
CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

1

Simplify and enhance data collection performance and analysis.”CodeTune

Timing Analyzer” is a library aimed to help software developers improve the
performance of applications, drivers and system software.

Designed to be as simple and fast as possible, CodeTune uses a series of
statistical analysis on the inputted data in order to you know what is the actual

speed of the code you are creating.

Whether you are tuning for the first time or doing advanced performance

optimization, CodeTune provides a simple way of performance insight about the
speed of your code.

Analysis is faster and easier because CodeTune understands the differences of
the speed of the code you are testing, and perform a statistical analysis of the

best speed that represents the one that is being generated by your code.

The generated data is easier to interpret. You can use its powerful analysis to

sort, filter and visualize results on your source.

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

2

What Is Profiling?

Profiling is a way to measure where a program spends time. After you identify
which functions are consuming the most time, you can evaluate them for possible
performance improvements. Also, you can profile your code as a debugging tool.

For example, determining which lines of code does not run can help you develop
test cases that exercise that code. If you get an error in the file when profiling,

you can see what ran and what did not to help you isolate the problem.

CodeTune library uses 8 (eight) different methods to calculate the correct timing

of your code. On each one of them, it uses a statistical analysis of the events
observed and if it finds the correct timing, it returns the values on a summary
that is basically the Standard Deviation of the observed events.

The Standard deviation technique is used to compute the best time from where

your code is actually running on your processor.

The results are evaluated, primarily, in Nanoseconds, from where you can convert

later to clock cycles, megahertz, gigahertz, or other unit converters available upon
this library.

Optimizing code

“Programmers waste enormous amounts of time thinking
about, or worrying about, the speed of noncritical parts of
their programs, and these attempts at efficiency actually
have a strong negative impact when debugging and
maintenance are considered.” Donald Knuth.

Optimizing code to make it run faster is an iterative process:

1. Find the biggest bottleneck (the slowest part of your code).

2. Try to eliminate it (you may not succeed but that’s ok).
3. Repeat until your code is “fast enough.”

This sounds easy, but it’s not.

Even experienced programmers have a hard time identifying bottlenecks in their

code. Instead of relying on your intuition, you should profile your code: use
realistic inputs and measure the run-time of each individual operation. Only once

you’ve identified the most important bottlenecks can you attempt to eliminate
them.

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

3

Statistical profilers

CodeTune library is a statistical profiler. Therefore, it operates by sampling. A
sampling profiler probes the target program's program counter at regular
intervals using operating system interrupts. The library works as accurate as

possible trying to transpose the general knowledge that sampling profiles were
typically less numerically accurate and specific.

The resulting data are not exact, but a very good statistical approximation with a
margin of error of less of 1% in most cases.

In practice, sampling profilers can often provide a more accurate picture of the
target program's execution than other approaches, as they are not as intrusive to

the target program, and thus don't have as many side effects (such as on memory
caches or instruction decoding pipelines). Also since CodeTune is a statistical

profiler, it don't affect the execution speed as much, it can detect issues that
would otherwise be hidden. They are also relatively immune to over-evaluating
the cost of small, frequently called routines or 'tight' loops. They can show the

relative amount of time spent in user mode versus interruptible kernel mode such
as system call processing.

Still, kernel code to handle the interrupts entails a minor loss of CPU cycles,
diverted cache usage, and is unable to distinguish the various tasks occurring in

uninterruptible kernel code (microsecond-range activity).

CodeTune General Overview

CodeTune library uses 8 (eight) different Algorithms to calculate the exact time

your code is running. Each algorithm is described in this help file as a “Method”.

The functionality of the library works in different stages, each one of them is

interpreted internally to try to guarantee a better result.

The 1st stage is described as below:

Once the method is chosen by the user and

his code selected as the target to be analyzed,
the algorithm performs a series of
computations to calculate the difference

between the user function started and when it
ended.

This computation is done as many times the
user configures the algorithm. Each one of

these computations is called as “iteration” that
is basically a loop of XXX times from where on
each loop the difference is being added to the

previous one. The total amount of time of the iterations (loops) is defined by the
user.

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

4

Once the iterations ends, the collected data is then passed through a function

that performs a Standard deviation computation of the differences found on each
loop.

Accordingly to the results of the Standard Deviation, the resultant value can be
considered a good value or not, as long as it matches certain criteria’s designed to

keep the resultant value the most accurate as possible. If, those criteria’s don’t
match, the function returns and performs the iterations all over again. If the

values are Ok, they are considered as a “good sample” to be analyzed later.

In general, whenever the values don’t match the criteria it means that the

algorithm found errors during the collecting, such as overheads, throughputs,
pipelines problems and so on.

The 2nd stage then, performs another analysis basically identical to the previous
one. The difference is on the total amount of “good samples” to be collected.

On input, the user must choose how many samples he wants to be collected and
how much iteration are necessary to be performed.

The more samples to be collected and the more iteration, more accurate the result
is. The side effect of choosing too many samples or iterations is that it will take

more time to the algo finishes.

A acceptable value of samples to be collected are 300 and the amount of
iterations are acceptable to be 3000. Those values are enough to collect the
necessary data to be analyzed.

So, the 2nd stage involves doing the 1st stage all over again XXX times as defined

by the user how many samples he wants to collect to be analyzed.

Once the algorithm finishes his job, the resultant amount of “good samples” is

then ready to be interpreted internally on the 3rd stage.

But, wait, there’s more !

The 1st and 2nd stage described here shows the general rule of the functionality of

the main Api.

But, what we are analyzing exactly ?

Well, we are analyzing (Benchmarking) the

time the user’s code completes his work.
But…(Yes, there’s a “but” in here), aren’t we
also analyzing the prologue and epilogue as

long with the user code ?

Yes, in a matter of fact, we are! The user’s code

on input is located from inside another
function. Internally, the function creates a

placeholder to find the user’s code.

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

5

So, we need to calculate 1st the values of good samples of the place holder without
the user’s code inside. Then, only after these computations, we can do the same

for the user’s code.

The advantage is that we can not only exclude from the result any errors

generated by the accumulation of loops (iterations), but also generate more
accurate values that represents the true timing your function is taking to work.

Why the errors are generated? Well, because there is a fundamental problem with
deterministic profilers involving accuracy. The most obvious restriction is that the

underlying “clock” is only ticking at a rate (typically) of about 100 nanoseconds.
Hence no measurements will be more accurate than the underlying clock.

If enough measurements are taken, then the “error” will tend to average out.
Unfortunately, removing this first error induces a second source of error.

The second problem is that it “takes a while” from when an event is dispatched
until the profiler’s call to get the time actually gets the state of the clock.

Similarly, there is a certain lag when exiting the profiler event handler from the
time that the clock’s value was obtained (and then squirreled away), until the
user’s code is once again executing.

As a result, functions that are called many times, or call many functions, will

typically accumulate this error. The error that accumulates in this fashion is
typically less than the accuracy of the clock (less than one clock tick), but it can
accumulate and become very significant.

The problem is more important with profile than with the lower-overhead. For this

reason, CodeTune provides another approach while calibrating itself so that this
error can be probabilistically (on the average) removed.

After the profiler is calibrated, it will be more accurate (in a least square sense).

Nevertheless, during the 1st and 2nd stages, CodeTune will eventually find

negative numbers (when call counts are exceptionally low, and the gods of
probability work against you :-). Those results are one of the issues that are

solved by the criteria of consider a event as a “good sample” or not.

Don’t worry, because all negative results are solved during all the 1st and 2nd

stages during calibration or benchmarking the code itself.

The 3rd and final stage

After all of those computations, the collected samples are now considered “good

ones”.

But, are they really good samples?

Well, now comes the final stage involving the internal interpretation of the

collected data.

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

6

The analyses is done comparing the values found during the calibration and

benchmarking to see if they fits the minimum requirement to effectively be
considered a good sample.

It checks if the differences among each one of them are smaller then 1% (on their
own processes, i.e., the differences from the samples collected during calibration
and the ones in the benchmarking), then subtract the benchmark results with the
calibration results and see if there are no negative values and a couple of others

minor analysis.

If the resultant samples are good enough

it selects the best candidates and perform
a final Standard deviation computation

on the remaining samples to retrieve the
most accurate result as possible.

As a result, we have found and chosen
some samples from where we can have a

better estimation of the time your code
actually is consuming.

The resultant data is displayed in nanoseconds. In general, a good interpretation
of the Standard Deviation results indicates that, despites the value found on the
Mean you can safely interpret the final estimation as the Minimum found on the

Standard Deviation summary.

For example, if the summary of the resultant data using Algo Method nº 8 (which
uses rdtsc instruction as will be explained in the Reference topic of this document)
is:

Mean: 5.60425181229179 ns

Population Standard Deviation (Minimum): 4.95078946689592 ns
Population Standard Deviation (Maximum): 6.25771415768766 ns

Population Variance: 0.42701303685027 ns
Population Standard Deviation: 0.65346234539587 ns

Sample Standard Deviation (Minimum): 4.94968284062409 ns
Sample Standard Deviation (Maximum): 6.25882078395948 ns

Sample Variance: 0.42846053867010 ns
Sample Standard Deviation: 0.65456897166769 ns

You can assume that your function is taking only 4.94968284062409 ns to work
while it was being analyzed under Method 8.

What the Variance and Standard Deviation means for the scope of this Library?

The higher variance and Standard Deviation found means how much that the
chosen Method influences the result. And, therefore, indicates if you function can

be influenced by the code that surrounds it. I.e., if you function causes or is
influenced by Stallings, stacks problems, overheads and so on. It is a indicative of
the stability of your function.

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

7

It is important to also measure the values of the Variation and Standard

Derivation to see if you will need to align your function or insert code to serialize
it before and after it.

In general lines, you function will be extremely stable when:

 The variance and Standard deviations have a value near to zero or, at least
less then 0.001

 The difference between the “Population” and “Sample Standard Deviation”
for variance and Standard Deviation is also closer to Zero. For example, if

variance from “Population Variance” is 0.01 and Sample Variance is 0.0099

But, these interpretations are mainly subjective. Some methods are worst then
others to acquire the correct values of the timings. For example you may found
that using Method 8 (rdtsc instruction) frequently generates high differences in

the variance and standard deviation. This results alone does not means that you
function is not stable. You need to evaluate the stability using the other methods
individually.

If you test your function with the 8 methods and all of them have low differences

and the only one that has a high Variance/STD is Mrthod 8 (or 1, 2, etc), then
you shouldn’t be worry about it because some instructions when working isolated
does not produces accurate results anyway. CodeTune was specifically designed

to overcome this particular problem, in order to it tries to keep the most accurate
result as possible so you can be able to compare the result with other methods to

better analyze how fast your function is.

The key for the interpretation here is analyzing your function under all available

methods and see the differences of the results (Of variance, STD, Maximum and
Minimum – from Popular and Sample) on each Summary. The less difference they
have, more stable your function is.

According to the results you will see not only how fast your function is, but, how

much it can be influenced by code surrounding it.

HAVE FUN !

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

8

CodeTune API Reference

The following is a list of the reference content for the CodeTune Application
Programming interface (API).

Using the CodeTune API, you can develop benchmark applications that run
successfully on all versions of Windows while taking advantage of the features

and capabilities unique to each version.

Below is the list of available APIs on the current version. All functions used on

this library are in stdcall format.

