
LeukosCognosis: A Machine Learning Algorithm 1

LeukosCognosis:
A Machine Learning Algorithm to Diagnose

Acute Lymphoblastic Leukemia

By: Sirihaasa Nallamothu
University High School

601 Gregory St, Normal, IL 61790
sirihaasanallamothu28@gmail.com
LeukosCognosis: In-depth Video

LeukosCognosis: Brief Overview Video
Github Repository

mailto:sirihaasanallamothu28@gmail.com
https://www.youtube.com/watch?v=MEiJ3549EnY
https://www.youtube.com/watch?v=ax_B2LI3G3c&lc=Ugz1JylQf7_5TVLcNbd4AaABAg
https://github.com/SirihaasaNallamothu28/LeukosCognosis-Official_Code

LeukosCognosis: A Machine Learning Algorithm 2

Introduction
 Every 9 minutes, a person in the United States dies from Leukemia, the cancer of
blood-forming tissues in the bone marrow and blood cells [1]. Leukemia is often the result of an
unusual amount of white blood cells in the body. The rapid production of abnormal white blood
cells impairs the bone marrow’s ability to produce red blood cells and platelets, a necessary
response to fight infections. The inability to fight infection along with a weakened immune
system makes the body susceptible to other diseases. The general symptoms include the
development of lymph nodes in the groin and neck area, petechiae, [red spots on the skin],
extreme fatigue, and bone tenderness [2]. The symptoms increasingly worsen as the Leukemia
progresses through the stages. There are many classifications of Leukemia including Acute
Lymphoblastic Leukemia, Acute Myeloid Leukemia, and Chronic Myeloid Leukemia. Acute
Lymphoblastic Leukemia[ALL] is the most common type of childhood cancer and is typically
found in the 2-7 year age group, however, it can occur in adults aged 55 and up. This specific
subcategory of Leukemia is caused by DNA errors in bone marrow cells [3]. The word
“acute”denotes the fact that the cancer spreads extremely quickly throughout the body, and
creates immature and irregular white blood cells. Treatment options are available, including
medications, chemotherapy, supportive care, and allotransplantation[transferring/replacing live
organs and tissues], still, these methods do not guarantee the termination of cancer. The survival
rates after 5 years of treatment are around 50% to 64% [4]. The diagnosis of Acute
Lymphoblastic Leukemia can be completed through a lab test, which entails a blood smear test
confirming where abnormal lymphocytes are located, along with a white blood cell count.
However these tests, performed by the human eye and a microscope, are only 30-40% Accurate.
Once the presence of Acute Lymphoblastic Leukemia is noted in the white blood cell count, and
smear test, a bone marrow test is conducted to authenticate and verify the diagnosis. Treatment
must begin immediately. However, the test results for the white blood cell smear can take a
minimum of 3-4 weeks to complete [4]. Acute Lymphoblastic Leukemia [ALL] can rapidly
spread throughout the body and unbeknownst to the patient, can progress and worsen in a matter
of 2-3 weeks. Oftentimes, the lab results take a little over a month to fully analyze and return to
the patient [5]. This drastically decreases a patient’s ability to survive and reduces the overall
positive impact of treatment methods. The need for an instantaneous and efficient way to
accurately diagnose Acute Lymphoblastic Leukemia in the medical field is apparent. An
error-free and accessible method to determine the existence of Acute Lymphoblastic Leukemia
can replace the need for a month-long lab diagnosis, quickly determine the necessity for
treatment, and save a patient's life. In order to effectively solve this problem, the author,
Sirihaasa Nallamothu, created LeukosCognosis, a machine learning algorithm that analyzes
suspected microscopic white blood cell smears, and diagnoses Acute Lymphoblastic Leukemia
on the spot. LeukosCognosis is essentially an image classifier created through a Convolutional
Neural Network.​ ​In short, a Convolutional Neural Network is an algorithm, with many connected
layers, that can take any input image, and utilize image recognition and processing to identify

LeukosCognosis: A Machine Learning Algorithm 3

and classify said image [6]. Convolutional Neural Networks, also referred to as CNNs, utilize
complex deep learning algorithms, and neurons to process pixel and image data. A CNN has the
ability to “learn”, by applying information accessed through training images and comparing it
with the input image. A machine learning algorithm’s ability to learn is similar to a human
brain’s cerebrum, which controls memory, speech, and cognitive thinking [7]. The model was
coded using the Tensorflow environment, the Python programming language, and Jupyter
Notebook. The LeukosCognosis algorithm is around 97% accurate and returns diagnosis results
almost immediately. LeukosCognosis eliminates the need for a lab analysis of a blood smear; all
the Oncologist[doctor who treats cancer] would have to do is take a microscopic image of the
white blood cell smear, and upload it to the model. Within seconds, an accurate diagnosis will
appear, along with the percentage pertaining to the probability of Leukemia. With an accurate
confirmation of Acute Lymphoblastic Leukemia, bone marrow testing can proceed, and
life-saving treatment can begin immediately. However, it is important to note that the
LuekosCognosis algorithm had to undergo a great deal of experimentation, testing, prototyping,
model revisions, and reconstruction of the Convolutional Neural Network. The evaluations and
experiments were conducted in order to perfect the overall medical precision of the model. The
training data set for the model was also regulated throughout the coding process. Continuous
research on Acute Lymphoblastic Leukemia was also necessary, to ensure the utmost medical
validity. The methods and materials that were necessary to create and evaluate the
LeukeosCognosis Machine learning algorithm, along with the results of the conducted
experiments will be heavily examined and analyzed in both a medical and programming
perspective throughout this paper.
Note: All figures and images that are referenced throughout this paper are located in the
‘Figures Section’

LeukosCognosis: A Machine Learning Algorithm 4

Methods and Materials
 The LeukosCognosis algorithm and Convolutional Neural Network code underwent a
variety of alterations and revisions in order to increase efficiency, along with multiple
evaluations to determine the exact medical capabilities of the model. The model’s validation
accuracy/loss and learning rate were tested through a surplus of drafts and “reconstruction” of
the code itself. The medical accuracy, along with the diagnosis of test images was also
experimented on. In addition, the author [Sirihaasa Nallamothu] conducted experimental trials to
determine the accuracy of the model’s predictions, the benefits of utilizing this model over a lab
blood smear test, and the precise amount of time the model takes to provide a prediction. The
methods and materials, along with the procedure applied to perform these tests will be heavily
highlighted and explored throughout the entirety of this section. Along with this, the code for
LeukosCognosis will be thoroughly explained.
Constructing and Perfecting the Model: Procedure and Explanation
 Constructing the machine learning model, along with the modifications and edits made to
the code through sufficient testing, was a vital part of creating the perfect LeukosCognosis
Algorithm. When programming a solution of importance, coders and developers follow the
“Software Development Design Process,” in order to ensure the final product is of optimal
performance (Fig. 1). The “Software Development Design Process,” involves a repeating cycle
of “Designing, Prototyping, and Reviewing/Refining” the solution. The first overarching step in
the “Software Design Process” is to complete a “Requirements Analysis”. This means
developers must assess the overall problem, gather information relevant to the problem, and
determine any prevalent needs. Developers often revisit the “Requirements Analysis” stage in
order to seek out new information or determine accurate solutions. In the “Requirements
Analysis” process, the author gathered sufficient information on Acute Lymphoblastic
Leukemia, including the symptoms/overall effects on the body, treatment methods,and the
survival rate of those affected. During this process, the author also researched and identified
inconsistencies in the diagnosis procedure. After gathering information in the “Requirements
Analysis” stage, developers often segway to the “Design and Prototyping phase”. These phases
closely relate to each other and intertwine in their processes. Typically, in the Design phase,
developers use in-depth information gathered on the problem to come up with a viable solution.
In the design process, developers create a general solution to the problem and plan out the next
steps. Prototyping is also included in the design process, as the problems identified in prototype
solutions can be improved upon and utilized in the official solution.
 The Author found many intriguing statistics on the imprecisions of the Leukemia testing
procedures, specifically pertaining to the lab tests performed on white blood cell smears. As
mentioned in the introduction, White Blood Cell Lab Smear results often take 3-4 weeks to
complete and return to the patient. To add on to the horribly delayed time period of lab tests,
human diagnosis of white blood cell smears are often only 30%-40% accurate[8]. After
conducting in-depth research on these inaccuracies of the diagnosis process, the author came up

