Graphene Nanoribbons

A graphene nanoribbon (GNR) is obtained by patterning a graphene sheet into a narrow ribbon. The electronic properties of a GNR strongly depend on the shape of the edges and the width of the ribbon. The structure of a GNR with so-called armchair edges is shown in Fig.1. An armchair GNR is represented by an index N, which denotes the number of carbon atoms of type A (or type B) in a unit cell. The carbon-carbon bond length is $a_{0}=0.142 \mathrm{~nm}$.

Abbildung 1: The structure of an armchair GNR.
a. Write a function (AGNR_Pos) which calculates the position vectors of the $2 N$ carbon atoms in a unit cell of an armchair GNR. Input parameters are the index N and a distance xoff which should be added to the x-coordinate of each atom. The output is the matrix $[\mathrm{Pos}]_{2 N \times 2}$ which contains the $2 N$ vectors.
b. Write a function (AGNR_Dis) with two input matrices [Pos1 $]_{2 N \times 2}$ and $[\operatorname{Pos} 2]_{2 N \times 2}$ and an output matrix $[\mathrm{Dis}]_{2 N \times 2 N}$. The function computes the distances Dis $[\mathrm{i}, \mathrm{j}]$ between atom i in Pos1 and atom j in Pos2.
c. Write a function (AGNR_Ham) with the input matrix [Dis] ${ }_{2 N \times 2 N}$ and output matrix $[\mathrm{Ham}]_{2 N \times 2 N}$. The elements Ham[i,j] indicate the hopping parameter between atom \mathbf{i} and atom \mathbf{j}. You can assume that the on-site potential is zero ($E_{0}=0$) and that the hopping parameter t is non-zero only for the first nearest neighbors.

$$
\operatorname{Ham}[i, j]= \begin{cases}t & \text { if atom } i \text { and atom } j \text { are nearest neighbors } \\ 0 & \text { otherwise }\end{cases}
$$

The value of the hopping parameter is $t=-2.7 \mathrm{eV}$.
d. Write a code (AGNR) which calculates the Hamiltonian matrix by calling the above functions. First, compute the atomic positions for the central unit cell ($\mathrm{xoff}=0$), of the left unit cell $\left(\operatorname{xoff}=-3 a_{0}\right)$, and of the right unit cell (xoff $=3 a_{0}$). From the atomic distances within the central unit cell compute the matrix H_{11}. From the distances between the atoms in the left cell and the atoms in the central cell compute the matrix H_{10}. Analogously, compute H_{12}.

Finally, calculate the Hamiltonian $[h(k)]$ by summing the three Hamiltonians with the appropriate phase factors. Use at least 500 discrete k-points in the range $\left[-\pi /\left(3 a_{0}\right),+\pi /\left(3 a_{0}\right)\right]$.
e. For armchair GNRs with $N \in\{6,7,8\}$ calculate the eigenvalues with k as a parameter. Plot the eigenvalues as functions of k (dispersion relation).
f. For each GNR, calculate and plot the density of states $D(E)$. One out of two methods can be used:

- Differentiate numerically the dispersion relation $\varepsilon_{n}(k)$ for each band n to obtain the group velocity v_{n}.

$$
D(E)=\frac{1}{L} \sum_{n} \sum_{k_{\alpha}} \delta\left(E-\varepsilon_{n}\left(k_{\alpha}\right)\right)=\frac{1}{\pi \hbar} \sum_{n} \frac{1}{\left|v_{n}(E)\right|}
$$

- Use the original definition of the density of states and replace the δ-function by a Lorentzian function.

$$
D(E)=\frac{1}{L} \sum_{n} \sum_{k_{\alpha}} \frac{\gamma / 2 \pi}{\left(E-\varepsilon_{n}\left(k_{\alpha}\right)\right)^{2}+(\gamma / 2)^{2}}
$$

The broadening factor γ has to be chosen carefully.

Your report should be in PDF format and include figures, discussions, and the source codes. If you have questions please contact kampl@iue.tuwien.ac.at or kosina@iue.tuwien.ac.at. Please upload your report on TUWEL by June 9, 2017.