I - Functions

1 - Main functionality:

 CreateTimeProfile

 CreateTimeProfileEx

2 - Complementary functions:

 RunTimeDataProc

 SetupTimeProfiler

 UserTargetProc

3 - Extras:

 CpuSettIngs

 GetCpuFrequencyEx

II – Structures

 CPUData

 CT_STANDARD_DEVIATION

 CT_STDEx

 CT_Nfo

III – Equates

 CPU_CPUID_AVALIABLE

 CPU_RDTSCP_AVALIABLE

 CPU_RDTSC_AVALIABLE

 CT_ALGO1

 CT_ALGO2

 CT_ALGO3

 CT_ALGO4

 CT_ALGO5

 CT_ALGO6

 CT_ALGO7

 CT_ALGO8

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

9

 CT_ALGO_METHOD_ERROR

 CT_ANALYSIS_ERROR1

 CT_ANALYSIS_ERROR2

 CT_ANALYSIS_ERROR3

 CT_ANALYSIS_ERROR4

 CT_ANALYSIS_START

 CT_ANALYSIS_SUCESS

 CT_BENCHMARK_FINISHED

 CT_BENCHMARK_RUNNING

 CT_BENCHMARK_START

 CT_CALIBRATION_FINISHED

 CT_CALIBRATION_RUNNING

 CT_CALIBRATION_START

 CT_ERROR_BENCHMARK_OVERHEAD

 CT_ERROR_CALIBRATION_OVERHEAD

 CT_ERROR_INPUT_VALUE

 CT_INCONCLUSIVE

 CT_INSUFFICIENT_FEATURES

 CT_STATUSCODE_ERROR

 MAX_ITERATIONS

 MAX_SAMPLES

 OVERHEAD_LIMIT

IV – Type Definitions

 LP_RUNTIMEDATA_CALLBACK_ROUTINE

 LP_USERTARGET_CALLBACK_ROUTINE

V – Additional Information

 APENDIX I - Understanding Mean, Variance and Standard Deviation

o 1) How to Find the Mean
o 2) Standard Deviation and Variance
o 3) Standard Deviation Formulas

 APENDIX II - Standard Deviation and Variance

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

10

I - FUNCTIONS

CreateTimeProfile function

Create the timing profile. This is the main function of CodeTune. It creates the

time profile from where you can analyze how fast your function runs.
CreateTimeProfile calibrates itself internally and interprets the results in order to
try to achieve a high level of accuracy when the function finishes.

The function also checks if your CPU supports the chosen method. I.e.: If your

processor has, for example, support for rdtscp, cupid, rdtsc etc. If you processor
don’t support the chosen method used by these instructions, a proper error
message is retrieved on dwStatusCode parameter.

CreateTimeProfile works in three main stages on the following order:

a) Calibration: from where it tries to minimize potential errors,
b) Benchmarking: to collect the timings and choose the ones considered as

best candidates for being measured. The timing values are then used as
samples to be passed through a Standard Deviation computation. On this
stage, it also computes the amount of overheads and errors found while the

samples were being collected. Once the analysis of each sample is finished
and it passed through some criteria’s to minimize potential errors on the

result, it is considered as a “good sample”. The benchmark stage collects as
many “good samples” as defined by the user on input.

c) Interpretation: to perform a fine tune on the samples chosen on the

Benchmarking stage, keeping or excluding samples to be used on a
Standard deviation Computation to find the best Values considered the
minimum as possible to the near timing your function is working.

For a more complete functionality, see CreatetimeProfileEx.

Syntax

PCT_STANDARD_DEVIATION CreateTimeProfile (
 In UINT Samples,
 In UINT Iterations,

 In UINT AlgoMethod,
 _Out_opt_ LP_RUNTIMEDATA_CALLBACK_ROUTINE lpCallBack,
 In LP_USERTARGET_CALLBACK_ROUTINE lpStartAddress
 Out PINT dwStatusCode,
);

Parameters

Samples [in]

The total amount of samples you want to be analyzed on each iteration.
This value will be used to compute the Standard Deviation of the total
amount of time your function will take to run.

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

11

The minimum value is 1 (one), because since we are analyzing the Standard

Deviation of the collected samples, it cannot perform the computation of
only 1 sample, because it will then be computing the single value itself.

The maximum amount of samples you can use on input is 100000 defined
as the equate MAX_SAMPLES.

For a regular day usage in real life applications, 300 samples to be analyzed

are enough for the function creates a correct summary of the timing profile
which will be stored on the CT_STANDARD_DEVIATION structure when
this function exits successfully.

However, you can increase the amount of samples and get better results,
but keep in mind that the more samples you are analyzing, more time the

function will take to finish.

By experiment, the overall error in the timing computation is around 1
nanosecond.

These samples are the ones to be considered as “good ones”. So, are the
amount of samples that you want CreateTimeProfile effectively uses after
excluding potential errors during the benchmark or calibration internal

stages.

Iterations [in]

The total amount of iterations (loops) you want the function to perform per
each sample.

The minimum value is 1 (one) and the maximum is 100000 defined as the
equate MAX_ITERATIONS.

For a regular day usage in real life applications, 3000 iterations to be
performed are enough for the function creates a correct summary of the

timing profile which will be stored on the CT_STANDARD_DEVIATION
structure when this function exits successfully.

However, you can increase the amount of samples and get better results,
but keep in mind that the more iterations you are doing, more time the
function will take to finish.

It is not uncommon to have variations when analyzing different amount of

iterations or samples or Algo Methods. This is due to small variations on
the CPU frequency and the accumulation of errors generated by the
underlying “clock” of the processor who is only ticking at a rate of about

100 nanoseconds which may interferes on the chosen Algo method used for
the analysis.

So, to get a better analysis of the results, it is a good strategy you perform
the computation twice using different values for samples and one single

value for the iterations under different methods.

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

12

This can ensure a more accurate time analysis. For example, you can have

these timings:

Method Chosen: Algo Method 1 (cpuid+rdtsc)
Samples: 300
Iterations: 3000

Resultant mean: 5.89280439262591

Samples: 3000
Iterations: 3000
Resultant mean: 5.34815722924948

The one with the smaller value is the one that is closer to the real timing of
your tested function. Also, consider analyzing the value found on the

SampleStd.Min or PopulationStd.Min member of the structure
CT_STANDARD_DEVIATION using different Algo methods. This is because,

CreateTimeProfile tries to keep the results on the lower value as possible
(after excluding errors generated during the internal analysis) to determine
what is the closer to the real timing your function is running. So, the values

found on the Mean member of the CT_STANDARD_DEVIATION are a
approximation due to the minimum fluctuations of the results, but, the

value found on the Minimum data analyzed by the Standard deviation
Summary is the one that better represents the correct time. Although the
interpretation of the summary of the Standard Deviation is subjective,

CreateTimeProfile tries to keep them the more accurate as possible.

Do not increase the value of iterations too much. It has 2 side-effects. One
is that it will take more time to finish. The other is that it may retrieve
incorrect results, since you may be measuring samples that are over

clocked or with a high level of errors accumulated.

That’s why there is a limitation on the total amount of samples and

iterations to be used. Keep in mind that the total amount of operations the
function will perform is, at least, Samples X Iterations. So, if you try 3000

samples X 3000 iterations you are performing 9.000.000 operations, not
considering the ones that were discarded internally (which can easily
double or triple that amount of operations involved)

AlgoMethod [in]

Use one of the following flags to specify which algorithm you want to use to
perform the timing computation.

Name Value Description

CT_ALGO1 1 This method uses cpuid + rdtsc opcode to calculate the total amount

of ticks and the amount of time it takes to run. A pseudo code

involving this method is basically this while starting and ending the

time measures:

(…)

 cpuid

 rdtsc

(…)

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

13

CT_ALGO2 2 This method uses lfence + rdtsc opcode to calculate the total amount
of ticks and the amount of time it takes to run. A pseudo code

involving this method is basically this while starting and ending the

time measures:

(…)

 lfence
 rdtsc

(…)

CT_ALGO3 3 This method uses lfence + rdtsc + lfence opcode to calculate the total

amount of ticks and the amount of time it takes to run. A pseudo code

involving this method is basically this while starting and ending the

time measures:

(…)

 lfence

 rdtsc

 lfence

(…)

CT_ALGO4 4 This method uses rdtscp opcode to calculate the total amount of ticks
and the amount of time it takes to run. A pseudo code involving this

method is basically this while starting and ending the time measures:

(…)

 rdtscp
(…)

CT_ALGO5 5 This method uses lfence + rdtscp opcode to calculate the total amount

of ticks and the amount of time it takes to run. A pseudo code

involving this method is basically this while starting and ending the

time measures:

(…)
 lfence

 rdtscp

(…)

CT_ALGO6 6 This method uses cpuid + rdtscp opcode to calculate the total amount

of ticks and the amount of time it takes to run. A pseudo code

involving this method is basically this while starting and ending the
time measures:

(…)

 cpuid

 rdtscp

(…)

CT_ALGO7 7 This method uses rdtscp + lfence opcode to calculate the total amount

of ticks and the amount of time it takes to run. A pseudo code

involving this method is basically this while starting and ending the

time measures:

(…)
 rdtscp

 lfence

 (…)

CT_ALGO8 8 This method uses rdtsc opcode to calculate the total amount of ticks

and the amount of time it takes to run. A pseudo code involving this

method is basically this while starting and ending the time measures:

(…)

 rdtsc

(…)

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

14

For a better interpretation, you may want to use different methods and analyze

the resultant data on each one of them.

Since the different methods may interfere on the results (depending on the
function you are testing), it is wise to use several methods and choose the one that

result in the smaller value.

LpCallBack [out/optional]

A pointer to a application-defined callback function from where the collected data

is stored while the function is still running. The callback function contains only 2
parameters.

One that is a pointer to a structure (CT_Nfo) containing the values internally
stored from CreateTimeProfile such as: overheads, the amount of good samples
that are being collected while the main function is operating in the calibration

mode and benchmark mode.

And the second parameter used as a placeholder for the Status of the function
whiles it is running internally.

This parameter is optional, but you may use it to get the runtime measures of the
internal stages of the function. For example, if you may want to display the

results of the good samples that are being collected or the overheads while the
function is running, to display those values in runtime you can use put the
CreateTimeProfile function inside a Thread with the CreateThread Windows Api.

If you don´t want to use a callback function, simply set this parameter as 0. For
more information, see RunTimeDataProc.

lpStartAddress [in]

A pointer to a function (void = without any parameters) from where the user can
insert his code to be analyzed. This function has no parameters.

This is the main part of the CreateTimeProfile Api. On this parameter you must

point to your code/function that you want to be analyzed.

For more information, see UserTargetProc.

dwStatusCode [out]

A reference to a status code. Status codes indicate the success or failure of the
function. It is a pointer to a UINT (32 bits: Dword) variable from where the status

code is stored.

If the function fails it returns 0 and also outputs the following status code.

Name Value Description

CT_ERROR_INPUT_VALUE 0 The user inputted an incorrect value for

Samples or Iterations. The amount of each

one of them are limited to 1 to 100000 as

defined in MAX_SAMPLES and

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

15

MAX_ITERATIONS

CT_ERROR_CALIBRATION_OVERHEAD 0-1 The maximum overhead limit (300000 as
defined in OVERHEAD_LIMIT) was reached

during calibration.

CT_ERROR_BENCHMARK_OVERHEAD 0-2 The maximum overhead limit (300000 as

defined in OVERHEAD_LIMIT) was reached

during Benchmarking.