LeukosCognosis: A Machine Learning Algorithm 5

with a simple solution to solve this problem, in the design process. When diagnosing Leukemia,
doctors and oncologists look for Complete Blood Count or CBC, to determine the amount of
abnormal white blood cells and red blood cells that are present. An arbitrarily high or low
amount of white blood cells can indicate Leukemia. Additionally, oncologists look for
abnormally shaped lymphocytes to determine Leukemia. Oftentimes, the human eye is unable to
detect and pre-diagnose Acute Lymphoblastic Leukemia based on miniscule signs and traces
found in the blood smear test. The Author considered replacing the inaccurate human eye with a
machine. If a computer diagnosed Acute Lymphoblastic Leukemia, the results would be much
more reliable and trustworthy. A computer could cut out the ‘middle-man’ of sending white
blood cell smears to the lab: effectively saving time and money. The time saved by the accurate
diagnosis could be used by the oncologist to proceed in the next steps of a patient's treatment.
The computer’s way of diagnosing Acute Lymphoblastic Leukemia would have to analyze the
white blood cell smear and classify or diagnose the blood smear. Additionally, the computer
would also have to give the oncologist the percentage of the probability of Leukemia. Put
simply, the solution to diagnose Acute Lymphoblastic Leukemia would have to be similar to an
image classifier that performs diagnosis via microscopic white blood cell smear images.
 The Author decided to prototype the image classifier model, one of the key aspects of the
“Designing and Prototyping” stage, by utilizing Wolfram Alpha. Wolfram Alpha is a
computational intelligence platform that allows users to complete a variety of versatile and
unique projects. Essentially, Wolfram Alpha is a computer science platform for developers to
prototype their technological ideas in an easy and simple way. Wolfram Alpha is also compatible
with a variety of coding languages, which makes it easier to integrate and relate back to the
overall solution.Wolfram Alpha combines aspects of the “Wolfram Language”, a programming
language specific for Wolfram Alpha, and “Pseudocode”. Pseudocode, also known as “Natural
Language” is used in Computer Science as a way for humans to understand operational
principles and logic behind a certain piece of code [9]. Pseudocode can also be used to plan out
the logic behind certain conditionals.
 Using Wolfram Alpha, the author was able to build a simple image classifier prototype that
diagnosed Acute Lymphoblastic Leukemia, in a matter of days. The Image Classifier included
two categories, “LeukemiaWhiteBloodCells” and “HealthyBloodCells”. Because the Image
classifier was a prototype, overarching labels pertaining to the two distinct categories was
sufficient. To make a successful image classifier, a versatile image dataset is necessary. Image
Datasets, allow the classifier to individually train off of each category, and compare certain
similarities in the image to the test image. Staying true to the simplicity of the prototype, the
author decided to utilize Wolfram Alpha’s “Import Function” for an image dataset. The “Import
Function” allows for large amounts of images to be pulled from certain websites, by specifying
the url. The URL used for images was found by entering keywords such as “Leukemia White
Blood Cells”, “Leukemia White Blood Cell Smears”, and “White Blood Cell Microscopic Image
Smears’(Fig.2). Once the desired URL Image Dataset was determined for both the

LeukosCognosis: A Machine Learning Algorithm 6

“LeukemiaWhiteBloodCell” and “HealthyBloodCell” categories, the author proceeded with
constructing the prototype. In order to ensure maximum accuracy, in terms of the correct
classification and optimal probability of Leukemia, the author adhered to the following steps:

1. Allocate Testing Images [5-9 images of each category]. Ensure that these Images are not
present in Image URL Datasets

2. Configure Keywords to type into Google Images to find new Image URL databases
3. Import Image URL Dataset into Wolfram Alpha Prototype code [Ensure that the images

are microscopic white blood cell smears]
4. Make any necessary changes to the model in terms of pseudocode
5. Test model with allocated test images, Healthy White Blood Cells and abnormal

Lymphocytes
6. Record resulting Accuracy of each image in a table. Record the classification of each

image as well, and whether it was correct or not.
7. Complete steps 2-6 until the model is at least 80% accurate on both the probabilities of

the Leukemia and Healthy White blood cell classifications.
 The Steps were repeated around 6 times, until an optimal accuracy was reached. Following
these steps allowed for the creation of an extremely accurate prototype model, which, in turn,
helped in the process of building LeukosCognosis. The Author was able to utilize the knowledge
she gained from building the prototype model and apply it to the final LeukosCognosis Model.
The steps resulted in conscious pseudocode (Fig.3). The prototype code starts out with defining
the Function “LeukemiaDetect” as a Wolfram Alpha command called “Classify”.Then the
categories are specified and an Image URL is allocated to each category. Finally, the URL is
specified as an “Image” datatype. A Wolfram Alpha “Cloud Deploy Command” is also
integrated into the code. This command allows the coder to deploy their image classifier to the
web in a seamless fashion. It also allows for easy deployment and UI[user interface] interaction.
[Note:The results of the Wolfram Alpha Image Classifier, including the “probability statistics”,
the accuracy, and more, will be discussed in the “Results” Section.]
 After successfully creating an Image classifier prototype, the author decided to proceed in the
“Software Development Design Process”(Recall Fig.1). Typically, after prototyping a plausible
solution, and determining that the essence of the solution solves the problem,the development of
a plausible solution begins. The steps of “Design” and “Review/Refine”, closely relate to each
other. When taking steps toward designing the final solution, coders and developers explore all
viable platforms and methods in which they can code their classifier. This allows the solution to
be built on a software that can provide efficient and accurate results. The author completed the
following “Platform Thought Process” when determining a platform:

1. Research, in depth, different Image Classifier platforms
2. Does the platform allow for Outside of the box thinking and programming?
3. Is the platform compatible with other devices and services?
4. If utilized, will the platform be capable of providing productive results?

LeukosCognosis: A Machine Learning Algorithm 7

 After thoroughly completing this through process, the author decided on what notion to
utilize when developing LeukosCognosis. In order to expand on the Acute Lymphoblastic
Leukemia Image classifier, and increase the overall accuracy, the author decided to take
advantage of Machine Learning along with Data Science and integrate it into the medical tech
solution. ​Machine Learning Is​ the application of Artificial Intelligence through Neural
Networks, Image Classifiers, and more for the greater development of technology for the human
kind [10]. Python is the typical programming language used when coding machine learning
applications. Machine Learning has a multitude of capabilities and can be utilized in the
intersection between the medical and technological field. The author decided to build the final
LeukosCognosis Solution in the form of a ​Convolutional Neural Network​. A Convolutional
Neural Network is one of the many subcategories of Neural Networks in Machine Learning.
Neural Networks, in general, are composed of several layers and ‘nodes’. These layers and
nodes, each with varying purposes, come together to complete the function of classification, and
contribute to the overall algorithm as well. A Convolutional Neural Network is essentially a
neural network that has extremely accurate image classification and recognition capabilities.
These neural networks are utilized in a variety of everyday applications, from facial recognition
to powering autonomous vehicles. These neural networks have the capability of taking in an
‘input image’ and providing a classification, along with a percentage of probability of the
suspected classification(Fig.4). The Image[Located in the figures section]displays the means of a
Convolutional Neural Network in simple terms. It is important to note that this is a simplified
version of this neural network, and not all aspects are identified. A Convolutional Network takes
in an input image, which is then pixelated and analyzed through the Convolutional Layer. The
Convolutional Layer essentially finds notable features in the image to help with classification,
including edges, curves and shapes. This layer works closely with matrices and arrays in order
to pixelate and create a feature map of the input image. The pixelated image then goes through
the pooling layer, which involves max pooling. This means that the pixelated image is broken
down into groups and thoroughly analyzed for key features. Oftentimes, the convolutional layer
may Sharpen or use edge detection, and blur on the image. The goal of this layer is to compile
the key features and keep them on hand for classification. The Neurons in the Dense layer,
essentially filters the key features, and gets it ‘ready’ for the final categorization of the image.
The output layer provides a
“Yes” or “No” answer to the classification, along with the percentage probability. Throughout
the process different optimizers, or algorithms that help with learning rates, are utilized to
increase the accuracy and efficiency of the model itself. Neurons in a convolutional neural
network are especially important as they provide input and output information capabilities and
have the ability to transfer matrix values,which is useful in mapping the key features of an
image. Neurons are also useful in constructing distinct convolution layers in the algorithm. The
image below depicts the role of neurons in a convolutional neural network (Fig.5). When an

LeukosCognosis: A Machine Learning Algorithm 8

image is processed through a neural network, its features are broken down through the ‘filters’,
or the use of matrices. This pixelated image is then stored into neurons when it goes to the
pooling layer. After this layer, the notable features are found, which are then flattened and stored
into 1D matrices, for easier classification and use. Neurons truly play a vital role in
convolutional neural networks. There are many different methods and ways to build a
convolutional neural network. Using the “Platform Thought Process”, the author determined that
LeukosCognosis would be coded using Python and the Tensorflow/Keras Libraries. Tensorflow
and Keras and high level machine learning libraries that provide coders an easy way to build
neural networks without focusing on the math behind it. Tensorflow and Keras are used by
companies and data scientists to develop deep learning applications. Utilizing these libraries in
the LeukosCognosis Solution increased the capabilities of the neural network and the matrices
and helped improve the accuracy of classification.
 In order for a Convolutional Neural Network to function, a training and testing dataset is
necessary. These training and testing datasets must contain high resolution images and must be
compiled and stored. A separate comprehensive training dataset is necessary for each category. It
is important to note that training and testing datasets must be kept separately to avoid bias in the
model, and to prevent accuracy errors. For the LeukosCognosis Convolutional Neural Network,
there are two categories of possible classification, “Acute Lymphoblastic Leukemia” and
“Healthy White Blood Cells' '. This means that the author must find at least 200 images of
abnormal Acute Lymphoblastic lymphocytes in the form of a white blood cell smear and at least
250 healthy white blood cell images. Each image must be a high resolution microscopic image.
In order to acquire high quality images, the author applied for a dataset from esteemed Leukemia
researcher Fabio Scotti. Combined, the datasets contained over 500 images of Acute
Lymphoblastic Leukemia and Healthy white blood cell sears taken with a Canon PowerShot G5
camera with an optical laboratory microscope. These images not only focused on abnormal
lymphocytes, but also the white blood cell count: combining these images would result in the
perfect testing and training dataset for LeukosCognosis (Fig.6). [Note: In addition to the dataset
by Fabio Scotti, the author added in other images of Acute Lymphoblastic Leukemia and
Healthy white blood cells]. When coding neural networks, it is important that each image is of
the same size, so notable features, such as edges and curves, can be recorded at the same
proportion. The author utilized a software called IrfanView, to condense and compress these
images to the same size, in terms of pixels. Once the author acquired and combined the
comprehensive datasets, creating a training and testing dataset, the programming process began.
 The author utilized Jupyter Notebooks to code the Convolutional Neural Network. Jupyter
Notebook is an application that hosts interactive ‘ipython notebooks’, which allow coders to
break down their code step-by-step. As the first step, the comprehensive datasets were imported
into the code, and a path for each category was defined. The author decided to utilize color in the
images, instead of converting it to Grayscale, which makes the images gray. It is necessary to
leave color in the images, as cancer can be identified by the overgrowth of the brightly colored

