
Secured Cyber-Attack Signatures Distribution using
Blockchain Technology.

Oluwaseyi Ajayi, Melvin Cherian and Tarek Saadawi

Department Of Electrical Engineering City University New York , City College, New York, NY 10031

Oluwaseyi.j.ajayi@gmail.com

Abstract—The proliferation of cloud database has increased
its vulnerability to cyberattacks. Despite several proposed
methods of securing databases, malicious intruders find ways
to exploit their vulnerabilities and gain access to data. This is
because cyberattacks are becoming more sophisticated and
harder to detect. As a result, it is becoming very difficult for a
single or isolated intrusion detection system (IDS) node to
detect all attacks. With the adoption of cooperative intrusion
detection system, all attacks can be detected by an IDS node
with the help of other IDS nodes. In cooperative intrusion
detection, IDS nodes exchange attack signatures with the view
of promptly detecting any attack that has been detected by
other IDS. Therefore, the security of the database that houses
these shared attack signatures becomes a huge problem. More
specifically, detecting and/or preventing malicious signature
injection, manipulation or deletion becomes important. This
paper proposed an architecture that securely stores and
distribute these attack signatures in real time for the purpose
of prompt detection. Our proposed architecture leverages the
distributed ledger technology, data immutability and tamper-
proof abilities of blockchain technology. The performance of
our system was examined by using the latency of the
blockchain network.

Keywords—cooperative intrusion detection; cyberattack;
signature; blockchain; latency

I. INTRODUCTION
The rapid increase in the use of internet has led to its

popularity in recent years. As a result of this, companies rely
on internet for storage of their data because it is secured and
easily accessible. Owing to this, malicious intruders exploit
vulnerabilities of this internet to gain unauthorized access to
data stored. Firewalls, user authentication and data
encryption[1] were proposed to restrict unauthorized users
from gaining access to databases. Further researches put
forward intrusion detection system (IDS)[2,3] to detect any
malicious activities in computer networks and database
housing data. This intrusion detection can be classified
according to their location in the network: host-based (HIDS)
or network-based (NIDS)[4] or according to their detection
approaches: signature-based or anomaly-based IDS[5].
Although these intrusion detection systems have shown their
capability of protecting computer networks, however, a
single or isolated IDS may be easily bypassed by advanced
attacks as the malicious activities gets more complex[6]. In
addition, the timely detection of attacks is very important as
this may cause huge damage to computer networks if they
are not detected on time. To enhance the detection
capabilities, cooperative intrusion detection was proposed[7-
9]. In this type of detection mechanism, different IDS nodes
exchange attack signatures with the view of detecting any
attack that has previously been detected by other IDS nodes.
This detection mechanism was widely adopted due to its
better performance. However, attack signatures being shared
are vulnerable to (i) data manipulation during transmission,

(ii) fake data injection if database is opened to public (iii)
data deletion if database activities are not monitored. Owning
to this, security of database and its transmission media are of
great concern.

Companies involved in collaborative intrusion detection
believes that their data is secured as far as it is encrypted.
Although encryption guarantees confidentiality of such data,
but their consistency and integrity are not guaranteed. A
research proposed the use of a message authentication code
algorithm (MAC) as way to secure data integrity [10]. In this
method, data file is downloaded, and hash value is checked.
Although this method works but downloading and checking
hash of files are overwhelming process which requires high
bandwidth. Another research computes the hash value of
every data by using hash tree. This is also not practical
because computing the hash value of huge data requires high
computing power and consumes high bandwidth. Some
databases employed third party auditor. In this method a
person that has skills and experience carry all auditing
processes such as checking data integrity. This method
achieves desired result but there is need for third party which
can expose the data to “man-in-the-middle” attack [10].
Above solutions are not practical especially for large data
files, hence, reason for our proposed solution. Our approach
leverages distributed ledger technology, data immutability
and tamper-proof abilities of blockchain to solve these
problems.

