
A opinionated critique of the
“Canonical Transaction Ordering for Bitcoin”

white paper, written
by Joannes Vermorel et al.

By /u/awemany, with many key thoughts and insights from Tom Zander (and likely
others I failed to mentioned here)

Preface
This is a critique of https://blog.vermorel.com/pdf/canonical-tx-ordering-2018-06-12.pdf, SHA256 
46b31403b83a04c372eeae09878ffa9ec70887388b14e3b7df7316fe148f4f0d.

This is not meant to deride the authors, their contributions or their paper. This is simply an attempt
to  bluntly  state,  rather  in  the  spirit  of  a  peer  review,  the  problems that  the  author  sees  in  the
assumptions and arguments of the aforementioned document. Hints of anger of the reviewer in this
document should be taken mostly as directed to himself  for not  seeing the issues more clearly
earlier.

In form, I will use here the “quote a section and argue about it” approach that is rather common on
platforms like Reddit and unusual for a review of a paper. But it appears to me that this approach is
quite apt to keep context intact and allow a reader to follow the arguments more easily as well as
being able to cross reference the original to check for biased quoting and similar problems on the
reviewers end.

Summary / TL;DR

In the view of this critic , there’s a strong lack of arguments and facts and a starry-eyed inadvertent
construction of red herrings that lead to false conclusions and false support regarding the removal of
the transaction order. After back-and-forth consideration, he strongly favors at least a further delay
on  implementing  this  change  and  likes  to  support  this  view  with  the  hopefully  convincing
arguments herein.

Detailed criticism

From the introduction:

https://blog.vermorel.com/pdf/canonical-tx-ordering-2018-06-12.pdf


This completely overlooks the key reason why blocks are ordered the way they are and is the root of
most of the problems with the arguments that follow from here. They are clearly NOT ordered like
this because of an accident, they are ordered like this because it is the natural order. It is the order
by which transactions can be generated, if one would have an omniscient view. (Note: I assume
without loss of generality from here on that double spends do not occur. They can in some cases, of
course, but the current data structures are efficient at detecting them, given that one of Bitcoin’s key
reason of being invented was to solve the double-spending problem. Because they can be detected
and because Bitcoin is designed to stop them from happening, they do not occur, except for – in the
big picture – relative fringe cases like the often 0-conf security problem.)

If you think of Bitcoin as an incentivized timestamping system, then all data that comes into the
system naturally follows what is named TTOR by the authors (and what is named natural order
herein).  Blocks serve as structured time stamps of this  data and giving a unique order to what
uncertainty remains in the system due to physical laws and its consequences (propagation delays
etc.). 

Furthermore, to specifically address the second part of the above quote, that is:

Updating the UTXO set can only happen by following the partial order of transaction dependence.
This is completely independent of a parallel or a serial single core implementation, it always has to
happen with honoring the partial order of transactions! 

Very bluntly, the paper here conflates the desire for easier parallel validation with the need to have
the partial transaction order available and from this conflation, and in turn arriving at invalid results.

This is a criticism that threads through several arguments in the paper as well, as burying this fact
behind a new order of transactions in a block does not make this core necessity go away! The partial
order is, just like, for example, the preconditions when running a Makefile, essential to be followed
when updating the UTXO set. Which still did not prevent the implementers of make to add a -j
option.  (Yes, the critic is aware that he algorithms employed in make would likely fail if applied to
Bitcoin in a high transaction rate regime)

Now, there is a problem here with saying “the natural order” vs. “a natural order”. As it is a partial
order, several orderings would fulfill the partial ordering criterion of children transactions following
their parent transactions. But just because the natural order can not be observed in an unique way
does not mean that the partial ordering it follows is worthless. I hereby use “the natural order” to
mean the order transactions are put in blocks henceforth, while emphasizing the caveat that this is
(usually) one order of many that would work.

Going on with the next two sentences:

With CTOR being the “canonical transaction ordering rule”. I like to remark here on a more social
level that naming it “canonical ordering” is IMO showing the positive bias the authors have for their
construct  but  can  have  the  unintended consequence  of  unduly transporting  this  bias  on  the  “it



sounds good” level to the audience. This is why I will call the by-TXID ordering more neutrally
lexicographic order henceforth.