LeukosCognosis: A Machine Learning Algorithm 9

purple nuclei (Fig. 7). The code in the image[located in the ‘Figures section’], essentially defines
the categories of images and displays in image with the primary “color map” of red, green,
yellow and blue. The image is then displayed through the matplotlib python module, which
allows for graphs and images with alterations to be displayed. The categories of “Acute
Lymphoblastic Leukemia” and “Healthy White bLood Cells' ' were then put into a “Python List”.
The category“Acute Lymphoblastic Leukemia” denoted as Leukemia in the LuekosCognosis
code is ‘1’ and “Healthy White Blood Cells” is ‘0’. For the sake of simplicity, the ‘0’ and ‘1’
will be referred to as “Healthy” and “Leukemia” throughout the paper. After importing the
images and defining the categories, the training data was created. The author manually created
the training data in the Jupyter notebook, as in order for the image dataset to be manipulated in
terms of size, images, and the images can be shuffled in any random order. Many parameters can
be specified when creating the training data, including color, size, and category labels(Fig. 8).
The training data code, featured in the ‘Figures’ Section, used python “For Loops” and utilized
Numpy, or Numerical Python. The Numpy module helps the matrices and arrays in the
convolutional neural network. When creating the training data, the images, which were assigned
a category of ‘0’[Healthy] and ‘1’ [Leukemia], were put into a Numpy array, or matrix. This
allows for ease when creating the training data; putting the image dataset into an array/matrix
can help programmers when debugging errors. After creating the training data, the image dataset
was then randomly shuffled, to prevent model bias (Fig.9). The code also illustrates that the
length of the training data was 563 images. When the training data was shuffled a sample of the
categorization labels of 10 images were printed out. In the sample, an equal amount of “Healthy
White Blood cell’ and “Leukemia” image labels were printed out. [Denoted ast ‘1’s and ‘0’s].
Once the training data was created, the author created empty numpy matrices, also referred to as
arrays, that denoted the features of the images and the labels, or the categories (Fig. 10). By
creating these numpy arrays, the author ensured that the classification process in the
convolutional neural network, ensues with ease, specifically the storage of pixelated and
flattened images in the neurons of the network. After ensuring that the shape, summary and
dimensions of the “Feature” and “Label” Numpy arrays were completed, drafting and
constructing of the first layers of the neural network began.It is important to note that the author
started by creating a rough draft of the model, specifically the layers of the neural network. Then,
testing and experimental procedures ensued to perfect the overall model. The author started by
importing the necessary Tensorflow modules it takes to create the layers, neurons and density of
a convolutional neural network (Fig. 11). The Tensorflow and Numpy models were imported
along with the module ‘Cifar10’. Cifar10 is a popular module used in machine learning when
training neural networks based on image classification features. The author imported this module
just in case it needed to be utilized in the code. The sequential and model was then imported, in
order to better handle the matrices and arrays being created through numpy. Lastly, features such
as Batch Normalization, Flatten, Max Pooling and Conv2d were imported in order to better assist
the capabilities of each layer and each neuron. These modules especially helped the author better

LeukosCognosis: A Machine Learning Algorithm 10

improve the convolution abilities. Once the correct modules were imported, the author
embarked on the construction of each of the individual neural network layers, including the
Convolutional Layers, the pooling layers, and the dense layers. These layers are vital for the
function of an image classifier, and are necessary when building a neural network. Each layer,
with its own purpose, helps to store data and notable features about the pixelated and convoluted
image in arrays and matrices, and compare them against the test image. These layers also helped
to train the neural network off of the aforementioned training data (Fig. 12). The code depicts a
very basic convolutional neural network. It is important to note, that before the basic layers of
the convolutional neural network were implemented, the author ‘pickled in’ the empty X and Y
NumPy arrays that were to contain the notable features and labels of the training data images. In
python there is a module called ‘pickle’ which allows for certain arrays to be saved across
multiple files. The author started out by creating the variable model and giving it a Sequential
Python function.The Sequential function allows the convolutional neural network to have
multiple functions layers with matrices[1D and 3D] as image filters. Next, the author created a
basic convolution layer by utilizing Conv2D. Using the code, “model.add(Conv2D(256, (3, 3),
input_shape=X.shape[1:]))”, the author essentially called on the shape of theNumPy training data
feature array and assigned it to be the first convolutional layer’s matrix shape. This specific
overall layer has a 3 by 3 matrix input and has 256 smaller layers, each with their own image
filter. Recall that the convolutional layer breaks down the image by enhancing and sharpening it.
The next line of code contains the model activation, or ‘Relu’ also known as Rectified linear
unit, which essentially synthesizes the math behind machine learning, and implements logistic
regression in the code. A Max Pooling layer is added after the activation. Recall that Max
Pooling entails grouping up the pixels in ‘pools’ and further breaking them down and storing
notable features. This specific max pooling layer breaks down the image in a 2 by 2 dimension
matrix. These steps are then repeated in the code. A dense layer, also called a fully connected
layer and the final layer that the image filters through, is added containing 64 neurons. The dense
layer is often considered the most raw layer in the neural network. A sigmoid activation, similar
to ‘Relu’ is also included to help with the structure of the neurons in the dense layer. Lastly, in
the ‘model.compile’, a metrics line of code is added which ensures that the accuracy of the
network is relayed to the programmer. The above was an explanation of the basic and necessary
layers of a convolutional neural network. In order to actually run the neural network model, and
in order to train the machine learning algorithm, one last line of code is needed (Fig. 13). The
code specifies the parameters and details of how the algorithm will run and train off of the
training data set. This line of code specifies the usage of the “Features and Labels” NumPy
arrays through ‘X’ and ‘y’. The code ‘batch_size’ entails the amount of images the model will
train off of at a time. Batch Sizes must always be even numbers, and must be low amount of
images. The author specified that the model will train off of 32 images at a time. The amount of
epochs was also specified in this line of code. In machine learning, an epoch is one complete
iteration of the model training off of the dataset and the specified layers with neurons, by running

LeukosCognosis: A Machine Learning Algorithm 11

the code. In short, the author specified 10 epochs, meaning the code would run 10 times.
Typically, there is a correlation between the amount of epochs and the accuracy of the model
itself. Lastly the author specified the ‘validation split’ in the code as 30%. This means that 30%
of the image dataset would be put aside when running and training the model to test. Adding a
validation split is beneficial as the model has its own testing images in the training dataset to
compare against. When running this model, the author will receive output metrics of 4
percentages in correlation to the amount of epochs including: validation accuracy and loss[a
comparison of the model against the validation data] and model accuracy and loss(Fig.14). In
machine learning, loss can be considered the amount of time the model gets a classification or
categorization incorrect.The amount of time, in seconds, it took to train the model is also
included in the epoch metric reading.
 After building the basic code for the convolutional neural network, the author decided to
perfect and improve the accuracy and efficiency of the model. The author started out with the
basic code for a convolutional neural network, and performed her own experimental trials to
determine what optimizers, algorithms, neurons, layers and ‘weights’ to add to the model. These
experimental trials were performed based on the validation loss and accuracy along with the
model loss and accuracy. The author adhered to the “LeukosCognosis: Final drafting” procedure
when perfecting the model:

1. Create a table or spreadsheet to record the results and progress of perfection the model
2. Run the LeukosCognosis convolutional neural network code in the Jupyter Notebook
3. Record the amount of epochs the model iterated and completed; Include the amount of

individual times the code ran.
4. Record the Validation Loss and Accuracy percentage for the first and last epoch
5. Record the model Accuracy and model loss percentage for the first and last epoch
6. Based on the performance of LeukosCognosis, add layers,optimizers, ‘class weights’ and

other supplemental lines of code to improve the accuracy of LeukosCognosis.
7. Record the supplemental line of code in the table, and explain the impact of the additional

lines of code added to the model, or what changes were implemented and integrated into
the code

8. Repeat steps 2-7 with the new and updated code until the validation accuracy is at least
90%

9. Create Matplotlib graphical representations of the epochs in correlation to the validation
loss and accuracy.

 After performing this procedure for a substantial amount of time, the author was able to
perfect the model, and improve the overall validation accuracy of the model itself. Many tweaks
and adjustments were made to the code based on substantial observations made by the author.
Please note, that the data collected from perfecting the overall model will be featured in the
results section. All steps, additions and addons to the model, including explanations behind the