Blockchain was first introduced in 2009 as technology
behind bitcoin[11]. The author implemented a solution to
double spending problem in cryptocurrency called bitcoin.
Since its inception, blockchain has been applied to different
areas by several researchers e.g in healthcare system[12,13],
securing data integrity[10], as IDS [14,15,16] etc. In its
simplest form, blockchain is an append-only, public ledger
which records all the transactions that has taken placed in the
blockchain network. Every participant in the blockchain
network are called nodes. Each transaction in the public
ledger is verified by consensus (an agreement among all
participating nodes) of most of the participants in the system.
Once the transaction is verified, it is impossible to mutate /
erase the records. The blockchain contains a certain and
verifiable record of every single transaction ever made [11].
The data in the blockchain (i.e. transactions) is divided into
blocks. Each block is dependent on the previous one (parent
block). Every block stores some metadata and the hash value
of the previous block. So, every block has a pointer to its
parent block. Blockchain is broadly divided into two: public
and private blockchain[17]. In public blockchain, all nodes
verify and validate transactions. They are also known as
permissionless blockchain. Examples are Bitcoin, Ethereum
etc. while in private blockchain, only nodes given permission
can join and participate in the network. It is usually
controlled by the node that starts the network. It is usually
built for certain purposes. Example is Hyperledger.

482

2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International
Conference on Embedded and Ubiquitous Computing (EUC)

978-1-7281-1664-8/19/$31.00 ©2019 IEEE
DOI 10.1109/CSE/EUC.2019.00095

 Fig.1 (a) cyber-attack targets of existing cooperative intrusion detection
 (b) Blockchain-based cooperative intrusion detection

Basically, there are four steps involved in existing
cooperative intrusion detection system (Fig.1a). The main
targets of cyber-attackers are storage and distribution steps
(Fig.1a). Majority of the available solutions to secure these
cyberattack targets either engage centralized approach
which makes the network vulnerable to single point of
failure attacks or uses decentralized approach in which both
database and communication medium cannot ascertain the
consistency and integrity of distributed data. Also, existing
solutions do not accommodate nodes running different IDS.
In this work, we are proposing an architecture which
securely store and distribute attack signatures using
blockchain technology. The purpose of our approach is to
provide security to signature storage and distribution as
shown in Fig.1b. In addition, the architecture accounts for
IDS nodes running different IDS. This is the motivation to
this work.

The contributions of our work can be summarized as
follows:

 To develop a private-public blockchain-based
architecture that retrieve attack signature from any
signature-based IDS e.g. Snort[24], automatically
converts to a common format compatible with
other signature-based IDS e.g. Bro[25],
Suricata[26] etc. This accounts for nodes running
different IDSs.

 This architecture presents a standard format for
storing and distributing signature-based IDS attack
signatures in order to accommodate nodes running
diverse IDS

 The blockchain architecture allows public node to
securely join and assess stored attack signatures in
real time without permission.

The remainder of this paper is organized as follows:
background and related works on cooperative intrusion
detection and blockchain applications are discussed in
Section II. Section III describes the proposed architecture.
Section IV presents performance metrics of our architecture.
Section V presents the conclusions of this paper and possible
future works and section VI is acknowledgment.

II. BACKGROUND

A. Cooperative intrusion detection
The authors in [7] proposed Cooperative Intrusion

Detection System (CoIDS) which uses a cooperative

approach for intrusion detection . In their method, individual
intrusion detection components work cooperatively to
perform concerted detection. The result showed that their
system is efficient and effective to prevent viruses spreading
in chain way. However, with the introduction of intrusion
detection manager (IDM), who maintains and update data
including cooperative protocols, rules and logs, the need to
trust IDM makes the network vulnerable to attacks such as
man-in-the-middle and single point of failure. In [8] the
authors proposed cooperative intrusion detection framework
in cloud computing to reduce the impact of denial of service
attacks (DoS) and distributed denial of service attacks
(DDoS). In their system, each IDS has a cooperative agent
that computes and determine whether to accept the alerts
sent from other IDS. The result showed that their proposed
system only increases little computation effort compared
with pure snort-based IDS but prevents the system from
single point of failure attack. Although their system showed
a promising result, but the method fails to consider situation
when each cooperative agent uses different IDSs. Also, their
system is susceptible to intrusion detection activities such as
data hijacking via medium of transmission.