CT_ANALYSIS_ERROR1 0-3 This happens when all samples collected in

benchmark are smaller or equal to the
calibration. So, the user code is too short to

perform a full analysis, because the app can

distinguish between both. This is a common

error found on short user’s code. Such as

analysis of isolated instructions inside

lpStartAddress, such as “xor eax eax”, “mov
ebx 5” etc. so, it happens if your function

consists on short instructions

CT_INCONCLUSIVE 0-4 Benchmark time fits the required range to be

considered a good sample, but only 1 sample

was found to be compared. Cannot make a

Standard Deviation measure with this.

CT_ANALYSIS_ERROR2 0-5 Sample too short and only 1 sample was
found to be compared. Cannot make a

Standard Deviation measure with this. This

is a common error found on short user’s

code. Such as analysis of isolated

instructions inside lpStartAddress, such as

“xor eax eax”, “mov ebx 5” etc. so, it happens
if your function consists on short

instructions.

CT_ANALYSIS_ERROR3 0-6 Although the sample fits the required range,

not all of them fit the required characteristics

to be a good sample. The resultant Standard

deviation has negative values.

CT_ANALYSIS_ERROR4 0-7 Happens on too short code or non existent.
Not all of them fit the required characteristics

to be a good sample. The resultant Standard

deviation has negative values. This is a

common error found on short user’s code.

Such as analysis of isolated instructions

inside lpStartAddress, such as “xor eax eax”,
“mov ebx 5” etc. so, it happens if your

function consists on short instructions

CT_ALGO_METHOD_ERROR 0-8 Invalid algo method. The chosen algorithm

doesn’t exists on the user CPU

CT_STATUSCODE_ERROR 0-9 The user did not inputted a pointer to the

Status code

CT_INSUFFICIENT_FEATURES 0-10 Your processor does not supports the

minimum instructions to perform a timing
measure.

If the function succeeds and also outputs the following status code.

CT_CALIBRATION_START 1 Calibration Started

CT_CALIBRATION_RUNNING 2 Calibration is Running

CT_CALIBRATION_FINISHED 3 Calibration Finished

CT_BENCHMARK_START 4 Benchmark Started

CT_BENCHMARK_RUNNING 5 Benchmark is Running

CT_BENCHMARK_FINISHED 6 Benchmark Finished

CT_ANALYSIS_START 7 Analysis Started

CT_ANALYSIS_SUCESS 8 Analysis Completed Successfully

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

16

Return value

If the function fails, it returns 0.
If the function succeeds it returns a pointer to a CT_STANDARD_DEVIATION

structure containing the resultant values timings of the tested user’s code.

Remarks

For a more accurate result, consider aligning your functions with a 16 byte
boundary. To understand why you would want to align the code (or data) in a
section on a given boundary, get more information about how cache lines work.

By aligning the start of a function on a cache line, you may be able to slightly

increase the execution speed of that function as it may generate fewer cache
misses during execution. For this reason, many programmers like to align all
their functions at the start of a cache line.

Although the size of a cache line varies from CPU to CPU, a typical cache line is
16 to 64 bytes long, so many compilers, assemblers, and linkers will attempt to

align code and data to one of these boundaries. On the 80x86 processor, there
are some other benefits to 16-byte alignment, so many 80x86-based tools default

to a 16-byte section alignment for object files.

Requirements

Minimum supported client Windows2000

Header CodeTune.h

Library CodeTune.lib

DLL CodeTune.dll

See Also

CreatetimeProfileEx
UserTargetProc

RunTimeDataProc
CT_STANDARD_DEVIATION
CT_Nfo
LP_RUNTIMEDATA_CALLBACK_ROUTINE
LP_USERTARGET_CALLBACK_ROUTINE

Examples of Usage (RosAsm Syntax):

1) Using CreateTimeProfile to display the results without Showing what is
happening inside of it.

 (…)

call 'CodeTune.CreateTimeProfile' 300, 3000, CT_ALGO3, 0, AlgoFcn, StatusCode

 mov esi eax
 fld R$esi+ CT_STANDARD_DEVIATION.MEANDis | fstp R$Mean

(…)

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

17

 This is where the main user code to be analyzed must be used. On this
example, we are analyzing the timing of the Api strlen inserting it inside a void

function called “AlgoFcn”

Proc AlgoFcn:

 C_call 'msvcrt.strlen' {B$ "Hello, this is a simple string", 0}

EndP

2) Using CreateTimeProfile to display the results showing what is happening
inside of it.

(…)

call 'CodeTune.CreateTimeProfile' 300, 3000, CT_ALGO3, RunTimeDataProc, AlgoFcn,

StatusCode

 mov esi eax

 fld R$esi+ CT_STANDARD_DEVIATION.MEANDis | fstp R$Mean

(…)

 Display the StatusCode messages when CreateTimeProfile is finished

Proc RunTimeDataProc:

 Arguments @pOutStruct, @dwStatusCode

 (…)

 .If D@dwStatusCode = CT_ANALYSIS_ERROR1
 call 'user32.SetWindowTextA' D$hWarning_Goodpass, {B$ "Samples collected 0", 0}

 C_call 'msvcrt.sprintf' SzPass, {B$ "Samples collected %.d", 0},

D$edi+CT_Nfo.GoodSamplesDis

 call 'user32.SetWindowTextA' D$hWarning_Goodpass, SzPass

 call 'USER32.SetDlgItemTextA' D$ThisWindow, IDC_WARNING_ERROR_MESSAGE,

Sz_Err1
 .End_If

(…)

EndP

 This is where the main user code to be analyzed must be used. On this

example, we are analyzing the timing of the Api strlen inserting it inside a void
function called “AlgoFcn”

Proc AlgoFcn:

 C_call 'msvcrt.strlen' {B$ "Hello, this is a simple string", 0}

EndP

3) Using CreateTimeProfile from Inside a thread without displaying error

messages

(…)

call 'KERNEL32.CreateThread' &NULL, &NULL, MyThread, D@hwnd, &FALSE, ThreahID

(…)

Proc MyThread:

 Argument @lParam
(…)

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

18

call 'CodeTune.CreateTimeProfile' 300, 3000, CT_ALGO3, 0, AlgoFcn, StatusCode

 mov esi eax

 fld R$esi+ CT_STANDARD_DEVIATION.MEANDis | fstp R$Mean

(…)

EndP

 This is where the main user code to be analyzed must be used. On this
example, we are analyzing the timing of the Api strlen inserting it inside a void

function called “AlgoFcn”

Proc AlgoFcn:

 C_call 'msvcrt.strlen' {B$ "Hello, this is a simple string", 0}

EndP

4) Using CreateTimeProfile from Inside a thread displaying error messages in
runtime (while the thread is running)

(…)

call 'KERNEL32.CreateThread' &NULL, &NULL, MyThread, D@hwnd, &FALSE, ThreahID

(…)

Proc MyThread:

 Argument @lParam

(…)

call 'CodeTune.CreateTimeProfile' 300, 3000, CT_ALGO3, RunTimeDataProc, AlgoFcn,

StatusCode

 mov esi eax

 fld R$esi+ CT_STANDARD_DEVIATION.MEANDis | fstp R$Mean

 mov eax D$StatusCode

(…)

EndP

 Display the StatusCode messages on runtime (Thread is not finished)

Proc RunTimeDataProc:
 Arguments @pOutStruct, @dwStatusCode

 (…)

 .If D@dwStatusCode = CT_ANALYSIS_ERROR1

 call 'user32.SetWindowTextA' D$hWarning_Goodpass, {B$ "Samples collected 0", 0}

 C_call 'msvcrt.sprintf' SzPass, {B$ "Samples collected %.d", 0},

D$edi+CT_Nfo.GoodSamplesDis
 call 'user32.SetWindowTextA' D$hWarning_Goodpass, SzPass

 call 'USER32.SetDlgItemTextA' D$ThisWindow, IDC_WARNING_ERROR_MESSAGE,

Sz_Err1

 .End_If

(…)
EndP

 This is where the main user code to be analyzed must be used. On this

example, we are analyzing the timing of the Api strlen inserting it inside a void
function called “AlgoFcn”

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

19

Proc AlgoFcn:

 C_call 'msvcrt.strlen' {B$ "Hello, this is a simple string", 0}

EndP

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

20

CreateTimeProfileEx function

Create the timing profile using all available Methods in CodeTune Library. This is

a extension to CreateTimeProfile function. It creates the time profile from where
you can analyze how fast your function runs. CreateTimeProfileEx calibrates itself

internally and interprets the results in order to try to achieve a high level of
accuracy when the function finishes.

It uses all available Algorithm methods for your CPU as described in
CreateTimeProfile with the advantage that you don’t need to select which one to
be used since the function will create the summary biased on all of them at once.

The function also checks if your CPU supports the chosen method. I.e.: If your

processor has, for example, support for rdtscp, cupid, rdtsc etc. If you processor
don’t support the chosen method used by these instructions, a proper error
message is retrieved on dwStatusCode parameter.

CreateTimeProfileEx analyses all available Algo Methods and on each one of them
works in three main stages on the following order:

a) Calibration: from where it tries to minimize potential errors,

b) Benchmarking: to collect the timings and choose the ones considered as
best candidates for being measured. The timing values are then used as
samples to be passed through a Standard Deviation computation. On this

stage, it also computes the amount of overheads and errors found while the
samples were being collected. Once the analysis of each sample is finished

and it passed through some criteria’s to minimize potential errors on the
result, it is considered as a “good sample”. The benchmark stage collects as
many “good samples” as defined by the user on input.

c) Interpretation: to perform a fine tune on the samples chosen on the
Benchmarking stage, keeping or excluding samples to be used on a
Standard deviation Computation to find the best Values considered the

minimum as possible to the near timing your function is working.

Syntax

PCT_STDEx CreateTimeProfileEx (
 In UINT Samples,
 In UINT Iterations,
 _Out_opt_ LP_RUNTIMEDATA_CALLBACK_ROUTINE lpCallBack,
 In LP_USERTARGET_CALLBACK_ROUTINE lpStartAddress
 Out PINT dwStatusCode,
);

Parameters

Samples [in]

The total amount of samples you want to be analyzed on each iteration.
This value will be used to compute the Standard Deviation of the total
amount of time your function will take to run.

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

21

The minimum value is 1 (one), because since we are analyzing the Standard
Deviation of the collected samples, it cannot perform the computation of

only 1 sample, because it will then be computing the single value itself.

The maximum amount of samples you can use on input is 100000 defined

as the equate MAX_SAMPLES.

For a regular day usage in real life applications, 300 samples to be analyzed
are enough for the function creates a correct summary of the timing profile
which will be stored on the CT_STDEx structure when this function exits

successfully.

However, you can increase the amount of samples and get better results,

but keep in mind that the more samples you are analyzing, more time the
function will take to finish.

By experiment, the overall error in the timing computation is around 1
nanosecond.

These samples are the ones to be considered as “good ones”. So, are the
amount of samples that you want CreateTimeProfile effectively uses after

excluding potential errors during the benchmark or calibration internal
stages.

Iterations [in]

The total amount of iterations (loops) you want the function to perform per
each sample.

The minimum value is 1 (one) and the maximum is 100000 defined as the
equate MAX_ITERATIONS.

For a regular day usage in real life applications, 3000 iterations to be

performed are enough for the function creates a correct summary of the
timing profile which will be stored on the CT_STDEx structure when this
function exits successfully.

