
Frequency-responsive RGB
Instrument Lights

Anja Frohock, Carson Warner, Leith Rabah,
Stefan Gonzalez

Dept. of Electrical Engineering and Computer
Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — Frequency-responsive RGB (FRGB)
Instrument Lights are a type of lighting system that allows
users to synchronize the lights with the music or sounds in
the room. This technology is based on the concept of
sound-to-light conversion, where the frequency and volume
of the sound are translated into different colors and intensity
of light. The FRGB lights typically consist of red, green, and
blue LEDs that can be mixed to create a wide range of colors.
The conversion is done through an application that requires
a microphone to pick up the sound and translates it into
signals that control the FRGB lights. This technology can
commonly be used in music festivals, concerts, clubs, and
home entertainment systems. It adds a unique and dynamic
visual element to the music or sound experience, enhancing
the overall sensory experience for the audience.
Index Terms — Analog to digital conversion, color,

fourier transforms, frequency conversion, instrument, music,
signal to noise ratio.

I. INTRODUCTION

FRGB Lights are an interactive system that turns on
LEDs at the notion of the playing of an instrument, each
instrument will generate its own distinct response based
on the notes being played. Each instrument has its own
distinct logistical challenges in which the input and output
will vary. The complexity of the project increased with the
involvement of more instruments, the portability of the
interactive system, and the intensity of the LEDs
responses based on the volume and pitch. The system
displays light intensities based on the individual
instrument’s wave response when played at different
frequencies. FRGB Lights are relatively low cost,
portable, require low power, and are easy to use. As there
are currently no well established products of a similar
nature, there is an open market for it to take. The use of
Raspberry Pi, specifically Pi4, is the brain of the product.
FRGB instrument lights have the potential to raise the
quality of musical performances and the experience of

playing the instruments. The responsiveness of the lights
to the pitch and volume of the music acts as a visual aid
for both users and observers. Outside of enhancing
entertainment facilities, this visual aid can be beneficial to
anyone ranging from those that lack the skills to interpret
perfect pitch to those that are hard of hearing or even deaf.
It can also be used as a method of displaying the daily
occurrences of people with a form of synesthesia where
they can see music in the form of colorful lights.

II. SOFTWARE APPLICATION

FRGB instrument lights are controlled by a Raspberry
Pi 4 microcontroller which runs a python application. This
application utilizes the pyaudio, neopixel, and tkinter
libraries, the pyaudio library enables python to read
information from an externally connected microphone
such as pitch and volume, the neopixel library is a library
that is used to control addressable RGB LED strips in
color and brightness of each individual LED. These
libraries are used in conjunction with each other in order
to convert the sound frequencies being read by the
microphone into numerical values for frequency and
volume. These values are then used to determine the
musical notes and the color each note corresponds to
which is then displayed using the LEDs. This application
comes with a functioning graphic user interface (GUI)
which is enabled by the tkinter library. The tkinter library
introduces the ability to create a GUI in python with
objects such as labels, buttons, frames, and much more.
The GUI lets the user interact with the device through a
small LED screen attached to the microcontroller. The
GUI can be used to customize the color of each individual
musical note and the intervals between them and also give
visual feedback to the user of the current note on the
chromatic scale that is being played.

Fig. 1. Welcome screen of Python GUI



Fig. 2. Program in progress screen with real time note
information

Fig. 3. Custom theme selection screen

III. FOURIER TRANSFORMS

Fourier Transform (FT) is a mathematical technique
that transforms a function of time to a function of
frequency [1].

(1)𝐹{𝑔(𝑡)} = 𝐺(𝑓) = ∫ 𝑔(𝑡)𝑒−𝑖2π𝑓𝑡𝑑𝑡

In the case of FRGB lights, FT is used to convert the
audio signal from the time domain into the frequency
domain. so that the frequency spectrum can be analyzed
and used to control the RGB colors of the lights. This
conversion is necessary because the sound signals are
represented in the time domain as a series of amplitude
variations over time, while the frequency domain
represents the sound signal as the sum of individual sine
waves of different frequencies and amplitudes. This
calculation involves breaking down each segment of the
sound signal into its component sine waves of different
frequencies, amplitudes, and phases.

Fig. 4. Fourier Transform Visualization

This is done through the Fast Fourier Transform
algorithm. Fast Fourier Transforms (FTT) is a
programming algorithm that computes the FT in an
O(N(log2(N))) runtime. This allows us to conduct
Fourier transforms and dynamically change the colors of
the lights in what can be considered real time. The result
of the FFT calculation is a set of numbers that represent
the amplitude of each frequency component in the sound
signal. These numbers can be used to analyze the
frequency content of the sound being emitted into the
microphone and map the frequency spectrum to the
corresponding RGB colors.