In another research [18], the authors proposed a
cooperative intrusion detection based on granular
computing. In their work, they analyzed four different
attacks; probing, distributive denial of service, Remote to
local (R2L) and user to Root (U2R). They divided the
attacks to one host-one host, one host-many hosts, many
hosts-one host and many hosts-many hosts, based on source
and destination addresses of the network packages. The
result showed that their method can detect slow scanning
attacks which cannot be detected by a traditional scanning
detector. However, with response unit updating the
database, this unit and database can be hacked which may
result in data manipulation and deletion. The authors in [19]
proposed signature-based multilayer IDS using mobile
agents. In their works, they created small multiple databases
from huge database of attack signatures for efficient threat
detection in computer networks. They also proposed a
mechanism to automatically update these small signature
databases using mobile agents. The analysis of their results
showed that proposed architecture led to a significant
decrease in packet drop rate as compared to conventional
signature-based database. This resulted in a significant
improvement in detection of malicious attacks to the
network. Although, this approach reported good results, but
malicious activities pose a great threat to the database that
houses these signatures

B. Blockchain appliation
The authors in [14], [15] and [16] proposed use of

blockchain technology in detecting anomaly attack. In [14],
the authors proposed a blockchain anomaly detection
solution (BAD) which focus on detecting attacks directed at
the blockchain network. BAD prevents insertion of
malicious transaction from spreading further in the
blockchain. BAD leverages blockchain metadata named
forks to collect potentially malicious activities in the
blockchain network. Their works used machine learning to
train blockchain nodes to detect malicious activities. In their
approach, they considered eclipse attack (an attacker infects

483

node’s list of IP addresses, thus forcing the victim’s node
list of IP addresses to be controlled by that attacker).
Attacker can manipulate and filter victim’s incoming
connection. The analysis of result showed that BAD was
able to detect and stop the spread of attackers that uses
bitcoin forks to spread malicious codes. However, proposed
solution is specific to attacks directed towards blockchain
network and use bitcoin forks. The authors in [15] proposed
a blockchain-based malware detection solution in mobile
devices. In their work, they extracted installation package,
permission package and call graph package features for all
known malware families for android based mobile devices
and use it to build feature database. Their result showed that
their solution can detect and classify known malwares. It
also performs malice determination and malware family
classification on unknown software with higher accuracy
and lower time cost. However, their solution is specific to
host-based malware attacks on android-based mobile
devices. The proposed solution is not applicable to network-
based attacks.

The authors in [16] proposed collaborative IoT anomaly
detection via blockchain solution (CIoTA). CIoTA uses
blockchain concept to perform distributed and collaborative
anomaly detection on IoT devices. They used CIoTA to
continuously trained anomaly detection models separately
and then combine their wisdom to differentiate between rare
benign events and malicious activities. The evaluation of the
result showed that combined models can detect malware
activities easily with zero false positive. However, the
solution proposed relies mainly on collaborative effort of
IoT to detect attacks (i.e. every node works together to
detect an attack) and it is specific to malware attacks

In areas highlighted above, application of blockchain has
been proven to be efficient and effective. Although much
efforts are being shifted to applying the technology in cyber-
security, most of available solutions used private blockchain
platforms to either combine wisdom to detect attack[16] or
detect specific attacks [14,15]. Also, their cooperative
intrusion systems did not account for nodes running
different IDSs. In this work, we are proposing a
permissionless public-private blockchain-based architecture
which securely store and distributes attack signatures in a
distributed network in real time. Also, our proposed system
also accounts for nodes running different IDS by converting
attack signatures to standard format compatible with any
signature-based IDS. This is the novelty in our work.

III. THE PROPOSED ARCHITECTURE
The proposed architecture, which was built on

Ethereum blockchain platform, combines features of both
public and private blockchain to extract, convert, store and
distribute cyberattack signatures. Ethereum platform was
used because it is popular and has potential in being
developed to use in a wide variety of application. Also,
Ethereum handles a greater number of concurrent
transactions which makes it scalable [23]. It is an open-
source blockchain based distributed computing featuring
smart contracts. Smart contract is an agreement among the
members of consortium which is stored on the chain and run
by all participants [21,22, 23]. Although the main Ethereum
platform is a public blockchain, we configured the network

to a combination of public and private networks. It is a
private blockchain because certain nodes can prepare, verify
and validate transactions. It is regarded as public blockchain
because nodes do not need permission to join or leave the
network and obtain the content of the mined blocks. Fig. 2
shows a pictorial representation of the proposed
architecture.

Fig. 2 The Proposed Architecture

The architecture is composed mainly of the following:

 Authorized Nodes
These are nodes that start the blockchain network.
They prepare, submit and verify transactions.
These nodes also run consensus algorithm, thus
validate transactions/blocks. All authorized nodes
update database

 Unauthorized Nodes

These are public nodes. They do not need
permission to join or leave the blockchain network.
They join the network to download cyberattack
signatures. They are not privileged to prepare,
verify, validate or run consensus algorithm. they
cannot update database but request transaction
address of mined transactions/blocks.