However, you can increase the amount of samples and get better results,
but keep in mind that the more iterations you are doing, more time the

function will take to finish.

It is not uncommon to have variations when analyzing different amount of
iterations or samples. This is due to small variations on the CPU frequency
and the accumulation of errors generated by the underlying “clock” of the

processor who is only ticking at a rate of about 100 nanoseconds which
may interferes in one or more of the Algo methods used internally for the

analysis.

So, to get a better analysis of the results, it is a good strategy you perform

the computation twice using different values for samples and one single
value for the iterations.

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

22

The function will always choose the smaller value found that is closer to the
real timing of your tested function.

Also, consider analyzing the value found on the BestTiming member of the
structure CT_STDEx. This is because, CreateTimeProfileEx tries to keep the

results on the lower value as possible (after excluding errors generated
during the internal analysis) to determine what is the closer to the real

timing your function is running. So, the value of the Mean found on the
Fast.Mean member of the CT_STDEx is a approximation due to the
minimum fluctuations of the results, but, the value found on the

BestTiming member of this structure is the one that better represents the
correct time.

Although the interpretation of the summary of the Standard Deviation is
subjective, CreateTimeProfileEx tries to keep them the more accurate as

possible.

Do not increase the value of iterations too much. It has 2 side-effects. One
is that it will take more time to finish. The other is that it may retrieve
incorrect results, since you may be measuring samples that are over

clocked or with a high level of errors accumulated.

That’s why there is a limitation on the total amount of samples and

iterations to be used. Keep in mind that the total amount of operations the
function will perform is, at least, Samples X Iterations. So, if you try 3000

samples X 3000 iterations you are performing 9.000.000 operations, not
considering the ones that were discarded internally (which can easily
double or triple that amount of operations involved)

LpCallBack [out/optional]

A pointer to a application-defined callback function from where the collected data
is stored while the function is still running. The callback function contains only 2

parameters.

One that is a pointer to a structure (CT_Nfo) containing the values internally
stored from CreateTimeProfileEx such as: overheads, the Algo Methods that is
being currently analyzed internally, the amount of good samples that are being

collected while the main function is operating in the calibration mode and
benchmark mode.

And the second parameter used as a placeholder for the Status of the function
whiles it is running internally.

This parameter is optional, but you may use it to get the runtime measures of the
internal stages of the function. For example, if you may want to display the

results of the good samples that are being collected or the overheads while the
function is running, to display those values in runtime you can use put the

CreateTimeProfileEx function inside a Thread with the CreateThread Windows
Api.

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

23

If you don´t want to use a callback function, simply set this parameter as 0. For

more information, see RunTimeDataProc.

lpStartAddress [in]

A pointer to a function (void = without any parameters) from where the user can

insert his code to be analyzed. This function has no parameters.

This is the main part of the CreateTimeProfileEx Api. On this parameter you must
point to your code/function that you want to be analyzed.

For more information, see UserTargetProc.

dwStatusCode [out]

A reference to a status code. Status codes indicate the success or failure of the

function. It is a pointer to a UINT (32 bits: Dword) variable from where the status
code is stored.

If the function fails it returns 0 and also outputs the following status code.

Name Value Description

CT_ERROR_INPUT_VALUE 0 The user inputted an incorrect value for

Samples or Iterations. The amount of each
one of them are limited to 1 to 100000 as

defined in MAX_SAMPLES and

MAX_ITERATIONS

CT_ERROR_CALIBRATION_OVERHEAD 0-1 The maximum overhead limit (300000 as

defined in OVERHEAD_LIMIT) was reached

during calibration.

CT_ERROR_BENCHMARK_OVERHEAD 0-2 The maximum overhead limit (300000 as

defined in OVERHEAD_LIMIT) was reached
during Benchmarking.

CT_ANALYSIS_ERROR1 0-3 This happens when all samples collected in

benchmark are smaller or equal to the

calibration. So, the user code is too short to

perform a full analysis, because the app can

distinguish between both. This is a common
error found on short user’s code. Such as

analysis of isolated instructions inside

lpStartAddress, such as “xor eax eax”, “mov

ebx 5” etc. so, it happens if your function

consists on short instructions

CT_INCONCLUSIVE 0-4 Benchmark time fits the required range to be

considered a good sample, but only 1 sample
was found to be compared. Cannot make a

Standard Deviation measure with this.

CT_ANALYSIS_ERROR2 0-5 Sample too short and only 1 sample was

found to be compared. Cannot make a

Standard Deviation measure with this. This

is a common error found on short user’s
code. Such as analysis of isolated

instructions inside lpStartAddress, such as

“xor eax eax”, “mov ebx 5” etc. so, it happens

if your function consists on short

instructions.

CT_ANALYSIS_ERROR3 0-6 Although the sample fits the required range,

not all of them fit the required characteristics

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

24

to be a good sample. The resultant Standard
deviation has negative values.

CT_ANALYSIS_ERROR4 0-7 Happens on too short code or non existent.

Not all of them fit the required characteristics

to be a good sample. The resultant Standard

deviation has negative values. This is a

common error found on short user’s code.

Such as analysis of isolated instructions
inside lpStartAddress, such as “xor eax eax”,

“mov ebx 5” etc. so, it happens if your

function consists on short instructions

CT_ALGO_METHOD_ERROR 0-8 Invalid algo method. The chosen algorithm

doesn’t exists on the user CPU

CT_STATUSCODE_ERROR 0-9 The user did not inputted a pointer to the

Status code

CT_INSUFFICIENT_FEATURES 0-10 Your processor does not supports the
minimum instructions to perform a timing

measure.

If the function succeeds and also outputs the following status code.

CT_CALIBRATION_START 1 Calibration Started

CT_CALIBRATION_RUNNING 2 Calibration is Running

CT_CALIBRATION_FINISHED 3 Calibration Finished

CT_BENCHMARK_START 4 Benchmark Started

CT_BENCHMARK_RUNNING 5 Benchmark is Running

CT_BENCHMARK_FINISHED 6 Benchmark Finished

CT_ANALYSIS_START 7 Analysis Started

CT_ANALYSIS_SUCESS 8 Analysis Completed Successfully

Return value

If the function fails, it returns 0.
If the function succeeds it returns a pointer to a CT_STDEx structure containing

the resultant values timings of the tested user’s code.

Remarks

For a more accurate result, consider aligning your functions with a 16 byte
boundary. To understand why you would want to align the code (or data) in a
section on a given boundary, get more information about how cache lines work.

By aligning the start of a function on a cache line, you may be able to slightly

increase the execution speed of that function as it may generate fewer cache
misses during execution. For this reason, many programmers like to align all
their functions at the start of a cache line.

Although the size of a cache line varies from CPU to CPU, a typical cache line is
16 to 64 bytes long, so many compilers, assemblers, and linkers will attempt to

align code and data to one of these boundaries. On the 80x86 processor, there
are some other benefits to 16-byte alignment, so many 80x86-based tools default

to a 16-byte section alignment for object files.

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

25

Requirements

Minimum supported client Windows2000

Header CodeTune.h

Library CodeTune.lib

DLL CodeTune.dll

Examples of Usage (RosAsm Syntax):

1) Using CreateTimeProfileEx to display the results without showing what is
happening inside of it.

 (…)

call 'CodeTune.CreateTimeProfileEx' 300, 3000, 0, AlgoFcn, StatusCode

 mov esi eax

 fld R$esi+ CT_STDEx.BestTimingDis | fstp R$fastestValue

(…)

 This is where the main user code to be analyzed must be used. On this

example, we are analyzing the timing of the Api strlen inserting it inside a void
function called “AlgoFcn”

Proc AlgoFcn:

 C_call 'msvcrt.strlen' {B$ "Hello, this is a simple string", 0}

EndP

2) Using CreateTimeProfileEx to display the results showing what is
happening inside of it.

(…)

call 'CodeTune.CreateTimeProfileEx' 300, 3000, RunTimeDataProc, AlgoFcn, StatusCode

 mov esi eax

 fld R$esi+ CT_STDEx.BestTimingDis | fstp R$fastestValue
(…)

 Display the StatusCode messages when CreateTimeProfileEx is finished

Proc RunTimeDataProc:

 Arguments @pOutStruct, @dwStatusCode
 (…)

 .If D@dwStatusCode = CT_ANALYSIS_ERROR1

 call 'user32.SetWindowTextA' D$hWarning_Goodpass, {B$ "Samples collected 0", 0}

 C_call 'msvcrt.sprintf' SzPass, {B$ "Samples collected %.d", 0},

D$edi+CT_Nfo.GoodSamplesDis

 call 'user32.SetWindowTextA' D$hWarning_Goodpass, SzPass
 call 'USER32.SetDlgItemTextA' D$ThisWindow, IDC_WARNING_ERROR_MESSAGE,

Sz_Err1

 .End_If

(…)

EndP

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

26

 This is where the main user code to be analyzed must be used. On this

example, we are analyzing the timing of the Api strlen inserting it inside a void
function called “AlgoFcn”

Proc AlgoFcn:

 C_call 'msvcrt.strlen' {B$ "Hello, this is a simple string", 0}

EndP

3) Using CreateTimeProfileEx from Inside a thread without displaying error

messages

(…)
call 'KERNEL32.CreateThread' &NULL, &NULL, MyThread, D@hwnd, &FALSE, ThreahID

(…)

Proc MyThread:

 Argument @lParam
(…)

call 'CodeTune.CreateTimeProfileEx' 300, 3000, 0, AlgoFcn, StatusCode

 mov esi eax

 fld R$esi+ CT_STDEx.BestTimingDis | fstp R$fastestValue

(…)

EndP

 This is where the main user code to be analyzed must be used. On this
example, we are analyzing the timing of the Api strlen inserting it inside a void
function called “AlgoFcn”

Proc AlgoFcn:

 C_call 'msvcrt.strlen' {B$ "Hello, this is a simple string", 0}

EndP

4) Using CreateTimeProfileEx from Inside a thread displaying error messages

in runtime (while the thread is running)

(…)
call 'KERNEL32.CreateThread' &NULL, &NULL, MyThread, D@hwnd, &FALSE, ThreahID

(…)

Proc MyThread:

 Argument @lParam

(…)
call 'CodeTune.CreateTimeProfileEx' 300, 3000, RunTimeDataProc, AlgoFcn, StatusCode

 mov esi eax

 fld R$esi+ CT_STDEx.BestTimingDis | fstp R$fastestValue

 mov eax D$StatusCode
(…)

EndP

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

27

 Display the StatusCode messages on runtime (Thread is not finished)

Proc RunTimeDataProc:

 Arguments @pOutStruct, @dwStatusCode

 (…)

 .If D@dwStatusCode = CT_ANALYSIS_ERROR1

 call 'user32.SetWindowTextA' D$hWarning_Goodpass, {B$ "Samples collected 0", 0}
 C_call 'msvcrt.sprintf' SzPass, {B$ "Samples collected %.d", 0},

D$edi+CT_Nfo.GoodSamplesDis

 call 'user32.SetWindowTextA' D$hWarning_Goodpass, SzPass

 call 'USER32.SetDlgItemTextA' D$ThisWindow, IDC_WARNING_ERROR_MESSAGE,

Sz_Err1

 .End_If
(…)

EndP

 This is where the main user code to be analyzed must be used. On this
example, we are analyzing the timing of the Api strlen inserting it inside a void
function called “AlgoFcn”

Proc AlgoFcn:

 C_call 'msvcrt.strlen' {B$ "Hello, this is a simple string", 0}

EndP

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

28

RunTimeDataProc callback function

An application-defined callback function used as Storage of information retrieved
by CreateTimeProfile or CreateTimeProfileEx functions. Specify this address when

calling those functions.

