Single crystal scintillators – preparation technologies

<u>J. Pejchal</u>, R. Kral, J. Barta, A. Beitlerova, R.Kucerkova, P. Prusa, L. Havlak, M. Nikl, A.Yoshikawa

Institute of Physics AS CR, Prague, Czech Republic

E-mail: <u>pejchal@fzu.cz</u>

Principle of micro-pulling-down (mPD) method

<u>Growth of small crystals (few mm diameter, few mm-cm length)</u>, fast growth rate (0.01-10 mm/min), ideal for material composition screening

Modern mPD setup developed around 1992-1993 in Tohoku University, Sendai, Japan, to grow LiNbO₃ and related materials

Micro-capillary for fiber crystal growth + pulling down

Resistive heating, inductive (radiofrequency) heating, possible application of active afterheater

Melt flows out due to gravity, hydrostatic pressure – possibility to grow from non - wetting melts – possibility of shaped crystal growth for wetting melts due to capillary action

Device-sized crystals, no machining losses

Micro-pulling-down method Oxide crystals

Micro-pulling-down (mPD) setup

Institute of Physics, Czech Academy of Sciences, Prague, Installed in June 2015

Type T-MPD-OX by Akita Seiko Co., Ltd. Japan

Crystal growth by mPD method

RF heating

Atmosphere: N₂, Ar Flow-through system Flow upwards/downwards (influence on temperature gradient)

Pulling speed: 0.01-1.5 mm/min

Monitoring with a CCD camera through hole in the shielding and afterheater

Crystal growth by mPD setup – Al_2O_3 :Cr0.1%

Monitoring by a CCD camera

Crystal growth by mPD setup

Grown crystals (Al₂O₃:Cr0.1%) Growth time: 2.5 hours Total experimental time: cca 7h Rapid composition screening

Crystal growth by mPD setup *Grown crystals* (Al₂O₃:Fe0.1%Ti0.1%) *Blue sapphire*

Crystal growth by mPD setup Iridium crucible with 3 mm die, 1 capillary

Grown crystal of YAG:Ce

Crystal growth by mPD setup Iridium crucible with 5 mm die, 5 capillaries

Grown crystal of undoped YAP

Crystal growth by mPD setup Iridium crucible with 2x2 mm square die, 1 capillary

Grown shaped crystal of Al₂O₃:Ti0.1%

Lu₃Ga₃Al₂O₁₂ (LuGAG) - Grown crystals

Atmosphere: Ar+O₂, flow 0.5l/min, Pulling speed: 0.07-1 mm/min, Ir crucible, LuAG <100> seed O₂ introduced to suppress Ga evaporation Excess of Ga₂O₃ added to the starting powder mixture to compensate for the Ga evaporation XRD showed 2-3 different garnet phases of very close compositions. No annealing performed yet

Radioluminescence(RL) of LuGAG:Ce, Mg (X-ray excitation)

emission to shorter Negligible defect emission observed caused by the non-stoichiometry?

of the

Shift

wavelength!

Radioluminescence of LuGAG:Ce, Mg (general trends)

intensity

Stoichiometric samples:

300 ppm Mg – positive effect Increased Mg concentration leads to decrease of radioluminescence intensity

Non-stoichiometricsamples(Mg300ppm):Increasedsignificantincreaseofradioluminescence

µXRF (micro X-ray fluorescence)

Segregation of Ce (Pr) dopants – rejected to the surface Similar was observed for LuGAG

Micro-pulling-down method Li-containing oxide crystals

Processes in the crystal growth of LiAlO₂

LiAlO₂(melt)/Li₂O(melt) = =LiAlO₂(crystal)/Li₂O(evaporation)=constant

LiAlO₂ grown crystals

LiAIO₂:Ti0.1%,Mg0.1%

LiAlO₂:Fe0.1% Shaped crystal

Radioluminescence measurements

Spectra comparable in absolute scale, overall scintillation efficiency of LiAlO₂:Ti 0.1% is <u>100%BGO!!</u>