 Database

The database stores address of transaction, smart
contract and their Application Binary Interface
(ABIs). The database is accessible to all nodes.
Every public node has read-only access to this
database. All information is updated by authorized
nodes. Any data manipulation in database results in
inability to access contents of blockchain but does
not affect data stored in the blockchain. Such
malicious activity can be easily detected

The proposed architecture is divided into 3 stages as shown
below.

484

Fig. 3 Building blocks of the proposed architecture

A. Signature Extraction
In our proposed system, extraction of signature is done

by authorized nodes that detect attacks. Whenever there is
an attack detection, IDS signature that detected that attack is
retreived from IDS node (i.e. authorized nodes). Extracted
signature is formatted as given in Table I

Table I. Format of the retrieved Signature/Rule

S/N Type Signature

 S/N: This is serial number of the retrieved
signature.

 Type: The name of IDS that detects attack. For this
proof of concept, we experimented with Snort, Bro
and Suricata.

 Signature: The actual signature that was retrieved
is placed in this column.

The owner signed signature with its private key and submit
to the blockchain for verification. In addition to signed
signature, owner also submits its MAC address, IP address
and Transaction account. Table II shows format of
submitted transaction by authorized node.

Table II. Format of Submitted Signature

S/N Type SIGNATUREpriv_key MAC

address
IP
address

Transaction
Account

B. Signature Storage
The submitted transaction (i.e. Table II) and owners’

privilege are verified, signature is converted to standard
format and validated. All verification and signature
conversion are handled by smart contract, while validation
is handled by blockchain consensus protocol. The accepted
format of submitted signature (Table II), transaction
account, MAC and IP addresses of all authorized nodes,
signature conversion script (Algorithm 2) and signature
format creation script (Algorithm3) were all written into the
smart contract and mined to the blockchain by authorized
nodes. In our architecture, smart contract handles the
following functions:

1. Transaction and owner’s verifications: This step
ensures that no unauthorized nodes submit
transaction. Algorithm 1 describes how smart
contract handles all verifications. For transaction
verification to return success and push for
signature conversion, submitted transaction must
agree with standard format (Table II). Transaction

account, MAC and IP addresses of sender must be
in their respective sets. Also, private key of sender
must be verified by its public key. If any of these
fails, the algorithm returns fail and transaction is
dropped.

2. Signature format creation: This is the novelty in

our approach. We experimented with cyber-attack
signatures from three common signature-based
IDS: Bro, Snort and Suricata. We developed script
that convert signatures from one IDS to a common
format compatible with other IDSs (Algorithm 3).
This script is mined to the blockchain through
smart contract. Algorithm 2 describes how smart
contract converts attack signatures to standard
format. When transaction and sender’s verification
is successful, type field of submitted transaction is
examined. If type field reads Snort, this shows
signature was obtained from Snort IDS, our
architecture converts to standard format compatible
with Bro and Suricata etc. The Standard format of
transaction submitted for validation is shown in
Table III.

485

Table III. Format of the mined Transaction

Snort: signature Bro: signature Suricata: signature

Snort: indicates the name of IDS and signature is the actual
signature

Algorithm 3 describes how an attack signature is
converted to standard format. Variables of
retrieved signature are checked for mandatory
variables. If any of the mandatory variables are
absent, script returns error and signature is
dropped. Otherwise, script reads these values and
assign to corresponding standard format variables.
Due to different ways of writing rules, we ignore
any standard format variables without equivalent
values from retrieving signature.

3. Transaction Validation: The pending transaction

is built into a block by authorized node after
successfully converted to standard format. The
block is broadcasted into the blockchain network
for validation. Every node receives broadcasted
block, but only authorized nodes (miners) work to
validate the block. Each block contains a unique
code called hash; it also contains hash of previous
block. Data from previous blocks are encrypted or
hashed into a series of numbers and letters. This is
done by processing the block input through a
mathematical function, which produces an output
of a fixed length. The function used to generate
the hash is deterministic, meaning that it produces
the same result each time the same input is used;
makes determining the input difficult and makes
small changes to the input result in a very different
hash.
To validate the block, authorized nodes works to
get target hash. A target hash is a number that a
hashed block header must be less than or equal to