Syntax

DWORD RunTimeDataProc (
 Out PCT_Nfo pUserStruct,
 Out INT dwStatusCode,
);

Parameters

pUserStruct [out]

A pointer to a CT_Nfo structure that contains the values internally stored from

CreateTimeProfile or CreateTimeProfileEx such as: overheads, the amount of good
samples that are being collected while the main function is operating in the

calibration mode and benchmark mode.

dwStatusCode [out]

A reference to a status code. Status codes indicate the success or failure of the

function. It is a INT (32 bits: Dword) variable. For more information on the used
values and equates, see: CreateTimeProfile, CreateTimeProfileEx

Return value

The function does not return any value

Remarks

None

Requirements

Minimum supported client Windows2000

Header CodeTune.h

Examples of Usage:

See CreateTimeProfile or CreateTimeProfileEx functions

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

29

SetupTimeProfiler function

Initialize and configure all internal data of the CreateTimeProfile and

CreateTimeProfileEx functions. You may use this function on the initialization of
your application. For example, on the WM_INITDIALOG or WM_CREATE

messages, or when it starts at your Main function.

Although using SetupTimeProfiler is not mandatory for CreateTimeProfile or

CreateTimeProfileEx to work (Since that Api already setups itself internally), you
may wants to previously setup CreateTime function in order to it runs a bit faster

on the 1st time you call it.

Syntax

void SetupTimeProfiler (
);

Parameters

None

Return value

The function does not return any value

Remarks

None

Requirements

Minimum supported client Windows2000

Header CodeTune.h

Library CodeTune.lib

DLL CodeTune.dll

Example of Usage (RosAsm Syntax):

Main:

 call 'CodeTune.SetupTimeProfiler'

 call 'kernel32.GetModuleHandleA' &NULL

 call WinMain

 (…)

See also

CreateTimeProfile
CreateTimeProfileEx

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

30

UserTargetProc callback function

An application-defined callback function that notify CreateTimeProfile and

CreateTimeProfileEx functions to start timing the user’s code inside of it.

This is the most important callback function used as parameter in
CreateTimeProfile and CreateTimeProfileEx function. From here the actual timing
is being measure, since this is where the user must insert his code to be

analyzed.

Syntax

DWORD UserTargetProc (

);

Parameters

None

Return value

The function does not return any value

Remarks

None

Requirements

Minimum supported client Windows2000

Header CodeTune.h

Examples of Usage:

See CreateTimeProfile or CreateTimeProfileEx functions

See also

CreateTimeProfile
CreateTimeProfileEx

LP_USERTARGET_CALLBACK_ROUTINE

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

31

CpuSettings function

Provides information about your CPU such as clock frequency, vendor Id string,

and if your processor supports Cpuid, rdtsc, rdtscp instructions.

Syntax

DWORD CpuSettings (
 Out PCPUData pUserStruct,
);

Parameters

pUserStruct [out]

A pointer to a CPUData structure that contains information about your
processor.

Return value

If the function fails, it returns FALSE
If the function succeeds, it returns TRUE

Remarks

The function will return FALSE if your processor doesn’t support any of the

necessary instructions for the function to work. I.e: Processors earlier then a 486
or that doesn’t have support for cpuid instruction.

Requirements

Minimum supported client Windows2000

Header CodeTune.h

Library CodeTune.lib

DLL CodeTune.dll

Examples of Usage (RosAsm Syntax):

[CPUData:

 CPUData.Flags: D$ 0

 CPUData.ClockFrequency: R$ 0

 CPUData.String: D$ 0]

(…)
 call 'CodeTune.CpuSettings' CPUData

(…)

See Also

CpuData

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

32

GetCpuFrequencyEx

This function retrieves the Clock frequency of your CPU.

Syntax

DWORD CpuFreqencyEx (
 Out PDouble pOutFrequency,
);

Parameters

pOutFrequency [out]

A pointer to a variable that stores the frequency of the CPU (In Gigahertz). The
size of the value is FPU double: REAL, that is a 64 bit value.

Return value

If the function fails, it returns FALSE
If the function succeeds, it returns TRUE

Remarks

The function will return FALSE if your processor doesn’t support the necessary
instructions for the function to work. I.e: Processors earlier then a 486 or that

don’t have support for cpuid instruction.

To check if your processor have support for this instructions, consider using
CpuSettings function, instead.

Requirements

Minimum supported client Windows2000

Header CodeTune.h

Library CodeTune.lib

DLL CodeTune.dll

Examples of Usage (RosAsm Syntax):

[ClockFrequency: R$ 0]

(…)

 call 'CodeTune.CpuFrequencyEx' ClockFrequency
(…)

See Also

CpuSetings

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

33

II- STRUCTURES

CPUData structure

Displays information about CPU settings, such as: frequency, instructions and

CPUId vendor string.

Syntax

C++

typedef struct _CPUData {

 uint Flags;

 double ClockFrequency;

 *char String;

} CPUData, *PCPUData

RosAsm

[CPUData:
 CPUData.Flags: D$ 0
 CPUData.ClockFrequency: R$ 0
 CPUData.String: D$ 0]

Masm

CPUData struct
 Flags DWORD ?
 ClockFrequency REAL8 ?
 String DWORD ?
CPUData ends

Structure Displacement
(Equates related to the position of each member and size of the structure)

CPUData.FlagsDis 0
CPUData.ClockFrequencyDis 4
CPUData.StringDis 12

Size_Of_CPUData 16

Members

Flags

A flag containing information about the capability of the user’s processor. It can

be a combination of the following equates.

Name Value Description

CPU_CPUID_AVALIABLE 1 The CPU supports cpuid instruction

CPU_RDTSCP_AVALIABLE 2 The CPU supports rdtscp instruction

CPU_RDTSC_AVALIABLE 4 The CPU supports rdtsc instruction

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

34

ClockFrequency

The frequency of the CPU (in Gigahertz). The size of the value is FPU double:

REAL, that is a 64 bit value.

String

A Pointer to the CPU's manufacturer ID string – a twelve-character ASCII string.

The following are known processor manufacturer ID strings:

String Description

"AMDisbetter!" early engineering samples of AMD K5 processor

"AuthenticAMD" AMD

"CentaurHauls" Centaur (Including some VIA CPU)

"CyrixInstead" Cyrix

"GenuineIntel" Intel

"TransmetaCPU" Transmeta

"GenuineTMx86" Transmeta

"Geode by NSC" National Semiconductor

"NexGenDriven" NexGen

"RiseRiseRise" Rise

"SiS SiS SiS " SiS

"UMC UMC UMC " UMC

"VIA VIA VIA " VIA

"Vortex86 SoC" Vortex

The following are known ID strings from virtual machines:

String Description

"KVMKVMKVM" KVM

"Microsoft Hv" Microsoft Hyper-V or Windows Virtual PC

" lrpepyh vr" Parallels (it possibly should be "prl hyperv ", but it is
encoded as " lrpepyh vr")

"VMwareVMware" VMware

"XenVMMXenVMM" Xen HVM

Remarks

None.

Requirements

Minimum supported client Windows2000

Header CodeTune.h

Examples of Usage:

See CpuSettings function

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

35

See also

CpuSettings

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

36

CT_STANDARD_DEVIATION structure

Displays Standard Deviation values measured from CreateTimeProfile function.
The values are displayed in nanoseconds.

The Standard Deviation is a measure of how spread out numbers are. Its symbol
is σ (the Greek letter sigma)

When only a sample of data from a population is available, the term standard
deviation of the sample or sample standard deviation can refer to either the

above-mentioned quantity as applied to those data or to a modified quantity that
is a better estimate of the population standard deviation (the standard deviation

of the entire population).

By using standard deviations, a minimum and maximum value can be calculated

that the averaged weight will be within some very high percentage of the time
(99.9% or more).

Syntax

C++

typedef struct _CT_STANDARD_DEVIATION {

 double Mean;

 double PopulationStd.Max;

 double PopulationStd.Min;

 double PopulationStd.Variance;

 double PopulationStd.StandardDeviation;

 double SampleStd.Max;

 double SampleStd.Min;

 double Sample.Variance;

 double Sample.StandardDeviation;

} CT_STANDARD_DEVIATION, *PCT_STANDARD_DEVIATION

RosAsm

[CT_STANDARD_DEVIATION:
 CT_STANDARD_DEVIATION.Mean: R$ 0
 CT_STANDARD_DEVIATION.PopulationStd.Max: R$ 0
 CT_STANDARD_DEVIATION.PopulationStd.Min: R$ 0
 CT_STANDARD_DEVIATION.PopulationStd.Variance: R$ 0
 CT_STANDARD_DEVIATION.PopulationStd.StandardDeviation: R$ 0
 CT_STANDARD_DEVIATION.SampleStd.Max: R$ 0
 CT_STANDARD_DEVIATION.SampleStd.Min: R$ 0
 CT_STANDARD_DEVIATION.Sample.Variance: R$ 0
 CT_STANDARD_DEVIATION.Sample.StandardDeviation: R$ 0]

Masm

CT_STANDARD_DEVIATION struct
 Mean REAL8 ?

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

37

 Population_StdMax REAL8 ?
 Population_StdMin REAL8 ?
 Population_StdVariance REAL8 ?
 Population_StdStandardDeviation REAL8 ?
 Sample_StdMax REAL8 ?
 Sample_StdMin REAL8 ?
 Sample_Variance REAL8 ?
 Sample_StandardDeviation REAL8 ?
CT_STANDARD_DEVIATION ends

Structure Displacement
(Equates related to the position of each member and size of the structure)

CT_STANDARD_DEVIATION.MeanDis 0

CT_STANDARD_DEVIATION.PopulationStd.MaxDis 8

CT_STANDARD_DEVIATION.PopulationStd.MinDis 16

CT_STANDARD_DEVIATION.PopulationStd.VarianceDis 24

CT_STANDARD_DEVIATION.PopulationStd.StandardDeviationDis 32

CT_STANDARD_DEVIATION.SampleStd.MaxDis 40

CT_STANDARD_DEVIATION.SampleStd.MinDis 48

CT_STANDARD_DEVIATION.Sample.VarianceDis 56

CT_STANDARD_DEVIATION.Sample.StandardDeviationDis 64

Size_Of_ CT_STANDARD_DEVIATION 72

Members

Mean

The mean is the average of the calculated timings. In nanoseconds

PopulationStd.Max

Computes the Maximum value of a population standard deviation. In

nanoseconds

PopulationStd.Min

Computes the Minimum value of a population standard deviation. In
nanoseconds

PopulationStd.Variance

Computes the Variance of a population standard deviation. In nanoseconds

PopulationStd.StandardDeviation

Computes the Standard Deviation of a entire population of the measured the
timings. In nanoseconds

SampleStd.Max

Computes the Maximum value of a sample standard deviation. In nanoseconds

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

38

SampleStd.Min

Computes the Minimum value of a sample standard deviation. In nanoseconds

Sample.Variance

Computes the Variance of a sample standard deviation. In nanoseconds

Sample.StandardDeviation

Computes the Standard Deviation of a sample of the measured the timings. In

nanoseconds

Remarks

The values on each member are expressed in nanoseconds. Also, the length of the
data is a 64 byte value represented as a double Float type (Real).