Undoped sample – host related emission (present also in the Tidoped sample)

Neutron response (²⁵²Cf)

²⁵²Cf neutron source used

Data corrected for shaping amplifier gain and photomultiplier spectral sensitivity Shaping time 10us

The neutron light yield exceeds that of GS20 Li-glass! (6000 photons/neutron)

LiAlO₂- Grown crystals

LiAlO₂:Si0.1%

LiAlO₂:Sn1%

Atmosphere: Ar, flow 0.5l/min, Pulling speed: 0.07-1 mm/min, Ir crucible, Ir seed

0.5g of starting material, 0.06g of Li_2CO_3 excess to compensate for Li evaporation

XRD showed tetragonal high-temperature γ-modification

LiAl₅O₈ Li-poor phase detected at the end of crystal

Crystal growth of Li₄SiO₄ by micro-pulling-down method

Flux-like growth

Atmospehere: <u>Ar</u> Pulling speed: 0.05-0.07 mm/min, Seed: "spiked" Ir wire

Ir crucible with a die (square or round shape)

Li₂CO₃ excess (5 mol%) added to improve melt properties (wettability) and compensate for Li evaporation

Li₄SiO₄(melt)/Li₂O(melt) = Li₄SiO₄(crystal)/Li₂O(evaporation) = constant

Grown crystal Many cracks observed

Crystal growth of Li₄SiO₄ by micro-pulling-down method

Optimization of crystal growth conditions:

Increase of the heating power led to increase of meniscus thickness and decrease of crystal diameter.

Increase of mixing and mass exchange at the melt-solid interface

Both the radial and vertical gradient became more shallow and growth of good quality crystals was enabled.

Mass balance of the flux-like crystal growth: $Li_4SiO_4(melt)/Li_2O(melt) = Li_4SiO_4(crystal)/Li_2O(evaporation) = constant$

Li_4SiO_4 - grown crystals

 Li_4SiO_4 undoped

Reaction with Ir crucible – slightly cracky, brownish color

Li₄SiO₄:Ti 0.2%

XRD confirmed Li₄SiO₄ monoclinic phase (PDF#37-1472)

Micro-pulling-down method Fluoride crystals

Fluoride crystal growth

Growth conditions

Bake out-procedure under high vacuum Atmosphere:

Ar+10%CF₄ (moisture scavenger!)
Carbon crucible: non-wetting melt
Crystal shape determined by the nozzle shape!
Direct contact of melt and the growing crystal (not separated by a capillary)

Fluoride micro-pulling-down setup

Carbon crucibles

Micro-pulling-down method for fluorides

Fluoride micro-pulling-down setup

Grown crystal of CaF₂

Nd-doped ErF₃

LiF flux growth might be possible

Crystal growth of tetragonal (low temperature) ErF₃ - LiF-flux

Ir-wire seed, LiF – flux introduced to diminish the melting point. Steep gradient at the crucible nozzle to facilitate melt supercooling

Standard hot zone, 4hole afterheater – makes the temperature gradient steeper

ErF₃, ErF₃:Nd – as grown crystals

No LiF

LiF 20%

LiF 10%

LiF 10%, Nd1% doping Little cracks

XRD confirmed pure ErF₃ phase

LiErF₄ phase confirmed in crucible rest

For LiF 10% excess the composition corresponds to 90.9% ErF_3 and 9.1%LiF – still above the phase transition temperature (peritectic point around 12%LiF) – supercooling takes place

Micro-pulling-down method for LuF₃

LuF₃-based VUV scintillators – examples of the as-grown crystals

LuF₃ undoped

LuF₃:Er1%

LiF flux, Ir-wire seed, pulling speed 0.01 mm/min, LuF_3 phase confirmed by XRD Self-cladded with LiLuF₄