for a new block to be awarded. This is achieved by
using an iterative process such as proof-of-work,
which requires consensus from all authorized
nodes. Proof-of-work was chosen because this is
the consensus algorithm run by Ethereum. The
characteristics of proof-of-work is it
computationally difficult to compute and easy to
verify. The process of guessing the hash starts in
the block header. It contains block version number,
a timestamp, the hash used in the previous block,
the hash of the Merkle Root, the nonce, and the
target hash. Successfully mining a block requires
an authorized node to be the first to guess the
nonce, which is a random string of numbers and
broadcast to other nodes. Other authorized nodes
verify the correctness of the nonce value by
appending this number to the hashed contents of
the block, and then rehashed. If the new hash meets
the requirements set forth in the target, then the
block is added to the blockchain. it is said to be
permanently stored on the network. it is impossible
to mutate / erase the block.

C. Signature Distribution
After new block has been chained to the blockchain,

transaction address is issued to owner (sender). The
blockchain is updated and signature is ready to be
downloaded. These are summarized in the following steps:

1. Blockchain updating: Current state (i.e. the update
of new block) of the blockchain is broadcasted to
every node in the blockchain network. Every node
(authorized and unauthorized) in the blockchain
network receives a copy of the update. Transaction
address and Application Binary Interface (ABI) are
sent to the database by the owner. This database is
made public so that everyone can have access to
these information (Fig. 2).

2. Signature Downloading: This step is carried out by
every node in the network (i.e. authorized and
unauthorized). Blockchain nodes request
transaction address and ABI from database to
download attack signatures mined into the
blockchain by other members of the consortium.
Nodes extract signatures from downloaded
transaction based on IDS utilized.

IV. PERFORMANCE METRICS
Our proposed system was implemented on Ethereum

blockchain platform. We use Solidity v 0.5.4
implementation of Ethereum for our smart contract and geth
v 1.4.18 for Ethereum. Blockchain network was set up in the
laboratory with five blockchain nodes, one database node
and one attack node as shown in Fig. 2. We implemented
four authorized nodes (to ensure consensus of miners
during validation stage) and one unauthorized (public) node
in the set up. To make a node authorized, we code
transaction account, MAC and IP addresses into smart
contract and mined it to the blockchain network. Four
blockchain nodes run ubuntu 18.04 while one runs ubuntu
16.04. Each node has the following configurations.

486

Authorized node 1: Desktop, Ubuntu 16.04, 4GB RAM,
2.2GHz processor speed and 300GB hard drive. Authorized
node 2: Laptop, Ubuntu 18.04, 16GB RAM, 2.81GHz
processor speed, and 2TB hard drive. Authorized node 3:
Desktop, Ubuntu 18.04, 8GB RAM, 2.44GHz processor
speed, and 1TB hard drive. Authorized node 4: Laptop,
Ubuntu 18.04, 4GB RAM, 2.44GHz processor speed, and
500GB hard drive. Unauthorized node: Laptop, Ubuntu
18.04, 4GB RAM, 2.4GHz processor speed, and 300GB
hard drive. Database node (desktop) runs window 10 with
processor speed of core i5 @ 2.44GHz, 4GB RAM and
500GB hard disk. Attack node: Laptop, Ubuntu 16.04, 4GB
RAM, 2.20GHz processor speed, and 300GB hard drive.
Snort v2.9.7 was installed on authorized nodes 1,4 and
unauthorized node, Bro v 2.6.1 was installed on authorized
nodes 2, 3 and unauthorized node and Suricata v 4.1.3 was
installed on authorized node 4. Transaction account, IP
address and MAC address of all authorized node were
written as a smart contract and mined into the blockchain.
In authorized node 2, Denial of Service (DoS) attack rule
shown below was set at the local rule files of its snort IDS
and snort was started in monitoring mode.
Attack rule: alert tcp ! $ any any -> $HOME_NET 80
(flags: S; msg:"Possible DoS"; flow: stateless; threshold:
type both, track by_src, count 70, seconds 10;
sid:10001;rev:1;)

 We launched DoS attack from attack node at authorized
node2. Authorized node2 detected this attack, retrieved
above signature and submitted it as a transaction to already
set up blockchain network. Three other authorized nodes
verified and mined transaction to the blockchain network.
This was repeated 10 more times. For each transaction, we
checked conversion results to standard format described
above. The following assumption was made:

1. None of the authorized nodes is compromised i.e
all signature submitted are good signatures.

To evaluate performance of our system, following data were
collected for each transaction.