LeukosCognosis: A Machine Learning Algorithm 12

accuracy and epoch, will be thoroughly explained in the results section. However, the final draft
of the model code will be thoroughly explained and dissected in the next paragraph.
 The “LeukosCognosis: Final Drafting” procedure was highly effective when it came to
perfecting the overall model. As an end result, the author was able to make LeukosCognosis
around 98% accurate in both the validation accuracy and model accuracy. The Validation loss
and model loss was under 1%, making the model’s ‘turn-over’ and ‘inaccuracy’ rates extremely
miniscule. In short, the author was able to perfect the classification abilities of LeukosCognosis,
and make the medical-tech device extremely precise. The code for the final draft of the
LeukosCognosis convolutional network included additions such as the algorithm optimizer
‘Adam’, the Tensorflow function ‘Flatten’, Batch Normalization, padding, class weights, binary
crossentrophy and the implementation of advanced convolutional layers(Fig.15). In the code,
located in the ‘Figures Section’, the author imported the generic modules necessary for a
convolutional neural network. Modules such as tensorflow, Sequential, Conv2D, Max Pooling
and Dense layers were imported. Next, the NumPy arrays of the training data features and labels
were ‘pickled in’. This allowed for these arrays to be referenced later in the code. The author
added in the following line of code “tf.compat.v1.random.set_random_seed(1234)”, in order to
initialize the convolutional neural network, and ensure that results are reproducible throughout
significant model ‘reruns’. The number ‘1234’ is simply a random number that the author
selected in order to initialize the model. After adding the sequential function in the code, to
ensure that multiple layers are viable, the author created an overarching convolutional layer that
had 32 overall layers. The code was similar to the basic convolutional network code, however it
implanted padding. The code ‘Padding= same’ ensures that the size output of the feature
extraction maps and the notable features are around the same size. This helps with the processing
of a convolutional neural network. The code ‘Batch Normalization’ line of code is a technique
used by the author in order to improve the speed and efficiency of the convolutional neural
network itself. By implementing this line of code, the author ensured that the convolutional
neural network was able to learn faster through a small amount of training data. Another
Convoluional layer, in which the image is sharpened, and notable features are extracted and
stored into neurons, along with another batch normalization layer is utilized. Max Pooling, also
found in the basic convolutional neural network code, is implemented in order to break down the
feature map and extract features. The overarching Convolutional Layer is then implemented,
twice, each time with an increasing amount of layers, along with this the max pooling layer is
also implemented. The author then used the code ‘model.add(Flatten())’. This feature allows the
multidimensional array in which the extracted and notable features are stored are turned and
transformed into a 1D or one dimensional array (Fig.16). This feature allows the data and
neurons to be read and accessed more easily. Lastly, a handful of dense layers are added in,
along with the sigmoid activation. In the ‘model.compile’ the author included a loss function
called ‘Binary Crossentrophy’. Binary Crossentrophy, essentially tells the coder how good or
bad the model’s predictions are. This loss function also aids in the final categorization of the

LeukosCognosis: A Machine Learning Algorithm 13

image. The optimizer ‘Adam’ is also utilized in the code. ‘Adam’ is an algorithm that allows for
maximum accuracy in training, and helps to increase the learning rate. When implementing this
algorithm developers must specify certain parameters, including the ‘amsgrad’, which helps with
the math behind the deep learning, and much more. In the code that specifies how the model
‘learns’ [The history=model.fit code], the author included ‘Class_weights’. Class Weights is a
way of balancing out the bias and influence of unbalanced datasets. When creating the image
dataset, the author had less Acute Lymphoblastic Leukemia images than Healthy blast cell
images. The author fixed the unbalanced dataset by adding the slightest bit more ‘preference’
through class weights. The author also reduced the batch size to 16, and the validation split to
15% of the data. The amount of epochs were increased to 15, in order to increase the model’s
accuracy (Fig. 17). The side by side comparison shows that the low model accuracy at 72% in
the 1st epoch and at around 100% in the 15th epoch. In order to provide a visual representation
of the layers in the model, the author utilized the code ‘model.summary’(Fig. 18). The model
summary depicts the amount of layers that were implemented in the convolutional neural
network. This shows what the image will filter through when actually testing the model.
 The author perfected the model by adding more layers to the model inorder to increase the
accuracy and the neural network’s ability to extract notable features. These additions made the
Convolutional Neural network 98% accurate. In order to view the step-by-step results of the
procedure that was undertaken when perfecting this model, please refer to the “Results” section.
LeukosCognosis Accuracy Testing: Procedure and Explanation
 Once the LeukosCognosis Convolutional neural network accuracy was around 98%, the author
decided to proceed in the “Software Development Design Process,” and into the “Testing” stage.
The author performed several experimental trials in order to improve the accuracy of
LeukosCognosis, however, it was necessary to test the model utilizing a plethora of ulterior
testing images. The author determined that experimental trials will be held to determine the
viability of the following: Amount of time it takes to test an image and Accuracy/Correctness of
the classification. A Convolutional Neural Network must be tested with images outside of the
training dataset, in order to determine the true accuracy of the model. The author compiled 19
images in order to test the model. These images consisted of 7 Healthy blast cells in the form of
microscopic blood smear images and 7 Acute Lymphoblastic Leukemia blast cells in the form of
a microscopic blood smear: these images were separated from Fabio Scotti’s image dataset. An
additional 5 images were taken off of multiple Acute Lymphoblastic Leukemia and health blood
cell websites. The author completed the following procedure in order to efficiently test the
classification abilities of the model:

1. Create a table or spreadsheet to record the results of Testing the overall Classification
abilities of the model.

2. Start by testing the Acute Lymphoblastic Leukemia blast cells first, and proceed with
testing the Healthy White Blood cell smears.

LeukosCognosis: A Machine Learning Algorithm 14

3. Record the classification of each image, and the probable percentage of detected
Leukemia in the testing image

4. When testing the image is running, record the amount of time it takes to receive the
classification.

5. Repeat steps 3-4 until all images are tested.
 The author followed this procedure in order to accurately test the model. In these specific
experimental trials, the independent variable, or what the author controls, is the testing image
that is provided, the dependent variable is the diagnosis and the amount of seconds it takes to
receive a diagnosis. The control, or baseline, would be the actual diagnosis of the test image
[Determined through Fabio Scotti’s classification]. Please note that the results of each individual
image will be adequately analyzed and explained in the “Results” section. The author utilized
detailed code in order to test the LeukosCognosis Algorithm(Fig. 20).This code was essentially
to adequately test the model through a testing image input. The author started off by importing
the ‘CV2’ module, which allows for advanced deep learning and computer vision. The file path,
as to where to find these testing images is also specified, aligned with the image size [128
pixels]. The categories are also respecified in this code. Next, the function ‘prepare’ is defined,
with the argument of the file path passing through. The author then created two distinct arrays
specifying the color and size of the image. Afterwards, the prediction of the image is printed,
along with a short informational statement regarding the nature of the diagnosis. A line of code
was included in order to format the percentage of probability of Leukemia. Because the model
had two options in which to classify the microscopic blood smear image, Acute Lymphoblastic
Leukemia, or Healthy Blood cells, the author made sure the model predicted the ‘probability of
Leukemia’. If the probability of Leukemia was High[around 98%],this meant that the patient had
Acute Lymphoblastic Leukemia. If the probability of Leukemia was low[around 10%-0.3%], the
patient had a healthy amount of white blood cells, and did not have any blast cells. The author
utilized this code throughout the testing process in order to confirm the accuracy of
LeukosCognosis.
The LeukosCognosis accuracy testing procedure will be explored in detail in the “Results”
Section.

LeukosCognosis: A Machine Learning Algorithm 15

Results
 The Results section will explore many aspects of the LeukosCognosis Convolutional Neural
Network code in a logical and statistically inclined perspective and viewpoint. Along with an
in-depth analysis of the results of the LeukosCognosis Algorithm, many supplemental sources
such as tables, charts, graphs and more will be perused carefully. The Results section will
explore and analyze the accuracy behind the prototype LeukosCognosis Algorithm. This section
will also probe upon the accuracy of the LeukosCognosis model in different stages, along with
what the author did to increase the accuracy. Lastly, the accuracy of classification and the
amount of time it takes to classify a test image will be investigated. The procedures that were
utilized to produce these impeccable results are located in the ‘Method and Materials’ section.
An in-depth investigation of the implications of the Results, will be featured in the “Discussion”
section.
LeukosCognosis: Prototype Accuracy and Results
 The author started out by prototyping the LuekosCognosis model through Wolfram Alpha, as
a part of the “Software Development Design Process”. This ensured that the final
LeukosCognosis Algorithm was extremely accurate. In order to improve the overall prototype
model, the author decided to perform experimental trials. The author performed a procedure to
test the accuracy of diagnosis of the prototype model when given a test image; specifically
testing for the accuracy of the probability of the diagnosis. Tweaks were made to the overall
testing ‘URL Image dataset’, by adding in different keywords, based on the percentage of
accuracy. The procedure for this evaluation can be found in the methods and materials section.
For coherency, the author recorded Key word changes to each Image URL dataset,the image that
was used to test the prototype model, and the diagnosis probabilities in correlation with the
model draft in a table(Fig. 21). In Drafts 1-6 in the ‘Healthy Blood Cell Prototype Testing’ table,
as the key word searches get narrower and narrower, adding in words such as ‘White Blood
Cells’ and ‘Healthy Microscopic’, the dataset improves, meaning that the accuracy of the
diagnosis of the image as healthy improves. There are some outliers to this notion, including
Draft 4, where the prototype classifier diagnoses the image incorrectly, as ‘Leukemia’ instead of
Healthy. The accuracy for this specific microscopic blood smear image is recorded as 55%
probability of Leukemia and 45% probability of Healthy white blood cells. However, at Draft 6,
the model’s accuracy is extremely high. This is partially due to the authors choice of narrowed
down ‘URL image dataset’ including the terms ‘Leukemia, Microscopic, Blood Smear Image’.
The prototype diagnosed the image as ‘Healthy’, the correct classification, and gave a 9%
probability/chance of Leukemia and a 91% probability/chance of Healthy White blood cells.
These percentages indicate an extremely accurate prototype model in terms of the accuracy,
classification and diagnosis of Healthy White Blood cells. Drafts 1-6, in pertains to the prototype