Requirements

Minimum supported client Windows2000

Header CodeTune.h

Examples of Usage:

See CreateTimeProfile function

See also

CreateTimeProfile
Apendix1 - Understanding Mean, Variance and Standard Deviation
Apendix2 - Standard Deviation and Variance

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

39

CT_STDEx structure

Displays extended information of Standard Deviation values measured from
CreateTimeProfileEx function. The values are displayed in nanoseconds.

This structure is formed by a double data type containing the fastest time
measured from CreateTimeProfileEx function, a dword value containing the Algo

method Id where the fastest time was retrieved, and two
CT_STANDARD_DEVIATION structures (one where the fastest Mean was found,
and other where the Fastest Time was found).

The Standard Deviation is a measure of how spread out numbers are. Its symbol

is σ (the Greek letter sigma)

When only a sample of data from a population is available, the term standard
deviation of the sample or sample standard deviation can refer to either the
above-mentioned quantity as applied to those data or to a modified quantity that

is a better estimate of the population standard deviation (the standard deviation
of the entire population).

By using standard deviations, a minimum and maximum value can be calculated
that the averaged weight will be within some very high percentage of the time

(99.9% or more).

Syntax

C++

a) Simplified

typedef struct _CT_STDEx {

 double BestTiming;

 uint IDFound;

 CT_STANDARD_DEVIATION Avg;

 CT_STANDARD_DEVIATION Fast;

} CT_STDEx, *PCT_STDEx

b) Complete

typedef struct _CT_STDEx {

 double BestTiming;

 uint IDFound;

 double Avg.Mean;

 double Avg.PopulationStd.Max;

 double Avg.PopulationStd.Min;

 double Avg.PopulationStd.Variance;

 double Avg.PopulationStd.StandardDeviation;

 double Avg.SampleStd.Max;

 double Avg.SampleStd.Min;

 double Avg.Sample.Variance;

 double Avg.Sample.StandardDeviation;

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

40

 double Fast.Mean;

 double Fast.PopulationStd.Max;

 double Fast.PopulationStd.Min;

 double Fast.PopulationStd.Variance;

 double Fast.PopulationStd.StandardDeviation;

 double Fast.SampleStd.Max;

 double Fast.SampleStd.Min;

 double Fast.Sample.Variance;

 double Fast.Sample.StandardDeviation;

} CT_STDEx, *PCT_STDEx

RosAsm

[CT_STDEx:

 CT_STDEx.BestTiming: R$ 0

 CT_STDEx.IDFound: D$ 0

 CT_STDEx.Avg.AlgoMethod: D$ 0

 CT_STDEx.Avg.Mean: R$ 0

 CT_STDEx.Avg.PopulationStd.Max: R$ 0

 CT_STDEx.Avg.PopulationStd.Min: R$ 0

 CT_STDEx.Avg.PopulationStd.Variance: R$ 0

 CT_STDEx.Avg.PopulationStd.StandardDeviation: R$ 0

 CT_STDEx.Avg.SampleStd.Max: R$ 0

 CT_STDEx.Avg.SampleStd.Min: R$ 0

 CT_STDEx.Avg.Sample.Variance: R$ 0

 CT_STDEx.Avg.Sample.StandardDeviation: R$ 0

 CT_STDEx.Fast.AlgoMethod: D$ 0

 CT_STDEx.Fast.Mean: R$ 0

 CT_STDEx.Fast.PopulationStd.Max: R$ 0

 CT_STDEx.Fast.PopulationStd.Min: R$ 0

 CT_STDEx.Fast.PopulationStd.Variance: R$ 0

 CT_STDEx.Fast.PopulationStd.StandardDeviation: R$ 0

 CT_STDEx.Fast.SampleStd.Max: R$ 0

 CT_STDEx.Fast.SampleStd.Min: R$ 0

 CT_STDEx.Fast.Sample.Variance: R$ 0

 CT_STDEx.Fast.Sample.StandardDeviation: R$ 0]

Masm

a) Simplified

CT_STDEx struct

 BestTiming REAL8 ?

 IDFound DWORD ?

 Avg CT_STANDARD_DEVIATION <?>

 Fast CT_STANDARD_DEVIATION <?>

CT_STDEx ends

b) Complete

CT_STDEx struct

 BestTiming REAL8 ?

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

41

 IDFound DWORD ?

 Avg_Mean REAL8 ?
 Avg_PopulationStd_Max REAL8 ?
 Avg_PopulationStd_Min REAL8 ?
 Avg_PopulationStd_Variance REAL8 ?
 Avg_PopulationStd_StandardDeviation REAL8 ?
 Avg_SampleStd_Max REAL8 ?
 Avg_SampleStd_Min REAL8 ?
 Avg_Sample_Variance REAL8 ?
 Avg_Sample_StandardDeviation REAL8 ?
 Fast_Mean REAL8 ?
 Fast_PopulationStd_Max REAL8 ?
 Fast_PopulationStd_Min REAL8 ?
 Fast_PopulationStd_Variance REAL8 ?
 Fast_PopulationStd_StandardDeviation REAL8 ?

 Fast_SampleStd_Max REAL8 ?
 Fast_SampleStd_Min REAL8 ?
 Fast_Sample_Variance REAL8 ?
 Fast_Sample_StandardDeviation REAL8 ?

CT_STDEx ends

Structure Displacement
(Equates related to the position of each member and size of the structure)

CT_STDEx.BestTimingDis 0
CT_STDEx.IDFoundDis 8
CT_STDEx.Avg.AlgoMethodDis 12
CT_STDEx.Avg.MeanDis 16
CT_STDEx.Avg.PopulationStd.MaxDis 24
CT_STDEx.Avg.PopulationStd.MinDis 32
CT_STDEx.Avg.PopulationStd.VarianceDis 40
CT_STDEx.Avg.PopulationStd.StandardDeviationDis 48
CT_STDEx.Avg.SampleStd.MaxDis 56
CT_STDEx.Avg.SampleStd.MinDis 64
CT_STDEx.Avg.Sample.VarianceDis 72
CT_STDEx.Avg.Sample.StandardDeviationDis 80
CT_STDEx.Fast.AlgoMethodDis 88
CT_STDEx.Fast.MeanDis 92
CT_STDEx.Fast.PopulationStd.MaxDis 100
CT_STDEx.Fast.PopulationStd.MinDis 108
CT_STDEx.Fast.PopulationStd.VarianceDis 116

CT_STDEx.Fast.PopulationStd.StandardDeviationDis 124
CT_STDEx.Fast.SampleStd.MaxDis 132
CT_STDEx.Fast.SampleStd.MinDis 140
CT_STDEx.Fast.Sample.VarianceDis 148
CT_STDEx.Fast.Sample.StandardDeviationDis 156

Size_Of_CT_STDEx 164

Members

BestTiming

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

42

The value of the fastest timing collected from the function CreateTimeProfileEx. It

is the one that best represents the real timing from which the user’s code was
running. It is the minimum value measured through all available algo methods.

In nanoseconds

IDFound

The algo method ID from where the value of the BestTiming member was

retrieved on function CreateTimeProfileEx.

The values are the same ones as in parameter “algoMethod” in CreateTimeProfile

function.

It can be one of the following equates.

Name Value Description

CT_ALGO1 1 This method uses cpuid + rdtsc opcode to calculate the total amount

of ticks and the amount of time it takes to run. A pseudo code

involving this method is basically this while starting and ending the

time measures:

(…)

 cpuid

 rdtsc

(…)

CT_ALGO2 2 This method uses lfence + rdtsc opcode to calculate the total amount

of ticks and the amount of time it takes to run. A pseudo code

involving this method is basically this while starting and ending the
time measures:

(…)

 lfence

 rdtsc
(…)

CT_ALGO3 3 This method uses lfence + rdtsc + lfence opcode to calculate the total

amount of ticks and the amount of time it takes to run. A pseudo code

involving this method is basically this while starting and ending the

time measures:

(…)
 lfence

 rdtsc

 lfence

(…)

CT_ALGO4 4 This method uses rdtscp opcode to calculate the total amount of ticks

and the amount of time it takes to run. A pseudo code involving this
method is basically this while starting and ending the time measures:

(…)

 rdtscp

(…)

CT_ALGO5 5 This method uses lfence + rdtscp opcode to calculate the total amount

of ticks and the amount of time it takes to run. A pseudo code
involving this method is basically this while starting and ending the

time measures:

(…)

 lfence
 rdtscp

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

43

(…)

CT_ALGO6 6 This method uses cpuid + rdtscp opcode to calculate the total amount
of ticks and the amount of time it takes to run. A pseudo code

involving this method is basically this while starting and ending the

time measures:

(…)

 cpuid
 rdtscp

(…)

CT_ALGO7 7 This method uses rdtscp + lfence opcode to calculate the total amount

of ticks and the amount of time it takes to run. A pseudo code

involving this method is basically this while starting and ending the

time measures:

(…)

 rdtscp

 lfence

 (…)

CT_ALGO8 8 This method uses rdtsc opcode to calculate the total amount of ticks

and the amount of time it takes to run. A pseudo code involving this
method is basically this while starting and ending the time measures:

(…)

 rdtsc

(…)

Avg

A CT_STANDARD_DEVIATION structure containing the values of the fastest Mean
value found among all Algo Methods available. This structure is collected after all

methods are tested. Once CreateTmeprofileEx finishes the initial analysis it
selects the structure with the fastest mean value found.

For more information about the members of this structure, see
CT_STANDARD_DEVIATION.

Fast

A CT_STANDARD_DEVIATION structure containing the values of the fastest value
ever found among all Algo Methods available. This structure is collected after all
methods are tested. Once CreateTmeprofileEx finishes the initial analysis it

selects the structure with the fastest value found.

The fastest value, in general is found in the SampleStd.Min member of

CT_STANDARD_DEVIATION.structure.

But, not necessarily the value of Avg and Fast were found under the same Algo
Method. CreateTmeprofileEx function may have found the fastest mean from Algo
method 3 and the Fastest value (The one with the smallest STD.Min) in Algo

Method 1.

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

44

This happens because of the variances that are being found. One Algo Method
can have a Variance (or Standard Deviation) bigger then the other. The mean, is

like the name says an average o the results, and depends the values found in
STD.Max and STD.Min. So if a value have a low STDMin and high STDMax, the
value of the Mean tends to be bigger too.

Since what we are collecting is a measure of the time of the samples, it is safe to

say that the value found on this “Fast” member is the one that is more close to
the real time of the tested function.

For more information about the members of this structure, see
CT_STANDARD_DEVIATION.

Remarks

The values on each member are expressed in nanoseconds. Also, the length of the
data is a 64 byte value represented as a double Float type (Real).

Requirements

Minimum supported client Windows2000

Header CodeTune.h

Examples of Usage:

See CreateTimeProfileEx function

See also

CreateTimeProfile

CreateTimeProfileEx
CT_STANDARD_DEVIATION
Apendix1 - Understanding Mean, Variance and Standard Deviation

Apendix2 - Standard Deviation and Variance

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

45

CT_Nfo structure

Displays information about the Algorithm method used, amount of overheads and
Good Samples that are being retrieved from CreateTimeProfile function.

