is therefore implemented as a dynamic container std::vector, which contains
only the root node N∅ at the beginning of the search but then add a new node when it is visited
for the first time. The complexity of finding an element in a std::vector container scales as
O(n), thus it becomes longer to find a node in T as its size increase. Because we need to know
the position of the child nodes at each step in the UCT phase, it becomes computationally
heavy for big containers.

We then introduce a hash function which allows us to find an element in O(1) (Figure.31)
(the hash function is deterministic and always return the same hash value for the same input).
The std std::unordered_map container is used. The input of the hash function is the boolean
array F , and the output is a bucket containing the address of F in the tree T . The node NF

can then be accessed at T [hash(F )].

Figure 31: Naive way (av. complexity O(n/2)) to find a node NF in the lattice T vs.
implemented method using a hash function (av. complexity O(1)).
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B.2 Complexity analysis

This section provides a detailed complexity analysis of the Greedy-SR and FUSE-2 algorithm
when performing feature selection on a feature set F containing f features (the notation f is
used instead of nf for better readability). The training set size is denoted |L| = n and the
subsample size |V| = m

Reward
Both algorithms rely on the reward computation as it is calculated at each iteration. For a

feature set evaluation at depth d in the feature lattice, the complexity is the following:

• Subsampling: This step simply uniformly pick m random example from the original
training set L, the complexity is then O(m).

• k-NN predictions: To make a prediction, n distances has to be computed, and since d
dimensions are involved, the complexity is O(nd). After that, the k nearest neighbors are
found with the quickselect algorithm in O(n). The process needs to be repeated for m
examples, leading to the final complexity of O(nm(d+ 1)).

• AUC computation: The AUC is then computed with the method described in part A.1,
which has a complexity of O(mlog(m) +m).

FUSE-2
For one iteration in the FUSE-2 algorithm searching at depth d in the feature lattice:

• UCT phase: At each step in the UCT phase, the UCB score of f features is computed,
complexity O(fd).

• Adding a new node: When a new node is added, we check for its parent and children
to add their addresses if they already exist in the tree, complexity O(f).

• Random phase: On average, the same number of feature is added inr each random phase
(defined by parameter q), complexity O(1)

• Reward computation: Overall dominated by the k-NN prediction so complexity is
O(nm(d+ 1))

• Backpropagation: We update all the ancestors as described in part II.2.4, The number
of nodes to update scales as O(2d), each containing a `−RAVE score array of f features.
The complexity is then O(2df).

Greedy-SR
At each stage in the greedy search, the reward is computed N times, and the depth of the

search di is increased by one at each stage, until the final feature set is selected at depth d.
Thus the Greedy-SR algorithm has complexity:

CGreedy =
d∑

di=1
N ×O(nm(di + 1)) = O

(
Nnm

(d+ 1)(d+ 2)
2

)

41/47

https://en.wikipedia.org/wiki/Quickselect


C Complements on Raman

C.1 Raman wavenumbers in living cells

The following table provides the correspondences between the peaks observed in the Raman
spectra and the molecules contained in the living cells. It may give us some insight about
why and how some wavenumbers in the Raman spectra could be related, as highlighted by the
wavenumber information clusters found by HAC.

Figure 32: Raman shift measured in living cells with their corresponding molecule,
from Osaka group.
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C.2 Further study of Hierarchical Agglomerative Clustering results

The Video.33 below emphasizes the clusters found by the HAC algorithm as the threshold
distance dmax is changed. In addition to the analysis of part III.3.1, we observe the following:

• At distance dmax = 0.13, we observe that some wavenumbers which are far away from each
others in the spectrum already belong to the same cluster (cf. wavenumbers 500 cm−1 and
1500 cm−1). This indicates that these wavenumbers has a mutual information of at least
0.87.

• At distance dmax = 0.99, some wavenumbers still belong to very small clusters (containing
2 or 3 wavenumbers) (cf. right part in the dendogram), meaning that they are completely
uncorrelated with the whole spectrum.

Figure 33: HAC results (part III.3.1) for different threshold distance dmax.
To watch the video, the last version of Adobe Reader (Mac or Windows) is needed,
it is not possible on Linux.

Figure 34: Number of clusters selected by HAC as a func-
tion of the threshold distance.

Figure.34 plots the number of ob-
tained clusters as a function of the
distance threshold dmax. As ex-
pected, the number of clusters de-
creases when the distance threshold
is increased. On the other hand,
the number of clusters containing
more than 30 wavenumbers reach a
maximum of 11 clusters for distance
dmax = 0.6
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Calendar

Month(s) Accomplished work

March Paper review, FUSE implementation

April Test on Benchmark dataset, Greedy-SR implementation

May Feature selection on Raman, Mutual Information, writing Report

June Information Clustering, writing Report, research Poster, Defense
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