The audio signal is first captured by a microphone and
sampled at a fixed rate of 0.1 samples per second,
producing a series of discrete data points representing
the amplitude of the audio signal at different points in
time. The output of each sample is a set of complex
numbers that represent the magnitude and phase of each
frequency component in the audio signal. The
magnitude represents the amplitude of the frequency
component and the phase represents the relative position
of the component in the time domain. This information
is utilized in the FRGB lights in two ways. The first is
by using the phase to determine and adjust the colors of
the lights and the second is by using the magnitude as
volume to determine the intensity of the lights.

Fourier transforms are the backbone of the FRGB
lights. Without this algorithm, the software program
would not be able to run and conduct the necessary
calculations in order to control the lights.



IV. HARDWARE IMPLEMENTATION

FRGB instrument lights utilize many different pieces
of hardware to achieve its goal of music visualization.
The main essential hardware components include a
Microcontroller, Microphone, DC-DC converter, LED
strip, ADC, Microphone Pre-amp, and an LCD touch
screen display.

A. Microcontroller

For our microcontroller we chose the Raspberry Pi 4
due to its relatively high speed for its size, cost, and its
overwhelming community support. The Raspberry Pi 4
was in contention with the Nvidia Jetson Nano when
choosing the microcontroller due to its higher CPU
speed however when weighing the options the Nvidia
Jetson Nano while faster than the Raspberry Pi 4 is also
twice as expensive so to reduce costs and keep the
project simple we chose the Raspberry Pi 4.

B. Microphone

The microphone was required to pick up as little
background noise as possible. This required a
unidirectional (cardioid) microphone in order to pick up
unwanted noise from any direction other than where the
instrument was being played.

Fig. 5. Unidirectional vs. Bidirectional vs. Omnidirectional

Initial testing also required the microphone to be able to
directly connect to the desired instrument. With these in
mind, a clip-on condenser microphone was chosen for
initial testing, specifically the YPA M613-XLR.

C. Phantom Power supply

To accompany the microphone we chose a pre-amp to
amplify the microphones output to a reasonable level to
analyze, with condenser microphones we needed a
certain type of preamp with phantom power support
which sends power to the microphone since condenser
microphones require power to operate. We chose the
Xvive P1 Phantom Power Supply which fulfilled our
needs as a phantom power preamp with the added bonus
of being battery powered to reduce cable clutter.

D. LED Strip

The most important feature when selecting an LED
strip to use for the product was RGB capabilities. For

this reason, we chose to use SMD light strips for the
initial prototype of the project. Other important aspects
such as brightness, density, and programming support
were considered when selecting a light strip. With these
attributes in mind, and inspiration taken from RGB
computer keyboards, we chose the BTF-LIGHTING
WS2812B which is also supported in the neopixel
library which was a large factor in LED choice since the
library only supports a certain type of LED strip. These
strips also had the lights placed densely together, giving
off a more uniform appearance as if it was one long
light. Finally, the brightness of the lights were of a high
enough lumens to be visible from anywhere in the room
even with the lights on.

E. LCD Touch Screen

The LCD touchscreen only had three requirements,
those being that the screen is touch sensitive, that it is
compatible with the Raspberry Pi 4, as well as being
within the size requirement of 7x5x5 inches for the
design of the box. With these parameters in place we
chose the waveshare 5 inch DSI LCD Touch Screen
which met all of the aforementioned requirements. This
screen is used to assist the client by allowing them to
interact with the software application and adjust the
settings and themes of the lights as they see fit.

F. Pre-Amplifier PCB

The Preamplifier circuit was designed to take the
output of the mic after the phantom power supply and
amplify it from mic level to a voltage that would work
with the analog-to-digital converter. Originally the mic
level was measured to peak at 50mV. However, the input
used wasn't loud enough so when it was measured again
it peaked at 200mV. Originally as well the gain was
designed to be 50 to multiply the original peak of 50mV
to 5Vpp. The Raspberry Pi GPIO pins only take a
maximum voltage of 3.3V. That with the remeasured
peak of 200mV led us to design a pre-amplifier with a
gain of 15.

Fig. 6. Pre-Amplifier Circuit



G. Analog-to-Digital Converter

Analog to digital conversions can be done in
various forms with their general design goal of
converting a difficult to store analog signal to an easier
to process and store binary digital signal. The design
chosen was the delta-sigma architecture rather than the
dual-slope, flash, pipelined, and the successive
approximation architecture. Reason being this is the best
architecture to handle low frequency applications,
however, there is a downside of higher latency due to
oversampling. For this project the ADS1115 was used.