Er codoping – Improvement of energy transfer

LuF₃:Nd1%

LuF₃:Er1%Nd1%

LuF₃:Er1%

LuF₃:Er3%

LuF₃ undoped

LuF₃:Er10%

LuF₃:Nd1%

LuF₃:Er1%Nd1%₅

LuF₃ – Light yield – ²⁴¹Am alpha-ray excitation CsI photocathode photomultiplier

Micro-pulling-down method Halide crystals

Halide micro-pulling-down setup

Institute of Physics, Czech Academy of Sciences, Prague, Installed in autumn 2017

Halide micro-pulling-down setup

Type HPI-01001 by Dai-ichi Kiden Co., Ltd. Japan

Halide mPD - parameters

Notebook

✓ OP con.✓ internet

<u>Table</u>

- Removable chamber
- ✓ CCD cam.
- \checkmark pulling mech.
- ✓ VAC RP, MP
- transformers

RF source

OP control
 manual contr.

Operation panel (OP):

- Power output
- Pulling rate (remote controller)
- sequences (10 steps)
- max. distance setting

remote control by NB

Specifications

RF Power Source	5 kW
Heat. temp.	1000 C (max.)
Removable chamber	YES
pulling rate [mm/min]	0.01-100 (step 0.01)
Coil (Cu)	3 turns (and 4 turns)
CCD Camera	Toshiba TELIBG202C
Crucible	Carbon ⁴⁰

Halide micro-pulling-down setup

Carbon crucibles

2nd Max. temp. meas.

Al2O3 stage

double Al2O3 shield

High carbon evap.

 $T_{max} = 1568 \text{ C (edge)}$ $T_{max} \sim 1650-1700 \text{ (cruc.)}$ Power output = 70% (max. 5 kW) Temp. increase of the chamber!

Conditions	
crucible	carbon, hole 2mm (dia.)
afterheater	2x hole, 4 mm (dia.)
2x isolation	AI2O3
Thermocouple	<mark>type B,</mark> Pt-Rh(6%)/Pt- Rh(30%)
stage	AI2O3
atmosphere	Ar (6N)

Halide micro-pulling-down setup – grown crystals NaCl

0.1mm/min

1mm/min

NaCl crystals grown by the new halide micro-pulling-down setup a t a speed of 0.1mm/min (left) and 1mm/min (right)

Bridgman method

Vertical Bridgman method

- Crystal growth from the melt
- Container = quartz ampoule
- Two and more-section resistive furnace
 - top section ABOVE m.p.
 - bottom section BELOW m.p.
- Temperature gradient between sections – 10 to 50 K/cm
- Crystal growth
 - unseeded
 - pulling ampoule down by rate
 0,2 to 1,0 mm/h
 - 10 days
- RE elements introduced as metals
 - nomin. conc. 0.5 mol% (Yb) and 5 mol% (Nd, Pr)

Institute of Physics CAS, Prague, Czech Republic

Optical microscopy – crossed polar.

RbPb2Cl5

m.p. 423 C, monoclinic structure, a = 8.915 A, b = 7.950 A, c = 12.445 A, beta = 90.14 deg

Institute of Physics CAS, Prague, Czech Republic

Czochralski method

Optical floating-zone (OFZ) method

Optical floating-zone (OFZ) method

Asgal FZ-SS35WV

 ${\sf Gd}_{2.9995}{\sf Ce}_{00005}{\sf Ga}_2{\sf AI}_3{\sf O}_{12}\,({\sf O}_2\,20\%)$

 $Gd_{2.9995}Ce_{00005}Ga_2AI_3O_{12}$ (O₂ 40%)

Gd_{2.9995}Ce₀₀₀₀₅Ga₂Al₃O₁₂ (O₂ 100%)

Optical floating-zone (OFZ) method

Composition: $(Gd_{0.995}Ce_{0.005})_{3}Ga_{2}AI_{3}O_{12}$

Oxygen gas

① 2 vol% ② 20 vol% ③ 40 vol%

4100 vol%

Edge-defined film-fed growth (EFG) method

From the webpage of ChinaTungsten corp.

Thank you for your attention!