 Transaction deployment time (t1): This is the time a
transaction was submitted to the network. These
data were collected directly from the console
sender

 Execution time (t3): This is the time taken for
content of each transaction to appears in
designated files of each node. The time was
retrieved by setting on current time for all nodes.

A. Latency: This is response time (measured in seconds) of
the blockchain network. For each transaction, latency is
the difference between execution time and deployment
time (t3-t1). Latency time includes signature conversion
time, mining time and time taken for nodes to send
signatures to their IDS rule files. Fig. 4 shows response
time of each node for every transaction. It was observed
that the latency of 6th transaction was the smallest while
4th and 8th transaction has the highest latencies for all
node. It has been shown that mining time (i.e. time to
guess target hash (proof-of-work)) has great influence on
latency of blockchain network, hence, the reason for
high latency. Also, verification time (format conversion)
influnce the network latency. Figs. 5 shows the average
response time of each node. The average response time
is addition of all response times for each transaction
divided by number of transactions. It can be seen that
average response time for all nodes is less than 3
seconds

Fig 4. Blockchain Response Time

Fig 5.Average response time of each node

V. CONCLUSION
In this paper, we proposed a permissionless public-private
blockchain-based architecture that securely share attack

487

signatures with other public nodes irrespective of IDSs
utilized. The proposed solution securely stores and shares
attack signatures in real time with the view of combating
security concerns associated with cooperative intrusion
detection. We focused on nodes that run signature based
IDSs. Our proposed solution uses blockchain to convert
cyberattack signatures to standard format compatible with
other IDSs before sharing with public. We presented a
standard format for converted cyberattack signatures. We
tested the performance of our architecture using latency.
The proposed architecture does not only help in prompt
detection of cyberattacks among the cooperative nodes but
also combat the security concerns associated with it.
In future we wish to expand our work to accommodate the
following :

1. Optimization of performance using some other
time and energy-efficient consensus protocols.

2. Developing a transaction standard format for nodes
running different anomaly-based intrusion
detection system.

3. Develop an algorithm that restrict mining of similar
attack signatures by different nodes

4. Implement scalability of the blockchain network.
5. Implement detection of compromised authorized

nodes.

VI. AKNOWLEDGMENT
I want to appreciate other members of the team; Dr. Obinna
Igbe and Chantelle Levy, for their supports and efforts to
make the work successful.

REFERENCES
[1] S. Peddabachigari, A. Abraham, C. Grosan, and J. Thomas,

“Modeling intrusion detection system using hybrid intelligent
systems,” Journal of network and computer applications, vol. 30, no.
1, pp. 114–132, 2007..

[2] O. Igbe, O. Ajayi, and T. Saadawi, “Denial of Service Attack
Detection using Dendritic Cell Algorithm” 2017 IEEE 8th Annual
Ubiquitous Computing, Electronics and Mobile Communication
Conference (UEMCON 2017) Oct 19th – 21st 2017, Columbia
University, New York, USA.

[3] O. Igbe, O. Ajayi, and T. Saadawi, “Detecting Denial of Service
attacks using a combination of Dendritic Cell Algorithm(DCA) and
Negative Selection Algorithm(NSA)” 2nd International conference on
Smart Cloud (Smart Cloud 2017) Nov 3rd-5th, 2017, New York,
USA.

[4] F. Gong, ‘‘Next generation intrusion detection systems (IDS),’’ McAfee
Netw. Secur. Technol. Group, Santa Clara, CA, USA, White Paper,
2003

[5] O. Igbe, I. Darwish, and T. Saadawi, “Distributed network intrusion
detection systems: An artificial immune system approach,” in
Connected Health: Applications, Systems and Engineering
Technologies (CHASE), 2016 IEEE First International Conference
on. IEEE, 2016, pp. 101–106.

[6] C. Duma, M. Karresand, N. Shahmehri, and G. Caronni, ‘‘A trust-
aware, P2P-based overlay for intrusion detection,’’ in Proc. DEXA
Workshop, 2006, pp. 692–697.

[7] Y. L. Dong, J. Qian, M. L. Shi, “A cooperative intrusion detection
system based on autonomous agents,” IEEE CCECE 2003, Vol. 2, pp.
861– 863, 2003.

[8]] C. C. Lo, C. Huang, J. Ku, A cooperative intrusion detection system
framework for cloud computing networks, in: In: Proceedings of the
2010 39th International Conference on Parallel Processing
Workshops,ICPPW '10, 2010, pp. 280-284.