H. Device Casing

The device had to maintain a guide-line of
7x5x5 inches in dimensions and the weight being under,
if not equal to, 3 pounds. In which caused the rise of
various options in making a case for the electronic
components of our device. The casing had to be small,
durable, and adaptable to changes. Reason for small is
due to grand desire to have the device directly mounted
onto the user, and be easily handled. Meaning that the
User should be able work with the device within their
hands. The goal for durability is to have the device
withstand the vibrations, heat, and kinetic forces that
come with the mounting of the device onto the User. The
Device’s sensitive electronics like the LCD and the
microcontroller are safely placed and secured with
screws. The last is having the case be adaptable with the
possibility of additional components or to adjust the
placements of current components. The reason for
rearrangement is to help improve thermal levels within
the device and in order to prevent the components from
colliding with each other and to ensure no
misconnections between the PCBs. The Casing will
consist of standard PLA material and shaped to be a box
shape. The final design changed from the original design
to include small air vents to allow air flow within the
device, reducing the height of the case from 5 inches to
3 inches and also having the stand to be its own piece to
insert into the case’s frame. This is to reduce the cost of
printing and be able to modify the case better if issues
occur

V. SIGMA-DELTA ANALOG-TO-DIGITAL CONVERTER DESIGN

The Sigma-Delta analog-to-digital converter was
designed to take the microphone`s output and convert it
into a digital signal to be sent to the Raspberry PI via

SPI. To make the project more technically advanced it
was decided to design and build one. The sigma delta
was chosen due to its low quantization noise and noise
shaping properties. The noise shaping helps as it pushes
the noise to higher frequencies. This is shown in figure
9. This is ideal for the project as only the first 20kHz is
needed as that's what the microphone will pick up.

A. The first Design
The designed ADC has 4 different stages, The first is
the difference amplifier and integrator which is repeated
to create the second order ADC. The difference
amplifier subtracts the previous signal from the input.
originally. The integrator is what does the noise shaping
for the ADC. originally THS4222DGK op amps were
used for both. The next stage has the comparator, which
is a 1-bit ADC to quantize the signal which will be our
output. A MAX907 EPA+ was used for this. The next
stage is the DAC, this is where the signal is fed back
into the input. To begin the ADC has a D flip-flop the
SN74LVC1G80DBVR that injects the clock into the
signal. Next used is a switch, the MAX4544 CPA+ to act
as a 1-bit DAC. Then an inverting op amp to flip the
signal. The fourth and final part is the Decimator/digital
filter that decimates the oversampling and filters out any
noise. An ACPL-0873-500E is used for this. All parts
except the decimator/digital filter are shown in the
schematic shown in figure 7.

Fig. 7. Sigma-Delta Modulator Schematic



Fig. 8. Sigma-Delta ADC Simulations

Fig. 9. Frequency Spectrum of Sigma Delta ADC

While trying to build this circuit many problems
occurred. This was most likely due to using multisim
live which only had ideal components rather than the
components actually being used. When testing there
were problems with the op-amps selected. This was
most likely due to trying to use the same op amps for all
of the sections instead of choosing op amps that suited
each function. However, many op amps were tested and
none of them worked. Another theory was that
decoupling capacitors were forgotten but even after it
didn't give any output. Overall there were too many
variables to test in the timeline we were given.

B. The Second Design

As there is a deadline for this project it was suggested
to try a design that had already proven to work. For that
an MIT project was chosen as they built a sigma delta
ADC PCB for their project [2].Their design was similar
to the one designed for our project but they included a
sample and hold circuit as shown in figure 10. Their

output for the simulation is very similar to what the
original design was outputting for the simulation as
shown in figure 8. They also included voltage buffers.
The parts used for this were an LM741 for the difference
amplifier, LF356s for the integrator and subsequent op
amps, Lm311 for the comparator, and BUF634AIDR for
the voltage buffers. Also 2N7002 MosFETs. They used a
60MHz digital clock however this project is using an
8MHz oscillator adapted to a square wave and then
pushed through an 8 times multiplier to create a 64MHz
clock.

Fig. 10. Second Design Sigma-Delta ADC Schematic

Fig. 11. Second Design Sigma-Delta ADC Simulation

At testing there were many issues with the
comparators only outputting 1V. This was most likely
due to the voltage buffers not working properly. The
design used the OPA633 as voltage buffers however,
they have since been discontinued. Therefore, they were
replaced with the BUF634AIDR which was
recommended by digikey and other sources. When
testing the buffers did not output anything. This would
explain why the comparator was only outputting 1V as it
wasn't getting any input from the sample and hold
circuit. This was especially hard to test as the buffer
required a minimum bandwidth of 35MHz which was
too high for the function generator to output. This would



also explain why the rest of the circuit was incorrect as
the other voltage buffers would not receive the minimum
bandwidth and therefore not work as well as the
feedback loop inputting the wrong values back into the
circuit.