LeukosCognosis: A Machine Learning Algorithm 16

model’s ability to diagnose ‘Leukemia’, the overarching term used when creating the model,
exhibit a similar trend in probability accuracy when specifying the key words of the ‘URL
Image dataset’. Throughout the progression of the drafts, when given a Leukemia white blood
cell smear testing image, the accuracy of the classification and the probability percentages
increased. However, there are some exceptions to this increase in accuracy, Including Draft 5,
where the classification is incorrect, and the diagnosis percentages are extremely inaccurate.
However, by Draft , with the change in key words, the prototype model’s overall accuracy
increases. In order to better visualize the prototype model’s accuracy correlation to the accuracy
of diagnosing a healthy white blood cell smear, the author graphed the accuracy percentages (Fig
22). This graph depicts the probability of Healthy white Blood cells in red, and the probability of
Leukemia white blood cells in blue throughout each individual draft and in each respective
classification. The author graphed this for the Healthy White Blood Cell dataset image drafts, in
order to better visualize the complicated data. As seen as an overall trend in the graph, when the
classification is correct, healthy white blood cells, the accuracy and the probability percentage is
higher.
The prototype model, along with the accuracy testing, was an excellent gateway to constructing
the final LeukosCognosis Model. This allowed the author to understand and identify key trends
in accuracy and how improving the code and changing the dataset can affect the accuracy of
diagnosis.
LeukosCognosis: Final Drafting Accuracy Testing
 When drafting the final LeukosCognosis Convolutional Neural Network, the author decided
to perform an experimental trial in order to better improve the structure and code behind the
model. Starting out with the basic code for a convolutional neural network[thoroughly explained
and discussed in the methods and materials section], the author recorded the epoch accuracy,
including the model loss, model accuracy, validation accuracy and validation loss. Recall that an
‘epoch’ entails the amount of time the model iterates over the basic code in order to ‘train’ and
‘learn’. Model accuracy and loss refer to how accurate or inaccurate the overall model is.
Validation loss and accuracy refer to the machine’s reading of how accurate the model is when
compared to the ability to learn off of the training data. When building a convolutional neural
typically high model accuracy and validation accuracy and low model loss and validation loss
indicate that the model is performing fairly well. After running the code for the specified amount
of epochs, the ending accuracy readings were recorded. Based on the accuracy of the model,
different additions were made to the code in order to improve the performance. These additions
were also recorded. A detailed procedure is located in the ‘Methods and Materials’ section. The
author performed this process for a total of nine drafts, and stopped only after reaching an
acceptable accuracy. The Changes and Additions, Description of the changes, Epochs, and
Model readings were all recorded in Figure 23, for clarity. Draft 1, signifies the basic
convolutional neural network code nec easy to build a model. The author ran this code for a total
of 10 epochs, or 10 iterations, which resulted in a model accuracy of 52% and a model loss of

LeukosCognosis: A Machine Learning Algorithm 17

63%. The Validation accuracy for Draft 1 is extremely low, 28%, indicating that the model did
not perform very well. It is important to note that the Validation Accuracy and Validation loss
along with the Model Accuracy and model loss are on their own ‘percentage scales’. This means
that these percentages do not equal 100 when concatenated.The author took these readings into
account and added more to the overall code in Draft 2. In Draft 2, the author added in ‘Padding’,
which essentially helps the images in the training dataset have the same amount of pixels when
reformatting, storing information in the neurons and creating feature extracting maps.
Implementing padding increased the overall validation accuracy indicating that a positive change
had occurred. In Draft 3, additional convolutional layers were added into the model’s code in
order to help with image filtration and feature extraction. Draft 4, includes a similar notion, more
‘Dense Layers’ were added to improve individual neuron filters. In Draft 5, tensorflow random
seed was utilized, in order to prevent model bias and help with the model initiation process. Draft
6 utilized ‘Batch Normalization’ a tensorflow function which allows the learning rate of the
model to improve and increase based on a smaller set of images. The next drafts utilize Adam, an
algorithm/optimizer which increases in the model’s learning and mathematical abilities, and
finally the ‘Flatten’ function which improves access to data and neurons in NumPy arrays. The
last draft of the LeukosCognosis model, Draft 9, includes Class weights, which helps to balance
out the slightly uneven datasets that the model is training off of. The amount of epochs, or
iterations was also increased. The additions and improvements to the basic Convolutional Neural
Network code improved the overall accuracy readings of the model itself. The final draft had
98% Model accuracy, 0.25% model loss, 98% validation accuracy and 2% Validation loss. This
indicates that the model is extremely accurate and is performing fairly well in training. These
values and readings were visually represented using tensorflow ‘matplotlib graphs’. The code for
these graphs can be found in Figure 24. In the code, the Matplotlib modules are imported in
order to create the graph. Next, the code specifies that the model accuracy and the validation
accuracy are plotted in correlation to the epochs. These graphs essentially show the distinct
correlation between Validation Loss and Model Loss and the Model Accuracy and Validation
Accuracy.The result of this code is featured in Figure 25 and Figure 26. These graphs depict the
epochs and progression of accuracy/loss for the final and official LeukosCognosis code. Figure
25 depicts the correlation between the Model Accuracy, featured in blue and called the ‘Test’,
and Validation Accuracy featured in orange and called the ‘Train’. The accuracy typically
increases throughout the progression of the epochs, with the exception of epoch 2, where the
accuracy drastically drops. The fact that these separate and distinct lines closely follow the same
trend, indicates that the model is extremely accurate. The opposite is true for Figure 26, which
depicts Model Loss and Validation Loss. As the epochs and repetitions progress and increase,
Through these figures, one can easily identify a correlation between the progression of the
epochs and the increase in accuracy and decrease in loss. As the number of epochs increase, the
validation accuracy and model accuracy increase, which is an indication that the model is

LeukosCognosis: A Machine Learning Algorithm 18

extremely accurateThe supplements that the author made, including adding layers, tensorflow
modules, optimizers and more, all contributed to the increase in accuracy of the model itself.
LeukosCognosis: Diagnosis Accuracy Testing
 After creating the final draft of the LeukosCognosis Convolutional Neural Network, the
author decided to test out the Classification and Diagnosis Abilities of the model through a round
of experimental trials. This specific round of accuracy testing judged how well the model can
classify a microscopic blood smear image as either ‘Acute Lymphoblastic Leukemia’ or
‘Healthy White Blood Cells’. The author decided to test the model by using a series of 20 images
that were outside of the training dataset, 10 Acute Lymphoblastic Leukemia images and 10
Healthy White Blood Cell images. The Amount of time it takes to diagnose the image, the
classification of the test image, and the probability and percentage prediction of the image were
all recorded in detail. In order to test out the model the author followed a detailed procedure,
included in the ‘Methods and Materials Section’, and utilized a specific piece of code in order to
process the image through the model. The results of this experiment, recorded in a total of two
tables, are located in Figures 27 and 28. These tables, contain the test image itself , the actual
classification of the image, the model’s classification of the image, the probability of Leukemia,
and the amount of time it took to diagnose the image.It is important to note that LeukosCognosis
model’s predictions are recorded on the scale of the probability of Leukemia in the image. If
there is a 98% chance of Leukemia in the image, it is diagnosed as Leukemia. If there is a 0.25%
chance of Leukemia in the image, it is diagnosed as Healthy White Blood Cells.Figure 27,
contains the Accuracy testing of the model through Acute Lymphoblastic Leukemia blood smear
images. When given 10 images that had Acute Lymphoblastic Blast cells, the model classified all
of them as ‘Leukemia’, the correct classification and diagnosis. When predicting the probability
of Acute Lymphoblastic Leukemia, the model gave out percentages that were in the 95%-99%
ranges, indicating that the diagnosis is extremely accurate, as the percentages of Leukemia are
extremely high. The amount of time it took to diagnose the Acute Lymphoblastic Leukemia
image ranged between 3-12 seconds. Figure 28, which depicts the Diagnosis testing of healthy
images, shows that the probability of Leukemia, throughout each individual image was
extremely low. Test Image 7, was extremely accurate in terms of predicting the amount of
Leukemia in the healthy white blood cell; 0.01%. This low percentage indicates that there is an
extremely miniscule chance that the patient has Leukemia. Similar to the Acute Lymphoblastic
Leukemia diagnosis testing, the amount of time it took to diagnose the actual test image was a
matter of seconds. A graphical representation of the Diagnosis Accuracy testings, in terms of
correct classification, percentage of probability, and time, can be found in Figures 29-32. Figure
29 shows the correlation between the Acute Lymphoblastic Leukemia Test Images and the
model predicted probability of Leukemia [extremely high]. Figure 30 depicts the amount of time
it took for the model to diagnose and classify each individual image, in a matter of seconds.
Figure 31, depicts the probability of Leukemia in correlation to the healthy blood cell smear test
images. Throughout the graph, depicted in a red line, there is a trend of a low probability and

LeukosCognosis: A Machine Learning Algorithm 19

percentage, ranging from 0% to 7%. The amount of time it took to diagnose the healthy cell
images was also extremely low. These accuracy testings in terms of the diagnosis provided a
deeper insight into how the model can classify a microscopic image.

