quite independent of any motion of the source itself. In our
first discussion of the Michelson-Morley experiment (in Chapter 2)
we stated that this was indeed the case. For a long time it was
believed that this was proved by observations on the light from
close binary stars. The two members of any such binary system
have large relative velocities, and when one star has a component
of velocity toward the earth the other will be moving away. It
was argued that if these velocities were communicated to the
emitted light, the apparent motions of the stars would be dis-
torted away from the Newtonian orbits required by the law of
gravitation. No such distortions were observed. It has been more
recently argued, however, that since these binary star systems are
usually surrounded by a gas cloud, which absorbs and then re-
radiates the light from the stars, the speed of the light that crosses
interstellar space may in any case be independent of any possible
influence of the original moving sources.' Subsequently, how-
ever, experiments have been made on rapidly moving terrestrial
sources of radiation which verify this aspect of Einstein’s second
postulate in a convincing way. In one such experiment made with
high-energy photons, not visible light, the source consisted of
unstable particles (neutral = mesons) traveling at 99.9759%, of the
speed of light. The measured speed of the photons emitted
forward with respect to this motion was (2.9977 & 0.0004) X
108 m/sec.? Reference to Table 1-2 will show that this is in
excellent agreement with the best values of ¢ obtained for sta-
tionary sources. In Chapters 5 and 6 we shall discuss in more
detail the radiation from moving sources, in connection with the
relativistic law of addition of velocities and related phenomena.

THE RELATIVITY OF SIMULTANEITY
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An immediate consequence of Einstein’s prescription for syn-
chronizing clocks at different locations is that simultaneity is
relative, not absolute. Let us see how this follows.

Suppose that three observation stations 4, B, and C are
equally spaced along the x axis of an inertial frame S in which
they are all at rest. We can construct a simple x-f coordinate
system, on which we draw “world lines” (to use the accepted
phraseology) showing the development of the system in space

1J. G. Fox, Am. J. Phys., 30, 297 (1962).

2T. Alvager, F. J. M. Farley, J. Kjellman and 1. Wallin, Phys. Letters, 12,
260 (1964).
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(a) (b)

Fig. 3-2 (a) Space-time diagram showing experiment
to define simultaneity at stations A and C (at rest in this
reference frame) by light signals emitted from a station
B midway between them. (b) Equivalent experiment for
the case in which A, B, and C all have a celocity with
respect to the reference frame.

and time [Fig. 3-2(a)]. The world line of any given particle is
just a graph of its position as a function of time; it provides a
complete picture of the history of the particle as observed within
a given frame of reference. The world lines of A4, B, and C are of
course just vertical lines parallel to the 7 axis, corresponding to
x = constant. Suppose that a light or radio signal is sent out
from Bat¢ = 0. It travels at the same speed ¢ forward and back-
ward along the x axis—an assertion that embodies the uni-
versality of ¢. This signal is described by two sloping lines
x = xpg =+ ct. The arrival of the signal at the positions of 4
and C is thus given by the intersections 4,, C,, and simultaneity
at the positions of 4 and C is defined by the line 4,C,, parallel
to the x axis, which joins a series of points possessing the same
value of 1.

But now suppose that 4, B, and C are at rest in an inertial
frame S’ which is moving with respect to S at a speed v along
the x direction [Fig. 3-2(b)]. The world lines of 4, B, and C are
now inclined as shown. A signal sent from B at 1 = 0 is again
described (in S) by the lines x = xp &+ ct, and the arrival of the
signal at the positions of 4 and C is now given by the inter-
sections 4,” and C,’. These are clearly not simultaneous for S,
because the line 4,’C,’ is manifestly not parallel to the x axis.
Or, to put it more concretely, the signal reaches 4 before it
reaches C because, as observed in S, A4 is running to meet the
signal pulse whereas C is running away from it. But we require
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B to be midway between 4 and Cin S’ as well as in S. Accepting
the universality of ¢ and the equivalence of inertial frames, we
therefore demand that A,’ and C,’ represent simultaneous events
in S’. (An event, from the standpoint of relativity theory, is
completely characterized by its space and time coordinates in a
given frame of reference.) Our judgment of simultaneity is a
Sunction of the particular frame of reference we use.