Micro-pulling-down laboratory

Projects

2015-2017 Czech Science Foundation Grant for excellent junior scientists 15-18300Y (J. Pejchal) 2018-2020 Czech Science Foundation Standard grant 18-14789S (J. Pejchal)

2018-2020 Czech Science Foundation Grant for excellent junior scientists 18-17555Y (R. Král)

Close collaboration with luminescence group (V. Jarý, M. Nikl) and EPR group (V. V. Laguta, M. Buryi) Strong industrial background (Crytur Ltd., Nuvia Corp.)

Selected phenomena in crystal growth by mPD method

Marangoni convection – more significant than buoyancy, responsible for melt mixing in the meniscus and equilibrium between the melt and growing crystal (difference from EFG)

Meniscus thickness – influences Marangoni convection

Crystal/nozzle diameter ratio

small: mass exchange with the melt in the crucible, segregation, capability of growth incongruently melting compounds
high: fast transport through capillary, no equilibrium, no segregation, melt composition constant

Growth rate – equilibrium and segregation

Increasing the Lu-concentration: BaLu₂F₈ (BaLuF)

- -Nd-doped BaLuF candidate for VUV scintillator
- -fast response (14ns decay time)-Nd³⁺ 5d-4f VUV luminescence
- -high density (7 g/cm³) –high gamma ray or X-ray stopping power
- -Challenging crystal growth melting point 945°C, phase transition (from <u>orthorhombic</u> to <u>monoclinic</u>) at ~900°C

Phase diagram

According to (*B.P. Sobolev, N. L. Tkachenko, Journal of the less common Metals, 85 (1982) 155 - 170*

BaLu₂F₈ (BaLuF) - structure modifications

<u>Monoclinic</u> (low temperature) structure: C2/m space group, equivalent Lu sites – C_2 symmetry

Orthorhombic (high temperature) structure: Pnma space group, two inequivalent Lu-sites – C₁ symmetry

Orthorhombic phase – two different sites for doping rare-earth ions

Crystal growth of monoclinic (low temperature) BaLu₂F₈ Standard hot-zone, standard crucible

Phase transition temperature measured ~1mm below nozzle – <u>cracky crystal</u> \rightarrow slight melting temperature reduction necessary \rightarrow LiF flux

Crystal growth of monoclinic BaLu₂F₈

As-grown BaLu₂F₈:Nd1%

10 mol% LiF flux sufficient to lower the meting point under phase transition. BaY_2F_8 seed. Monoclinic $BaLu_2F_8$ phase confirmed by XRD.

Samples prepared: $BaLu_2F_8$ Undoped, Nd1%, Tm1%, codoped Tm1%Nd1% (to test possible Tm³⁺ \rightarrow Nd³⁺ energy transfer)

Samples of monoclinic (low temperature) BaLu₂F₈ after cutting and polishing

 $BaLu_2F_8$ undoped

 $BaLu_2F_8$:Tm1%

 $BaLu_2F_8:Nd1\%$

 $BaLu_2F_8:Tm1\%Nd1\%$

Long hot zone with long 40mm afterheater – not suitable due to high probability of melt drop, quenching process – partial success

- Regular hot zone with "afterzone" suitable to grow around 10-15 mm crystals.
- Phase transition occurs at distances higher than expected. Heat conduction through growing crystal significant. Quenching process applied

Crystal growth of orthorhombic BaLuF

As-grown crystal of orthorhombic BaLu₂F₈:Nd1%

As-grown crystal of orthorhombic BaLu₂F₈:Tm1%

Orthorhombic phase confirmed by XRD (signs of monoclinic phase also detected)

Samples prepared: **BaLu₂F₈** Undoped, Nd1%, Tm1%

codoped Tm1%Nd1% (to test possible Tm³⁺ \rightarrow Nd³⁺ energy transfer in the host with inequivalent Lu³⁺ sites)

Samples of orthorhombic (high temperature) BaLuF after cutting and polishing

 $BaLu_2F_8$ undoped

 $BaLu_2F_8$:Tm1%

BaLu₂F₈:Nd1%

BaLu₂F₈:Tm1%Nd1%