Discussion
 LeukosCognosis, a convolutional neural network to diagnose Acute Lymphoblastic Leukemia,
has been proven to be accurate, efficient and productive through countless experimental trials,
procedures, and more. The data to these procedures can be found in the ‘Results’ Section.
Performing multiple tests on the model’s ability to ‘learn’, including validation and model
accuracy/loss along with improving the model’s code and structure throughout the process,
showed just how accurate the model was, and its overall abilities. The experimental trials that
conveyed this notion to the author were specifically the ‘LeukosCognosis: Diagnosis Accuracy
Testing, and the LeukosCognosis: Model Accuracy testing’. In the ‘LuekosCognosis: Model
Accuracy testing’, the author started off with the basic convolutional neural network code and
found the model readings of validation accuracy loss and model accuracy loss in correlation to
the amount of epochs the model trained for. The author then added more to the overall structure
and code of the convolutional neural network in order to improve the accuracy and decrease the
loss. The author completed this process for a total of 9 drafts, each time adding in different
Tensorflow amenities to help balance out the dataset, add more layers to the model, and reduce
model bias towards a certain ‘categorization’. By the end of the 9 drafts, the final
LeukosCognosis solution was born. The LeukosCognoisis model had 98% Model Accuracy and
Vladition accuracy along with a 0.25% model loss and 2% Validation loss. This indicates that
the model is performing extremely well in regards to learning rate, ability to train off of the given
data, and how accurate the model will be when diagnosing an actual test image. When graphing
the LeukosCognosis model[final draft], in terms of how accuracy correlated with epochs, one
can clearly perceive a positive trend, as the amount of epochs increased the model and validation
accuracy increased. The opposite is true for the Model and validation loss. These specific tests,
when training the model, gave the author an insight into how the training process worked and
what changes needed to be made. In order to gain an in-depth understanding of how well the
model diagnoses a test image, the author decided to perform the ‘LeukosCognosis: Diagnosis
Accuracy testing’. These tests gave the author an insight into how well the LeukosCognosis
model could diagnose a microscopic blood smear image in relation to the correct classification
and the probability of Leukemia. After giving the model 20 test images, 10 Acute Lymphoblastic
Leukemia and 10 Healthy whtie blood cells smears, the model correctly diagnosed/classified
each image. The probability of Leukemia in the Acute Lymphoblastic Leukemia blood smears
was predicted to be around 98% for all test images, indicating there is an extremely high chance
of Leukemia. When diagnosing the Healthy Blood Cell smears, the model classified all 10 of
these images a Healthy, the correct classification, and gave extremely low percentages for the

LeukosCognosis: A Machine Learning Algorithm 20

probability of Leukemia. This means that there is an extremely low chance, 0.25%-2% chance
that there is Acute Lymphoblastic Leukemia in the blood smear.The meer fact that the model
was able to properly diagnose all of these images, indicates the accuracy of LeukosCognosis.
Throughout these tests, the amount of time it took to substantially diagnose the image ranged
from 2 seconds- 14 seconds in total. This means that LeukosCognosis is extremely efficient in
terms of the oncologist receiving a diagnosis immediately after a microscopic image of the blood
smear is taken. LeukosCognosis’s astounding results on these tests indicate the future of
diagnosis testing of Acute Lymphoblastic Leukemia. When compared to diagnosis companies
such as Labcorp or Quest, LeukosCognsois is far better in all aspects including the overall
accuracy of the algorithm and the easy to use features. Labcorp and Quest employ human
diagnosis, meaning that their ability to diagnose Leukemia based solely off of the Human eye is
only around 30%-40% accurate. This means that if a patient sends in a blood smear test, they
may receive a fault and incorrect result. LeukosCognosis is 98% accurate meaning that a patient
can trust the results received, and immediately continue with the next steps in confirming the
diagnosis of Acute Lymphoblastic Leukemia[bone marrow test], and continue with the treatment
steps. LeukosCognosis is also extremely quick and efficient when compared to companies such
as Labcorp and Quest. Labcorp and Quest can take a matter of weeks to diagnose the blood
smear test and return it to the patient. This means that there is a high chance that a patient’s
window of treatment may pass, effectively decreasing their chance to recover from Acute
Lymphoblastic Leukemia. LeukosCognosis cuts out the ‘middle-man’ of the labs. Instead, the
oncologist can take a blood smear test, take a microscopic image of the test, upload it to the
computer and receive a diagnosis in a matter of seconds. This efficiency allows for easier
treatment for the patient. In the future, the author would like to deploy this model into the
medical field to provide oncologists with access to this useful technology. In order to
successfully deploy this model into the medical field, the author would like to create a User
Interface to the model itself. Creating the user interface will make uploading the image to the
model easier, and will prevent the oncologists from directly accessing or tampering with the
code. The user interface would most likely be created with Flask, an easy web deployment
software. By creating a user interface for the model and effectively deploying it into the medical
field LeukosCognosis has the ability of positively impacting patients with Acute Lymphoblastic
Leukemia.
LeukoCytosis can truly have an impact on the medical field, and improve the diagnosis rates of
this fatal and fast acting condition. Deploying this machine learning algorithm into the medical
field will cut the cost of lab tests, remove the ‘midle-man’, provide an accurate diagnosis and
allow for easier access to testing.

LeukosCognosis: A Machine Learning Algorithm 21

Conclusion
 Every 9 minutes a person in the United States dies from Leukemia, or cancer of the blood
and bone marrow. Essentially, Leukemia is a cancer of the blood and bone marrow and occurs
when one’s body rapidly produces abnormal white blood cells, which decreases the body’s
ability to fight infections. If Leukemia is not immediately diagnosed, as symptoms are often
lucrative, this disease can act quickly. According to the​ Leukemia & Lymphoma Society​,
diagnosis and lab blood smear sample tests can take weeks to return, decreasing a patient’s
ability and chances to survive. The need for a quick, effective, and proper diagnosis tool is
urgent. In an effort to solve this problem, LeukosCognosis was created. LeukosCognosis is a
Machine Learning Algorithm that can diagnose Acute Lymphoblastic Leukemia[ALL] on the
spot with 98% accuracy. This algorithm can accurately diagnose Leukemia in seconds, a
juxtaposition to the weeks that a lab Leukemia diagnosis may take. All the oncologist would
have to do is take a microscopic image of the suspected white blood cell smear, and upload it to
the model. Within seconds, the model will accurately diagnose the sample and predict the
probability of Acute Lymphoblastic Leukemia. LeukosCognosis is unique as it provides a
one-stop solution to long and often inaccurate lab tests and can be performed almost
immediately. The model was coded using the Tensorflow environment, the Python programming
language, and Jupyter Notebook. The LeukosCognosis algorithm is 98% accurate and returns
diagnosis results almost immediately. The resources that were utilized in constructing the
LeukosCognosis Machine Learning algorithm, consisted primarily of software and coding
programs. The Machine Learning Software that was used to code the Convolutional Neural
Network behind the LeukosCognosis Algorithm, was Tensorflow, through a Jupyter notebook
interface. Keras and Python commands were also utilized to construct the model. Wolfram Alpha
code was used to build a solid prototype of the model, for design and testing purposes.
LeukosCognosis eliminates the need for a lab analysis of a blood smear; all the
Oncologist[doctor who treats cancer] would have to do is take a microscopic image of the white
blood cell smear, and upload it to the model. Within seconds, an accurate diagnosis will appear,
along with the percentage pertaining to the probability of Leukemia. With an accurate
confirmation of Acute Lymphoblastic Leukemia, bone marrow testing can proceed, and
life-saving treatment can begin immediately. Companies such as LabCorp and Quest, which
perform blood smear lab tests, are the LeukosCognosis Algorithms’ biggest competitors.
LabCorp and Quest use the Human eye to diagnose blood smears, rendering accuracy at a dismal
30-40%. However, LeukoCytosis is unique as it cuts out the ‘middleman’ of a costly Lab
company and delivers results in under seconds. This Algorithm can be used anywhere, making it

LeukosCognosis: A Machine Learning Algorithm 22

accessible, cost-effective, and productive.It is important to note that the LuekosCognosis
algorithm had to undergo a great deal of experimentation, testing, prototyping, model revisions,
and reconstruction of the Convolutional Neural Network. The evaluations and experiments were
conducted in order to perfect the overall medical precision of the model. The training data set for
the model was also regulated throughout the coding process. Continuous research on Acute
Lymphoblastic Leukemia was also necessary, to ensure the utmost medical validity. Once this
model is deployed in the medical field, it will save time, money, and lives. This convolutional
network-based image classifier is built on several ‘layers’, including dense layers, pooling layers,
Max pooling layers, and conv3D layers. The author trained this model using hundreds of
microscopic blood smear images of both health White blood Cells and Leukemia infected white
blood cells. These microscopic images were acquired from Fabio Scotti, an esteemed Leukemia
researcher. This machine learning convolutional neural network was built to provide accurate
Leukemia diagnosis results, eliminate the waste of time, and provide a pre-lab analysis of the
blood cells. The author hopes to one day deploy this tool as an API into the Medical field
through Flask, to make it more accessible to healthcare workers. Deploying this to the medical
field will allow for greater future implications of LeukosCognosis, and will create a greater
impact. LeukosCognosis is cost-efficient and saves an abundance of time when diagnosing Acute
Lymphoblastic Leukemia.This model will improve the diagnosis procedure and allow for greater
positive medical impact on the patient.
LeukosCognosis will save time, money, and lives.