It is natural to ask why we should base this definition of
simultaneity on the velocity ¢ in particular and not on any other
possible signal velocity. The simplest answer to this is to point
to the obvious uniqueness of ¢, not merely as the speed of light,
but as the ultimate speed in all of dynamics. A more convincing
reply (at least in the long run) is that this choice does indeed have
the consequence that every known physical law has the same
form in all inertial frames.

In the above discussion we have demonstrated in a qualitative
way the relativity of simultaneity. Our next step must be to
develop the quantitative aspects of time and space measurements
according to special relativity.

THE LORENTZ-EINSTEIN TRANSFORMATIONS

Fig. 3-3 Specifica-
tion of coordinate
axes (x, 1) and (X', t')
Jor two reference
frames in relative
motion.
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Look now at Fig. 3-3. It depicts the operation of defining
simultaneity at stations 4 and C which are moving at speed v
with respect to an inertial frame S. We have already discussed
such a diagram (cf. Fig. 3-2). But now we have added lines to
represent the coordinate axes of the frame S’ in which 4 and C

Einstein and the Lorentz-Einstein transformations



Fig. 3-4 Space-time
coordinates of a
given point event in
two different inertial
frames.
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are at rest. How have we done this? The axis of 7 is readily
described; it is the line x’ = 0, i.e., the world line of the origin
of §’. And since the frame S’ has a speed v along the x direction
with respect to S, the position of this origin is described in S by
the equation x = vt if the origins of S and S’ coincide at the
time 7 = 0.

What about the axis of x’? This is the line that connects all
points corresponding to # = 0. Any line of the form # = con-
stant is parallel to this x’ axis. But the line 4,’C,’ is just such
a line, since 4,’ and C,’ are events by which simultaneity in S’
is defined. Hence we construct the x’ axis by drawing a line
parallel to 4,’C,’, and for convenience we make it pass through
O, which is thus described bothby x = 0,7 = Oand by x’ = 0,
t' = 0. The noncoincidence of the axes of x and x’ does not,
of course, imply any geometric tilting of one with respect to the
other; it is a purely formal tilting in the abstract space con-
structed from the x and 7 coordinates.

Now this type of diagram displays for us a key feature of
the kinematic transformations of special relativity. In Fig. 34
any point P in the plane of the diagram represents what is called
a point event, which can be characterized alternatively by the
values of x and 7 or of x’ and #. And our construction implies
that x’ and ¢ alike should be linear functions of both x and «.
Similarly, x and 7 are linear functions of x’ and #. This linearity
is a fundamental property of the transformation equations. If
they did not have this form, a motion recorded as motion at
constant velocity along a straight line in one frame (say .S) would
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not be recorded as uniform rectilinear motion in S’. This would
therefore conflict with Galileo’s law of inertia and with our basic
dynamical condition that all inertial frames are equivalent.

The symmetry implied by the relativity principle means that
the form of the relationships must be as follows:

x = ax' 4 bt
with (3-8)

x' = ax — bt

These are set up so as to resemble as closely as possible the
Galilean transformation [equations (3-4)] to which they must
certainly reduce for sufficiently small values of the speed v of S’
relative to S. The motion of the origin of S as measured in S’ is
defined by putting x = 0in the first of these equations. Similarly,
the motion of the origin of S’ as measured in S is defined by
putting x’ = 0 in the second equation. The velocities are equal
and opposite and both of magnitude v. This gives us the condition

b/a =v (3-9)

Next we consider the descriptions according to S and S’ of
a light signal traveling in the positive x direction. Let the signal
originate at O of Fig. 3-3. It is then described by the following
very simple equations in S and S’, respectively:

x = ct x' = ¢t (3-10)

Substitute these particular expressions for x and x’ in equations
(3-8), and we get the following:

ct = (ac + bt

ct! = (ac — b}t G-1D

Eliminating 7 and 7’ between these last equations, and using the
condition b = gv from Eq. (3-9), we find

c? = a?(c? - v?)

Therefore,

1

T = v2/e2)li2 (-12)

a

It may be noted that this coefficient, a, is precisely the factor ¥(v)
that emerged in our dynamical analysis in Chapter 1—cf. Eq.
(1-22). We can now rewrite equations (3-8) in the following
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