C. ADS115

As the deadline was only 2 weeks away Dr
Chan was consulted on possible issues, he recommended
we use an ADC IC instead. For that the specifications
were that it needed to have a high resolution of at least
16-bits and have a high SNR value as both of those are
very important when converting audio signals. The
ADS1115BQDGSRQ1 was chosen as it had libraries for
the Raspberry PI as well as a module by ADAFRUIT.
The ADS1115 has I2C pins to communicate the output
directly to the Raspberry PI. The module was used to
assure both the breadboard and PCB were working as
desired. As shown in figure 12 the ADS1115 PCB did
work for the final project and was used to display the
volume of the music being played on the LCD.

Fig. 11. ADS1115 Schematic

Fig 12. ADS1115 Output

VI. SYSTEM CONCEPT

This software diagram acts as a visual aid to help
show the relationship of all of the components of the
program that handle the audio to visual conversion. The
block diagram shows the relationship between the
software parts of the project and which blocks of the
program are directly dependent on each other and how
they work if one condition is met or is not met with the
subsequent actions of the program based on the
conditions.

The subsequent hardware diagram acts as a visual aid
to help show the relationship of all of the components of
the device that handle the audio to visual conversion.
The block diagram shows the relationship between the
hardware components of the project and which
components of the device rely on other components to
gain functionality.

A. Software component relation breakdown

The components of the software that run the device
have many different interactions and stages that must be
met to successfully turn the audio input into visual
output. To start the program introduces a GUI which lets
the user choose a color scheme for audio visualization, if
the color scheme is selected then the driver code will be
initiated if not the GUI will wait for user input. Once the
driver code is active the program establishes a frequency
and volume lookup table for later reference after the
audio signal is processed. After this the unprocessed
input audio signal is passed through a fourier transform
and then the values given are compared with the lookup
tables previously established. If the values do not match
those in the lookup table then the program will revert to
converting the audio signal again and if the values do
match then the values from the table are directly output
to the LEDs that are connected through a built-in python
library.



Fig. 13. Complete software system block diagram that
shows logic behind audio to visual conversion.

B. Hardware component relation breakdown

The hardware components that make up the device
interact with each other in many ways in order to
produce the desired output effect onto the LED strip. To
start we have the components that are directly attached
to the instrument which are the LED strip and
Microphone, the microphone is powered by an external
Preamp and the microphones output signal is sent
through a hardware ADC converter. The Pre amp ADC
and all subsequent components are housed in a container
to reduce clutter and increase portability. The output
signal from the ADC converter is connected directly to
the Microcontroller via GPIO pins. The microcontroller
is subsequently connected to an LCD screen via DSI
cable and the LED strip via GPIO pins. The LCD
screen, microcontroller, and LED strip are all powered
by a DC-DC converter which draws power via a US
standard 2 Prong power supply plug.

Fig. 14. Complete hardware system block diagram that
shows the components behind audio to visual conversion
and their relations.

VII. CONCLUSION

In conclusion, the FRGB lights provide an exciting
new way to visualize music and sound through a
combination of RGB lighting and sound analysis
techniques. By using a microphone and a simple
software application, the frequency and volume of the
sound can be analyzed and used to control the lights in
real-time, thus creating a dynamic and responsive
lighting experience that is synchronized with the audio.

The FRGB lights offer a unique opportunity to
explore the relationships between sound and sight, and
to create stunning visual effects that are tailored to each



user's individual artistic preferences. The lights can also
be used to visualize some of the effects of synesthesia,
providing a new and immersive way to connect and
better understand the neurological condition.

Overall, the FRGB lights represent a significant
development in the field of music visualization,
providing an accessible and affordable platform for
artists, musicians, and enthusiasts to create unique and
personalized lighting effects that are synchronized with
their own sounds.

ACKNOWLEDGEMENT

The FRGB lights team would like to thank Dr.
Richard Leinecker for sponsoring our project and
supporting us on this journey.

REFERENCES

[1]
https://lpsa.swarthmore.edu/Fourier/Xforms/FXformIntr
o.html
[2]
https://web.mit.edu/6.101/www/s2020/projects/colinpc_
Project_Final_Report.pdf

https://lpsa.swarthmore.edu/Fourier/Xforms/FXformIntro.html
https://lpsa.swarthmore.edu/Fourier/Xforms/FXformIntro.html
https://web.mit.edu/6.101/www/s2020/projects/colinpc_Project_Final_Report.pdf
https://web.mit.edu/6.101/www/s2020/projects/colinpc_Project_Final_Report.pdf