LeukosCognosis: A Machine Learning Algorithm 23

Figures

Figure 1-Software Development Design Process. ​Depicts the programming and software
design process in relation to the progressing development of the solution.
Source: ​2019.​ Prototyping Design Process-Software Development.​[image] Available at:
<​https://www.plutora.com/blog/software-development-life-cycle-making-sense-of-the-different-
methodologies​>[Accessed 8 May 2020] Note: Author made edits to the image for clarity

https://www.plutora.com/blog/software-development-life-cycle-making-sense-of-the-different-methodologies
https://www.plutora.com/blog/software-development-life-cycle-making-sense-of-the-different-methodologies

LeukosCognosis: A Machine Learning Algorithm 24

Figure 2-Sample Images in Web Search dataset.​ Displays a few images in the Websearch
‘dataset’ utilized in the Wolfram Alpha Prototype Model.
Source: ​Generated by Google Image Search Engine. Available at: <​Leukemia White Blood
Cells Microscopic Images​> [Accessed 6 May 2020]

Figure 3-Image Classifier Prototype Code. ​Prototype Image Classifier Model generated by the
author utilizing Wolfram Alpha, a popular programming tool.
Source:​ Generated by the Author. 2019.​ Wolfram Alpha Image Classifier Prototype Code.
[Accessed 8 May 2020]

Figure 4-Convolutional Neural Network Basic Process.​ Depicts the basic outline and process
of a CNN model, from an input image to an output layer answer, along with the layers in
between.

https://www.google.com/search?q=Leukemia+White+Blood+Cell+microscopic+images&rlz=1C1CHBF_enUS862US862&source=lnms&tbm=isch&sa=X&ved=2ahUKEwiZ7ZKsiKXpAhVSKa0KHVrJCuwQ_AUoAXoECAsQAw
https://www.google.com/search?q=Leukemia+White+Blood+Cell+microscopic+images&rlz=1C1CHBF_enUS862US862&source=lnms&tbm=isch&sa=X&ved=2ahUKEwiZ7ZKsiKXpAhVSKa0KHVrJCuwQ_AUoAXoECAsQAw

LeukosCognosis: A Machine Learning Algorithm 25

Source:​ ​2019. ​Convolutional Neural Network-Layman's Terms​. [image] Available at:
<​https://towardsdatascience.com/convolutional-neural-network-a-step-by-step-guide-a8b4c88d6
943​ > [Accessed 4 May 2020].

Figure 5- Neural Network Map. ​Depicts the flow of Neurons and utilization of neurons in a
convolutional neural network.
Source:​ 2014.​Structure of Convolutional Neural Network-Neurons​. [image] Available at:
<​https://www.researchgate.net/figure/The-structure-of-a-convolutional-neural-network-adopted-i
n-this-paper-The-circles_fig2_286240187​>[Acessed 10 May 2020]

https://towardsdatascience.com/convolutional-neural-network-a-step-by-step-guide-a8b4c88d6943
https://towardsdatascience.com/convolutional-neural-network-a-step-by-step-guide-a8b4c88d6943
https://www.researchgate.net/figure/The-structure-of-a-convolutional-neural-network-adopted-in-this-paper-The-circles_fig2_286240187
https://www.researchgate.net/figure/The-structure-of-a-convolutional-neural-network-adopted-in-this-paper-The-circles_fig2_286240187

LeukosCognosis: A Machine Learning Algorithm 26

Figure 6-Dataset Images.​ The image to the left depicts a non-healthy cell from ALL patients,
while the image to the right depicts a healthy blast cell. Note: This is part of the testing dataset in
LeukosCognosis.
Source: 2010.​Dataset Sample.​[image] Available at:
<​https://homes.di.unimi.it/scotti/all/​>

Figure 7- ​Depicts the code for the imported images, specifies categories, and Color scale of the
image.
Source: ​2020. ​LeukosCognosis:Code. ​[image] The code in this image was generated and created
by the author [Sirihaasa Nallamothu].

https://homes.di.unimi.it/scotti/all/

LeukosCognosis: A Machine Learning Algorithm 27

Figure 8​-Depicts the code for the creation of the training data.
Source: ​2020. ​LeukosCognosis:Code. ​[image] The code in this image was generated and created
by the author [Sirihaasa Nallamothu].

Figure 9​-Depicts the code behind shuffling the training data to prevent bias.
Source: ​2020. ​LeukosCognosis:Code. ​[image] The code in this image was generated and created
by the author [Sirihaasa Nallamothu].

Figure 10​-Depicts the code behind creating the NumPy arrays for features and labels.
Source: ​2020. ​LeukosCognosis:Code. ​[image] The code in this image was generated and created
by the author [Sirihaasa Nallamothu].

LeukosCognosis: A Machine Learning Algorithm 28

Figure 11-​Depicts the Tensorflow modules that were imported in the Jupyter Notebook to create
the convolutional neural network.
Source: ​2020. ​LeukosCognosis:Code. ​[image] The code in this image was generated and created
by the author [Sirihaasa Nallamothu].

Figure 12-​Depicts the First draft and layers of the convolutional neural network. The layers and
capabilities featured in this first draft are extremely simple- the baseline of a convolutional
neural network.
Source: ​2020. ​LeukosCognosis:Code. ​[image] The code in this image was generated and created
by the author [Sirihaasa Nallamothu].

Figure 13-​Depicts the last line needed in a basic convolutional neural network- necessary to
specify the parameters when training the model.
Source: ​2020. ​LeukosCognosis:Code. ​[image] The code in this image was generated and created
by the author [Sirihaasa Nallamothu].

LeukosCognosis: A Machine Learning Algorithm 29

Figure 14​-Depicts and example of an epoch, along with the displayed metrics. Validation loss
and accuracy along with model loss and accuracy were also included.
Source: ​2020. ​LeukosCognosis:Code. ​[image] The code in this image was generated and created
by the author [Sirihaasa Nallamothu].

LeukosCognosis: A Machine Learning Algorithm 30

Figure 15-​Depicts the final draft of the LeukosCognosis Convolutional Neural Network code
after a procedure was implemented and the model code was perfected. This code yields 98%
accurate results.
Source: ​2020. ​LeukosCognosis:Code. ​[image] The code in this image was generated and created
by the author [Sirihaasa Nallamothu].

Figure 16-​Depicts the effect of Flatten() to a NumPy array, changing a multidimensional array
into a 1D array.
Source: ​2019. NumPy Arrays flatten. [image]. Available at:
<​https://www.sharpsightlabs.com/blog/numpy-flatten​>[Acessed 9 June 2020]

Figure 17-​Depicts the epoch iterations of the final LeukosCognosis code. The code was ‘iterated
over’ 15 times. The validation loss decreased throughout the repetitions and the accuracy
increased. This image is a side by side comparison of the first epoch and the last epoch.
Source: ​2020. ​LeukosCognosis:Code. ​[image] The code in this image was generated and created
by the author [Sirihaasa Nallamothu].

https://www.sharpsightlabs.com/blog/numpy-flatten/

LeukosCognosis: A Machine Learning Algorithm 31

Figure 18-​Depicts the summary of the LeukosCognosis Convolutional Neural Network, in terms
of the layers, functions, and neurons implemented in the code. The ‘Params’ short for parameters
are depicted, which specify the amount of data being transferred from neuron to neuron.
Source: ​2020. ​LeukosCognosis:Code. ​[image] The code in this image was generated and created
by the author [Sirihaasa Nallamothu].

Figure 19-​Depicts a variety of testing images, not part of the training dataset, that the author
utilized in order to test the overall categorization accuracy of the model.
Source: 2010.​Dataset Sample.​[image] Available at:
<​https://homes.di.unimi.it/scotti/all/​>[Acessed 9 June 2020] Note: The author arranged these
images in an appealing way.

https://homes.di.unimi.it/scotti/all/

LeukosCognosis: A Machine Learning Algorithm 32

Figure 20​-Depicts the code utilized to test the accuracy of LeukosCognosis. In this image, a
healthy blood cell is tested, with the probability of Leukemia at a very low percentage.
Source: ​2020. ​LeukosCognosis:Code. ​[image] The code in this image was generated and created
by the author [Sirihaasa Nallamothu].