[9] Y.-S. Wu, B. Foo, Y. Mei, and S. Bagchi, ‘‘Collaborative intrusion
detection system (CIDS): A framework for accurate and efficient
IDS,’’ in Proc. Annu. Comput. Secur. Appl. Conf. (ACSAC), Dec.
2003, pp. 234–244.

[10] Zikratov, I., Kuzmin, A., Akimenko, V., Niculichev, V., Yalansky, L.:
Ensuring data integrity using Blockchain technology. In: Proceeding
of the 20th Conference of fruct Association ISSN 2305-7254 IEEE
(2017)

[11] S. Nakamoto (2008) Bitcoin: a peer-to-peer electronic cash system,
http://bitcoin.org/bitcoin.pdf

[12] T. Ahram, A. Sargolzaei, S. Sargolzaei, J. Daniels, and B. Amaba.
“Blockchain Technology Innovation”. 2017 IEEE Technology &
Engineering Management Conference (TEMSCON), 2017

[13] Liang, X.; Zhao, J.; Shetty, S.; Liu, J.; Li, D. Integrating blockchain
for data sharing and collaboration in mobile healthcare applications.
In Proceedings of the 2017 IEEE 28th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC), Montreal, QC, Canada, 8–13 October 2017

[14] M Signorini and M Pontecorvi, W Kanoun, and R Di Pietro, “BAD: a
Blockchain Anomaly Detection solution” arXiv:1807.03833v2,
[cs.CR] 12 jul 2018

[15] T. Golomb, Y. Mirsky and Y. Elovici “ CIoTA: Collaborative IoT
Anomaly Detection via Blockchain” arXiv:1803.03807v2, [cs.CY] 09
Apr 2018

[16] Gu, J, B Sun, X Du, J Wang, Y Zhuang and Z Wang (2018).
Consortium blockchain-based malware detection in mobile devices.
IEEE Access, 6, 12118–12128.

[17] Abdullah, N., Hakansson, A., & Moradian, E. (2017). Blockchain
based approach to enhance big data authentication in distributed
environment. In Ubiquitous and future networks (icufn), 2017 ninth
international conference on (pp. 887–892).

[18] W. Zhang, S. Teng, H. Zhu, D. Liu, "A Cooperative Intrusion
Detection Model Based on Granular Computing and Agent
Technologies", J. International Journal of Agent Technologies and
Systems, vol. 5, no. 3, pp. 54-74, 2013

[19] M. Uddin, A. Abdul Rehman, N. Uddin, J. Memon, R. Alsaqour, and
S. Kazi, “Signature-based Multi-Layer Distributed Intrusion
Detection System using Mobile Agents” International Journal of
Network Security, Vol.15, No.1, PP.79-87, Jan. 2013

[20] R. Bye, S.A. Camtepe, and S. Albayrak, “Collaborative intrusion
detection framework: characteristics, adversarial opportunities and
countermeasures.” In Proceedings of CollSec: Usenix Workshop on
Collaborative Methods for security and privacy. USENIX,
Washington, DC, USA; 2010

[21] Ingo Weber, Vincent Gramoli, Mark Staples, Alex Ponomarev, Ralph
Holz, An Binh Tran, and Paul Rimba. 2017. On Availability for
Blockchain-Based Systems. In SRDS’17: IEEE International
Symposium on Reliable Distributed Systems

[22] S. Pongnumkul, C. Siripanpornchana, and S. Tajchayapong,
“Performance analysis of private blockchain platforms in varying
workloads,” in Proceedings of the 26th International Conference on
Comp

[23] Zhang, P., Walker, M., White, J., Schmidt, D.C., and Lenz, G.:
‘Metrics for assessing Blockchain-based healthcare decentralized
apps’, Proceedings of 2017 IEEE 19th International Conference on e-
Health Networking, Applications and Services (Healthcom), October
12-15, 2017, Dalian, China

[24] G.D. Kurundkar, N.A. Naik, and S.D. Khamitkar, “Network
Intrusion Detection using SNORT” International Journal of
Engineering Research and Applications (IJERA) ISSN: 2248-9622
www.ijera.com Vol. 2, Issue 2,Mar-Apr 2012, pp.1288-1296

[25] V. Paxson. “Bro: a system for detecting network intruders in real
time. “Computer Networks, 31(23-24), December 1999.

[26] R. McRee, “ Suricata: An Introduction” Information Systems Security
Association Journal, USA. August 2010

488