Syntax

C++

typedef struct _CT_Nfo {

 DWORD AlgoID;

 DWORD Overheads;

 DWORD GoodSamples;

} CT_Nfo, *PCT_Nfo

RosAsm

[CT_Nfo:

 CT_Nfo.AlgoID: D$ 0

 CT_Nfo.Overheads: D$ 0

 CT_Nfo.GoodSamples: D$ 0]

Masm

CT_Nfo struct

 AlgoID DWORD ?

 Overheads DWORD ?

 GoodSamples DWORD ?

CT_Nfo ends

Structure Displacement
(Equates related to the position of each member and size of the structure)

CT_Nfo.AlgoIDDis 0

 CT_Nfo.OverheadsDis 4

 CT_Nfo.GoodSamplesDis 8

Size_Of_CT_Nfo 12

Members

AlgoId

A flag corresponding to the Algo Method chosen by the user. For a complete
description of the Flags, please see CreateTimeProfile function.

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

46

The supported flags are:

Name Value

CT_ALGO1 1

CT_ALGO2 2

CT_ALGO3 3

CT_ALGO4 4

CT_ALGO5 5

CT_ALGO6 6

CT_ALGO7 7

CT_ALGO8 8

Overheads

The total amount of overheads and problems found on CreateTimeProfile
function. The amount of overheads are calculated on both stages: Calibration and

benchmarking. So, while it is calibrating, this member is storing the amount of
overheads for the user display it if he wants. Once calibration is done, this
member is zeroed for the next stage (Benchmark). So, when Benchmark begins, it

starts calculating the amount of overheads on this stage too.

GoodSamples

The total amount of Good samples found on CreateTimeProfile function. The

amount of Good Samples is calculated on both stages: Calibration and
benchmarking. So, while it is calibrating, this member is storing the amount of
samples considered “good” for the user display it if he wants. Once calibration is

done, this member is zeroed for the next stage (Benchmark). So, when
Benchmark begins, it starts calculating the amount of good samples on this stage

too.

Remarks

none

Requirements

Minimum supported client Windows2000

Header CodeTune.h

Examples of Usage:

See CreateTimeProfile function

See also

CreateTimeProfile
RunTimeDataProc

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

47

III- EQUATES

Here is a list of equates used by CodeTune Api

Name Value Description

CPU_CPUID_AVALIABLE 1 The CPU supports cpuid instruction

CPU_RDTSC_AVALIABLE 4 The CPU supports rdtsc instruction

CPU_RDTSCP_AVALIABLE 2 The CPU supports rdtscp instruction

CT_ALGO1 1 This method uses cpuid + rdtsc opcode to

calculate the total amount of ticks and the

amount of time it takes to run. A pseudo code

involving this method is basically this while

starting and ending the time measures:

(…)

 cpuid

 rdtsc

(…)

CT_ALGO2 2 This method uses lfence + rdtsc opcode to

calculate the total amount of ticks and the
amount of time it takes to run. A pseudo code

involving this method is basically this while

starting and ending the time measures:

(…)

 lfence
 rdtsc

(…)

CT_ALGO3 3 This method uses lfence + rdtsc + lfence opcode

to calculate the total amount of ticks and the

amount of time it takes to run. A pseudo code

involving this method is basically this while
starting and ending the time measures:

(…)

 lfence

 rdtsc

 lfence
(…)

CT_ALGO4 4 This method uses rdtscp opcode to calculate

the total amount of ticks and the amount of

time it takes to run. A pseudo code involving

this method is basically this while starting and

ending the time measures:

(…)

 rdtscp

(…)

CT_ALGO5 5 This method uses lfence + rdtscp opcode to

calculate the total amount of ticks and the

amount of time it takes to run. A pseudo code
involving this method is basically this while

starting and ending the time measures:

(…)

 lfence
 rdtscp

(…)

CT_ALGO6 6 This method uses cpuid + rdtscp opcode to

calculate the total amount of ticks and the

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

48

amount of time it takes to run. A pseudo code
involving this method is basically this while

starting and ending the time measures:

(…)

 cpuid

 rdtscp
(…)

CT_ALGO7 7 This method uses rdtscp + lfence opcode to

calculate the total amount of ticks and the

amount of time it takes to run. A pseudo code

involving this method is basically this while

starting and ending the time measures:

(…)

 rdtscp

 lfence

 (…)

CT_ALGO8 8 This method uses QueryPerformanceCounter

Windows Api to calculate the total amount of
ticks and the amount of time it takes to run. A

pseudo code involving this method is basically

this while starting and ending the time

measures:

(…)

 invoke QueryPerformanceCounter, ADDR

pcCount

(…)

CT_ALGO_METHOD_ERROR 0-8 Invalid algo method. The chosen algorithm

doesn’t exists on the user CPU

CT_ANALYSIS_ERROR1 0-3 This happens when all samples collected in

benchmark are smaller or equal to the
calibration. So, the user code is too short to

perform a full analysis, because the app can

distinguish between both. This is a common

error found on short user’s code. Such as

analysis of isolated instructions inside
lpStartAddress, such as “xor eax eax”, “mov

ebx 5” etc. so, it happens if your function

consists on short instructions

CT_ANALYSIS_ERROR2 0-5 Sample too short and only 1 sample was found

to be compared. Cannot make a Standard

Deviation measure with this. This is a common
error found on short user’s code. Such as

analysis of isolated instructions inside

lpStartAddress, such as “xor eax eax”, “mov

ebx 5” etc. so, it happens if your function

consists on short instructions.

CT_ANALYSIS_ERROR3 0-6 Although the sample fits the required range,

not all of them fit the required characteristics
to be a good sample. The resultant Standard

deviation has negative values.

CT_ANALYSIS_ERROR4 0-7 Happens on too short code or non existent. Not

all of them fit the required characteristics to be

a good sample. The resultant Standard

deviation has negative values. This is a
common error found on short user’s code.

Such as analysis of isolated instructions inside

lpStartAddress, such as “xor eax eax”, “mov

ebx 5” etc. so, it happens if your function

consists on short instructions

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

49

CT_ANALYSIS_START 7 Analysis Started

CT_ANALYSIS_SUCESS 8 Analysis Completed Successfully

CT_BENCHMARK_FINISHED 6 Benchmark Finished

CT_BENCHMARK_RUNNING 5 Benchmark is Running

CT_BENCHMARK_START 4 Benchmark Started

CT_CALIBRATION_FINISHED 3 Calibration Finished

CT_CALIBRATION_RUNNING 2 Calibration is Running

CT_CALIBRATION_START 1 Calibration Started

CT_ERROR_BENCHMARK_OVERHE
AD

0-2 The maximum overhead limit (300000 as
defined in OVERHEAD_LIMIT) was reached

during Benchmarking.

CT_ERROR_CALIBRATION_OVERH

EAD

0-1 The maximum overhead limit (300000 as

defined in OVERHEAD_LIMIT) was reached

during calibration.

CT_ERROR_INPUT_VALUE 0 The user inputted an incorrect value for

Samples or Iterations. The amount of each one
of them are limited to 1 to 100000 as defined in

MAX_SAMPLES and MAX_ITERATIONS

CT_INCONCLUSIVE 0-4 Benchmark time fits the required range to be

considered a good sample, but only 1 sample

was found to be compared. Cannot make a

Standard Deviation measure with this.

CT_INSUFFICIENT_FEATURES 0-10 Your processor does not supports the
minimum instructions to perform a timing

measure.

CT_STATUSCODE_ERROR 0-9 The user did not inputted a pointer to the

Status code

MAX_ITERATIONS 100000 The maximum amount of Iterations

MAX_SAMPLES 100000 The maximum amount of samples

OVERHEAD_LIMIT 300000 The maximum amount of overheads performed

by CreateTimeProfile function. When this limit

is reached the function exits unsuccessfully, to

avoid hangs.

Requirements

Minimum supported client Windows2000

Header CodeTune.h

DLL CodeTune.dll

Examples of Usage:

See CreateTimeProfile , CpuSettings functions

See also

CreateTimeProfile
CpuSettings

CpuData

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

50

IV- TYPE DEFINITIONS

LP_RUNTIMEDATA_CALLBACK_ROUTINE Function
Pointer

Points to a function that notify the host when collecting data has started in
CreateTimeProfile function.

Syntax

typedef DWORD (__stdcall * LP_RUNTIMEDATA_CALLBACK_ROUTINE) (
 Out PCT_Nfo pUserStruct,
 Out INT dwStatusCode,
);

Parameters

pUserStruct [out]

A pointer to a CT_Nfo structure that contains the values internally stored from

CreateTimeProfile such as: overheads, the amount of good samples that are being
collected while the main function is operating in the calibration mode and

benchmark mode.

dwStatusCode [out]

A reference to a status code. Status codes indicate the success or failure of the
function. It is a INT (32 bits: Dword) variable. For more information on the used

values and equates, see: CreateTimeProfile

Return value

The function does not return any value

Remarks

The function to which LP_RUNTIMEDATA_CALLBACK_ROUTINE points is a callback
function and must be implemented by the writer of the hosting application.

Requirements

Minimum supported client Windows2000

Header CodeTune.h

DLL CodeTune.dll

Examples of Usage:

See CreateTimeProfile function

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

51

See also

CreateTimeProfile

RunTimeDataProc

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

52

LP_USERTARGET_CALLBACK_ROUTINE Function Pointer

Points to a function that notify the host when he must use the code inside this

function to start timing it with CreateTimeProfile function.

Syntax

typedef DWORD (__stdcall * LP_USERTARGET_CALLBACK_ROUTINE) (
);

Parameters

None

Return value

The function does not return any value

Remarks

The function to which LP_USERTARGET_CALLBACK_ROUTINE point is a
callback function and must be implemented by the writer of the hosting

application.

This is the most important type definition used as parameter in CreateTimeProfile

function. From here the actual timing is being measure, since this is where the
user must insert his code to be analyzed.

Requirements

Minimum supported client Windows2000

Header CodeTune.h

DLL CodeTune.dll

Examples of Usage:

See CreateTimeProfile function

See also

CreateTimeProfile
RunTimeDataProc

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

53

APENDIX I

Understanding Mean, Variance and Standard Deviation

1) How to Find the Mean

The mean is the average of the numbers.

It is easy to calculate: add up all the numbers, then divide by how many numbers there are.

In other words it is the sum divided by the count.

Example 1: What is the Mean of these numbers?

6, 11, 7

 Add the numbers: 6 + 11 + 7 = 24

 Divide by how many numbers (there are 3 numbers): 24 / 3 = 8

The Mean is 8

Why Does This Work?

It is because 6, 11 and 7 added together is the same as 3 lots of 8:

It is like you are "flattening out" the numbers

Example 2: Look at these numbers:

3, 7, 5, 13, 20, 23, 39, 23, 40, 23, 14, 12, 56, 23, 29

The sum of these numbers is 330

There are fifteen numbers.

The mean is equal to 330 / 15 = 22

The mean of the above numbers is 22

Negative Numbers

How do you handle negative numbers? Adding a negative number is the same as subtracting the

number (without the negative). For example 3 + (−2) = 3−2 = 1.

Knowing this, let us try an example:

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

54

Example 3: Find the mean of these numbers:

3, −7, 5, 13, −2

 The sum of these numbers is 3 − 7 + 5 + 13 − 2 = 12

 There are 5 numbers.