LeukosCognosis: A Machine Learning Algorithm 33

Figure 21-​Depicts the table utilized to record the progression of accuracy and change in
keywords of the LeukosCognosis Prototype Model.
Source: ​2020. ​LeukosCognosis: Prototype Table. ​[image] The code in this image was generated
and created by the author [Sirihaasa Nallamothu].

LeukosCognosis: A Machine Learning Algorithm 34

Figure 22-​Depicts the LeukosCognosis Prototype Graph in correlation to the accuracy of the
model.
Source: ​2020. ​LeukosCognosis: Prototype Graph. ​[image] The code in this image was generated
and created by the author [Sirihaasa Nallamothu].

Figure 23-​Depicts the LeukosCognosis Perfecting the model table
Source: ​2020. ​LeukosCognosis: Perfecting the Model Table. ​[image] The code in this image was
generated and created by the author [Sirihaasa Nallamothu].

LeukosCognosis: A Machine Learning Algorithm 35

Figure 24-​Depicts the code utilized to generate the Matplotlib graph[Figure 25].
Source: ​2020. ​LeukosCognosis: Code. ​[image] The code in this image was generated and created by the
author [Sirihaasa Nallamothu].

Figure 25-​Depicts the Model Accuracy and Validation of the Final LeukosCognosis Machine
Learning Algorithm throughout the epochs.
Source: ​2020. ​LeukosCognosis: Graph. ​[image] The graph in this image was generated and

created by the author [Sirihaasa Nallamothu].

Figure 26-​Depicts the Model Loss and Validation of the Final LeukosCognosis Machine
Learning Algorithm throughout the epochs.

LeukosCognosis: A Machine Learning Algorithm 36

Source: ​2020. ​LeukosCognosis: Graph. ​[image] The graph in this image was generated and
created by the author [Sirihaasa Nallamothu].

Figure 27-​Depicts the Accuracy testing of the Acute Lymphoblastic Leukemia images.
Source: ​2020. ​LeukosCognosis:Table. ​[image] The table in this image was generated and created
by the author [Sirihaasa Nallamothu].

LeukosCognosis: A Machine Learning Algorithm 37

Figure 28-​Depicts the Accuracy testing of Healthy Blood cell images, through the
Luekoscognosis model, in correlation to the amount of time, in seconds, it takes to diagnose the
blood cell smear.
Source: ​2020. ​LeukosCognosis:Table. ​[image] The table in this image was generated and created
by the author [Sirihaasa Nallamothu].

LeukosCognosis: A Machine Learning Algorithm 38

Figure 29-​Depicts the correlation between the Acute Lymphoblastic Leukemia test images and
model predicted accuracy.
Source: ​2020. ​LeukosCognosis: Graph. ​[image] The graph in this image was generated and
created by the author [Sirihaasa Nallamothu].

Figure 30-​Depicts the correlation between the Acute Lymphoblastic Leukemia test images and
diagnosis time.
Source: ​2020. ​LeukosCognosis: Graph. ​[image] The graph in this image was generated and
created by the author [Sirihaasa Nallamothu].

LeukosCognosis: A Machine Learning Algorithm 39

Figure 31-​Depicts the correlation between Healthy test images and accuracy.
Source: ​2020. ​LeukosCognosis: Graph. ​[image] The graph in this image was generated and
created by the author [Sirihaasa Nallamothu].

Figure 32-​Depicts the correlation between Healthy test images and diagnosis time.
Source: ​2020. ​LeukosCognosis: Graph. ​[image] The graph in this image was generated and
created by the author [Sirihaasa Nallamothu].

LeukosCognosis: A Machine Learning Algorithm 40

Acknowledgments
The LeukosCognosis Algorithm would not have been possible without the help of my Father,
Sateesh Nallamothu. This was my first time venturing into the world of machine learning and
data science, and my dad gave me the advice and help I needed throughout building teh
convolutional neural network. He helped me work out errors and gave me necessary
encouragement. I would also like to thank my family, Swathi Kakarala, Sateesh Nallamothu and
Shreya Nallamothu, for giving me the time and resources I needed to code my model and write
this research paper. Lastly, I would like to thank the team at Youth STEM 2030 for providing me
with this amazing opportunity. I truly appreciate the efforts of this organization.

LeukosCognosis: A Machine Learning Algorithm 41

References
[1] Lls.org. 2020. Facts And Statistics | Leukemia And Lymphoma Society. [online] Available
at: <https://www.lls.org/facts-and-statistics/facts-and-statistics-overview/facts-and-statistics>
[Accessed 6 May 2020].
[2]Cdc.gov. 2019. Questions And Answers About Leukemia. [online] Available at:
<https://www.cdc.gov/nceh/radiation/phase2/mleukemi.pdf> [Accessed 11 June 2020].
[3]Publishing, H., 2014. Leukemia - Harvard Health. [online] Harvard Health. Available at:
<https://www.health.harvard.edu/cancer/leukemia> [Accessed 18 May 2020].
[4]Hematology.org. 2020. Leukemia. [online] Available at:
<https://www.hematology.org/education/patients/blood-cancers/leukemia> [Accessed 13 May
2020].
[5]​ ​ALL-IDB [Internet]. ALL-IDB Acute Lymphoblastic Leukemia Image Database for Image
Processing. Fabio Scotti; 2006 [cited 2020Apr17]. Available from:
https://homes.di.unimi.it/scotti/all/#
[6]Saha, S., 2018. A Comprehensive Guide To Convolutional Neural Networks -- — The ELI5
Way. [online] Medium. Available at:
<https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-e
li5-way-3bd2b1164a53> [Accessed 19 May 2020].
[7]Malik, M., 2018. Machine Learning Of The Human Brain. [online] Medium. Available at:
<https://towardsdatascience.com/machine-learning-of-human-brain-739ab0419612> [Accessed
10 May 2020].
[8]Lls.org. n.d. Leukemia & Lymphoma Society | Donate Today!. [online] Available at:
<https://www.lls.org/> [Accessed 12 May 2020].
[9]GeeksforGeeks. 2019. How To Write A Pseudo Code? - Geeksforgeeks. [online] Available at:
<https://www.geeksforgeeks.org/how-to-write-a-pseudo-code/> [Accessed 9 June 2020].
[10]Wu, J., 2019. AI, Machine Learning, Deep Learning Explained Simply. [online] Medium.
Available at:
<https://towardsdatascience.com/ai-machine-learning-deep-learning-explained-simply-7b553da5
b960> [Accessed 10 May 2020].
[11]Nicholson, C., 2019. A Beginner's Guide To Neural Networks And Deep Learning. [online]
Pathmind. Available at: <https://pathmind.com/wiki/neural-network> [Accessed 17 May 2020].
Images
[1]2019.​ Prototyping Design Process-Software Development.​[image] Available at:
<​https://www.plutora.com/blog/software-development-life-cycle-making-sense-of-the-different-
methodologies​>[Accessed 8 May 2020] Note: Author made edits to the image for clarity
[2]Generated by Google Image Search Engine. Available at: <​Leukemia White Blood Cells
Microscopic Images​> [Accessed 6 May 2020]

https://www.plutora.com/blog/software-development-life-cycle-making-sense-of-the-different-methodologies
https://www.plutora.com/blog/software-development-life-cycle-making-sense-of-the-different-methodologies
https://www.google.com/search?q=Leukemia+White+Blood+Cell+microscopic+images&rlz=1C1CHBF_enUS862US862&source=lnms&tbm=isch&sa=X&ved=2ahUKEwiZ7ZKsiKXpAhVSKa0KHVrJCuwQ_AUoAXoECAsQAw
https://www.google.com/search?q=Leukemia+White+Blood+Cell+microscopic+images&rlz=1C1CHBF_enUS862US862&source=lnms&tbm=isch&sa=X&ved=2ahUKEwiZ7ZKsiKXpAhVSKa0KHVrJCuwQ_AUoAXoECAsQAw

LeukosCognosis: A Machine Learning Algorithm 42

[3]​2019. ​Convolutional Neural Network-Layman's Terms​. [image] Available at:
<​https://towardsdatascience.com/convolutional-neural-network-a-step-by-step-guide-a8b4c88d6
943​ > [Accessed 4 May 2020].
[4]​ 2014.​Structure of Convolutional Neural Network-Neurons​. [image] Available at:
<​https://www.researchgate.net/figure/The-structure-of-a-convolutional-neural-network-adopted-i
n-this-paper-The-circles_fig2_286240187​>[Acessed 10 May 2020]
[5]2019. NumPy Arrays flatten. [image]. Available at:
<​https://www.sharpsightlabs.com/blog/numpy-flatten​>[Acessed 9 June 2020]

https://towardsdatascience.com/convolutional-neural-network-a-step-by-step-guide-a8b4c88d6943
https://towardsdatascience.com/convolutional-neural-network-a-step-by-step-guide-a8b4c88d6943
https://www.researchgate.net/figure/The-structure-of-a-convolutional-neural-network-adopted-in-this-paper-The-circles_fig2_286240187
https://www.researchgate.net/figure/The-structure-of-a-convolutional-neural-network-adopted-in-this-paper-The-circles_fig2_286240187
https://www.sharpsightlabs.com/blog/numpy-flatten/