 The mean is equal to 12 ÷ 5 = 2.4

The mean of the above numbers is 2.4
Here is how to do it one line:

Mean =
3 − 7 + 5 + 13 − 2

 =
12

 = 2.4
5 5

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

55

2) Standard Deviation and Variance
Deviation just means how far from the normal

Standard Deviation

The Standard Deviation is a measure of how spreads out numbers are. Its symbol is σ (the Greek

letter sigma)

The formula is easy: it is the square root of the Variance. So now you ask, "What is the

Variance?"

Variance

The Variance is defined as:

The average of the squared differences from the Mean.

To calculate the variance follow these steps:

 Work out the Mean (the simple average of the numbers)

 Then for each number: subtract the Mean and square the result (the squared difference).

 Then work out the average of those squared differences. (Why Square?)

Example

You and your friends have just measured the heights of your dogs (in millimeters):

The heights (at the shoulders) are: 600mm, 470mm, 170mm, 430mm and 300mm.

Find out the Mean, the Variance, and the Standard Deviation.

Your first step is to find the Mean:

Answer:

Mean = 600 + 470 + 170 + 430 + 300 = 1970 = 394

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

56

5 5

So the mean (average) height is 394 mm. Let's plot this on the chart:

Now we calculate each dog's difference from the Mean:

To calculate the Variance, take each difference, square it, and then average the result:

So, the Variance is 21,704.

And the Standard Deviation is just the square root of Variance, so:

Standard Deviation: σ = √21,704 = 147.32... = 147 (to the nearest mm)

And the good thing about the Standard Deviation is that it is useful. Now we can show which

heights are within one Standard Deviation (147mm) of the Mean:

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

57

So, using the Standard Deviation we have a "standard" way of knowing what is normal, and what is

extra large or extra small.

Rottweilers are tall dogs. And Dachshunds are a bit short ... but don't tell them!

But ... there is a small change with Sample Data

Our example was for a Population (the 5 dogs were the only dogs we were interested in).

But if the data is a Sample (a selection taken from a bigger Population), then the calculation

changes!

When you have "N" data values that are:

 The Population: divide by N when calculating Variance (like we did)

 A Sample: divide by N-1 when calculating Variance

All other calculations stay the same, including how we calculated the mean.

Example: if our 5 dogs were just a sample of a bigger population of dogs, we would divide by 4

instead of 5 like this:

Sample Variance = 108,520 / 4 = 27,130

Sample Standard Deviation = √27,130 = 164 (to the nearest mm)

Think of it as a "correction" when your data is only a sample.

Formulas

Here are the two formulas, explained at Standard Deviation Formulas if you want to know more:

The "Population Standard Deviation":

The "Sample Standard Deviation":

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

58

Looks complicated, but the important change is to divide by N-1 (instead of N) when calculating a

Sample Variance.

*Footnote: Why square the differences?

If we just added up the differences from the mean ... the negatives would cancel the positives:

So that won't work. How about we use absolute values?

That looks good (and is the Mean Deviation), but what about this case:

Oh No! It also gives a value of 4, Even though the differences are more spread out! So let us try

squaring each difference (and taking the square root at the end):

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

59

That is nice! The Standard Deviation is bigger when the differences are more spread out ... just what

we want!

In fact this method is a similar idea to distance between points, just applied in a different way.

And it is easier to use algebra on squares and square roots than absolute values, which makes the

standard deviation easy to use in other areas of mathematics.

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

60

3) Standard Deviation Formulas
Deviation just means how far from the normal

Standard Deviation

The Standard Deviation is a measure of how spread out numbers are.

Here we explain the formulas.

The symbol for Standard Deviation is σ (the Greek letter sigma). This is the formula for Standard

Deviation:

Say what? Please explain!

OK. Let us explain it step by step.

Say we have a bunch of numbers like 9, 2, 5, 4, 12, 7, 8, 11.

To calculate the standard deviation of those numbers:

1. Work out the Mean (the simple average of the numbers)

2. Then for each number: subtract the Mean and square the result

3. Then work out the mean of those squared differences.

4. Take the square root of that and we are done!

The formula actually says all of that, and I will show you how.

The Formula Explained

First, let us have some example values to work on:

Example: Sam has 20 Rose Bushes.

The number of flowers on each bush is

9, 2, 5, 4, 12, 7, 8, 11, 9, 3, 7, 4, 12, 5, 4, 10, 9, 6, 9, 4

Work out the Standard Deviation.

Step 1. Work out the mean

In the formula above μ (the greek letter "mu") is the mean of all our values ...

Example: 9, 2, 5, 4, 12, 7, 8, 11, 9, 3, 7, 4, 12, 5, 4, 10, 9, 6, 9, 4

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

61

The mean is:

9+2+5+4+12+7+8+11+9+3+7+4+12+5+4+10+9+6+9+4 20 = 140 / 20 = 7

So:

μ = 7

Step 2. Then for each number: subtract the Mean and square the result

This is the part of the formula that says:

So what is xi ? They are the individual x values 9, 2, 5, 4, 12, 7, etc...

In other words x1 = 9, x2 = 2, x3 = 5, etc.

So it says "for each value, subtract the mean and square the result", like this

Example (continued):

(9 - 7)2 = (2)2 = 4

(2 - 7)2 = (-5)2 = 25

(5 - 7)2 = (-2)2 = 4

(4 - 7)2 = (-3)2 = 9

(12 - 7)2 = (5)2 = 25

(7 - 7)2 = (0)2 = 0

(8 - 7)2 = (1)2 = 1

... etc ...

Step 3. Then work out the mean of those squared differences.

To work out the mean, add up all the values then divide by how many.

First add up all the values from the previous step.

But how do we say "add them all up" in mathematics? We use "Sigma": Σ

The handy Sigma Notation says to sum up as many terms as we want:

Sigma Notation

We want to add up all the values from 1 to N, where N=20 in our case because there are 20 values:

Example (continued):

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

62

Which means: Sum all values from (x1-7)2 to (xN-7)2

We already calculated (x1-7)2=4 etc. in the previous step, so just sum them up:=

4+25+4+9+25+0+1+16+4+16+0+9+25+4+9+9+4+1+4+9 = 178

But that isn't the mean yet, we need to divide by how many, which is simply done by multiplying

by "1/N":

Example (continued):

Mean of squared differences = (1/20) × 178 = 8.9

(Note: this value is called the "Variance")

Step 4. Take the square root of that:

Example (concluded):

σ = √(8.9) = 2.983...

DONE!

Sample Standard Deviation

But wait, there is more ...

... sometimes our data is only a sample of the whole population.

Example: Sam has 20 rose bushes, but only counted the flowers on 6 of them!

The "population" is all 20 rose bushes, and the "sample" is the 6 that were counted. Let us say they

are:

9, 2, 5, 4, 12, 7

We can still estimate the Standard Deviation.

But when we use the sample as an estimate of the whole population, the Standard Deviation

formula changes to this:

The formula for Sample Standard Deviation:

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

63

The important change is "N-1" instead of "N" (which is called "Bessel's correction").

The symbols also change to reflect that we are working on a sample instead of the whole

population:

 The mean is now x (for sample mean) instead of μ (the population mean),

 And the answer is s (for Sample Standard Deviation) instead of σ.

But that does not affect the calculations. Only N-1 instead of N changes the calculations.

OK, let us now calculate the Sample Standard Deviation:

Step 1. Work out the mean

Example 2: Using sampled values 9, 2, 5, 4, 12, 7

The mean is (9+2+5+4+12+7) / 6 = 39/6 = 6.5

So:

x = 6.5

Step 2. Then for each number: subtract the Mean and square the result

Example 2 (continued):

(9 - 6.5)2 = (2.5)2 = 6.25

(2 - 6.5)2 = (-4.5)2 = 20.25

(5 - 6.5)2 = (-1.5)2 = 2.25

(4 - 6.5)2 = (-2.5)2 = 6.25

(12 - 6.5)2 = (5.5)2 = 30.25

(7 - 6.5)2 = (0.5)2 = 0.25

Step 3. Then work out the mean of those squared differences.

To work out the mean, add up all the values then divide by how many.

But hang on ... we are calculating the Sample Standard Deviation, so instead of dividing by how

many (N), we will divide by N-1

Example 2 (continued):

Sum = 6.25 + 20.25 + 2.25 + 6.25 + 30.25 + 0.25 = 65.5

Divide by N-1: (1/5) × 65.5 = 13.1

(This value is called the "Sample Variance")

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

64

Step 4. Take the square root of that:

Example 2 (concluded):

s = √(13.1) = 3.619...

DONE!

Comparing

When we used the whole population we got: Mean = 7, Standard Deviation = 2.983...

When we used the sample we got: Sample Mean = 6.5, Sample Standard Deviation = 3.619...

Our Sample Mean was wrong by 7%, and our Sample Standard Deviation was wrong by 21%.

Why Would We Take a Sample?

Mostly because it is easier and cheaper.

Imagine you want to know what the whole country thinks ... you can't ask millions of people, so

instead you ask maybe 1,000 people.

There is a nice quote (supposed to be by Samuel Johnson):

"You don't have to eat the whole ox to know that the meat is tough."

This is the essential idea of sampling. To find out information about the population (such as mean

and standard deviation), we do not need to look at all members of the population; we only need a

sample.

But when we take a sample, we lose some accuracy.

Summary

The Population Standard Deviation:

The Sample Standard Deviation:

CodeTune Reference Guide
__

Autor: Gustavo Trigueiros

@Copyright 2016 - All Rights Reserved.

65

APENDIX II

Standard Deviation and Variance

The variance and the closely-related standard deviation are measures of how spread out
a distribution is. In other words, they are measures of variability.

The variance is computed as the average squared deviation of each number from its
mean. For example, for the numbers 1, 2, and 3, the mean is 2 and the variance is:

The formula (in summation notation) for the variance in a population is

where μ is the mean and N is the number of scores.

When the variance is computed in a sample, the statistic

(where M is the mean of the sample) can be used. S² is a biased estimate of σ², however.
By far the most common formula for computing variance in a sample is:

which gives an unbiased estimate of σ². Since samples are usually used to estimate
parameters, s² is the most commonly used measure of variance. Calculating the variance
is an important part of many statistical applications and analyses. It is the first step in
calculating the standard deviation.

Standard Deviation

The standard deviation formula is very simple: it is the square root of the variance. It is
the most commonly used measure of spread.

An important attribute of the standard deviation as a measure of spread is that if the
mean and standard deviation of a normal distribution are known, it is possible to
compute the percentile rank associated with any given score. In a normal distribution,
about 68% of the scores are within one standard deviation of the mean and about 95% of
the scores are within two standard deviations of the mean.

The standard deviation has proven to be an extremely useful measure of spread in part
because it is mathematically tractable. Many formulas in statistics use the standard
deviation.

.

http://davidmlane.com/hyperstat/A46748.html

	CreateTimeProfile
	CreateTimeProfileEx
	RunTimeDataProc
	SetupTimeProfiler
	UserTargetProc
	CpuSettings
	GetCpuFrequencyEx
	CPUData
	CT_STANDARD_DEVIATION
	CT_STDEx
	CT_Nfo
	Equates
	LP_RUNTIMEDATA_CALLBACK_ROUTINE
	LP_USERTARGET_CALLBACK_ROUTINE
	Apendix1
	How_to_Find_the_Mean
	Standard_Deviation_and_Variance
	Top
	Formulas
	WhySquare
	Standard_Deviation_Formulas
	Apendix2