Then:

Most  of  the  above  points  become  quite  weak  or  even  moot  when  addressing  the  underlying
assumptions, so that should be done in more detail:

Yes and it is this ability that let Tom Zander remark (https://bitco.in/forum/threads/gold-collapsing-
bitcoin-up.16/page-1217#post-78681) that this  can be used to make Graphene efficient with the
current implementation.  A miner can reorder under the relatively weak constraint of the natural
(partial) order, as it is required for validation. This would greatly reduce the  extra cost to propagate
ordering, such as done in the current BU Graphene implementation and could be done without a
change of the validation rules. Which addresses the “Block propagation is more efficient” above
and, furthermore, one might want to point out here that a Graphene block still following the natural
order has a key advantage for the receiving end that is dropped completely in this analysis: He gets
the block in an order he can validate it in, without further processing or reconstruction necessary. In
other words, with lexicographic ordering, there is going to be adapters in the code that move from a
natural  order  to  the lexicographic one (which is  always at  minimum an O(n log n) operation),
followed  by  an  adapter  that  goes  the  other  way  around  and  reconstruct  a  partial  from  the
lexicographic order.

This missing feature is hidden in plain sight. The natural order of transactions is simply an order in
which to validate them. Yes, the order can be changed from the natural order to any other one that
fulfills the “transactions come before their descendants” partial ordering requirement. This does not



take remove the fact that it already is in this way and is taken for granted. Taken for granted so
much that the authors seem to be blind to its benefits, which are rather simply the fulfillment of
requirements.

As an observation that might itself raise criticism due to its assumption of intent, I still like to say
here that the part that strikes on “lack of ordering” seems a bit revealing to me, as it seems to
emphasize the perceived (and emotionally understandable) intent of the authors to make something
neater and more orderly. But the lack of ordering can be addressed in other ways, by for example
sorting blocks first by partial and then lexicographic order, as Tom Zander suggested for Graphene.

Also, there is again an obvious positive that the authors miss: The successful propagation by natural
order comes along with a successful validation in natural order by the network. When transactions
go into the mempool, they can be validated for all the required, transaction-specific rule adherence
at that point in time already.
Later on, the authors talk about having a smooth  and continuous use of computing and network
resources being desirable for transaction processing( see below).
But this is also the easiest to achieve when the transactions that come into the network naturally
follow a partial order as necessary for validation! Resorting them when blocks come in is busy work
that isn’t necessary with the current approach.

This seems to be a quick assertion without an underlying analysis. The above certainly isn’t that. In
detail it can well be argued that the change of the ordering will change the incentives for transaction
processing in minor ways at least, and I hope I have demonstrated above why that could also be in a
negative way. Granted, it would most likely not cause catastrophic damage, but there has been no
arguments presented to support making the above statement bluntly like that.

On this  larger section:

I have to say that it is likely correct in its math but mostly irrelevant. Because it completely misses
the point because of a key assumption being very wrong.
As  discussed  above,  the  authors  have  talked  about  how the  transaction  order  will  only  allow
transactions to come in in natural order. But that is exactly what is needed to quickly and efficiently
validate.
Because the transactions come in the desired order  already, there is NO NEED to rearrange in
topological order and the cited complexities are absolutely meaningless. To exemplary go down on
a few points to show how much of a red herring has been constructed here:



But the transaction ordering IS ALREADY topological. No sorting is necessary. The authors state
earlier that the network will not accept out of order transactions, yet here they create an imaginary
problem for 0-conf transactions, even though they follow this topological ordering as well.

Yes. Which is good. Which is the “make -j” approach. We want that.

And here’s a disconnect. Just because a heuristic can be used does not mean that a security analysis
as well as constraining the security properties of the system is not possible. Discussions on Peter
Tschipper’s parallel validation have actually shown how it addresses some of the feared security
issues.
Now I agree  in principle on the idea that reliance on heuristics are bad for infrastructure software,
but we’re talking about the unavoidable nature of the blockchain here! And the reliance can be
contained with a proper approach to validation.

As far as I can see, this has not  at all been properly pointed out “in the previous section”. 0-conf
transactions follow the very same partial order as confirmed transactions now, which is actually the
intent of the authors to change!



No,  natural  ordering  DOES  NOT  deter  participants  from  doing  so.  Natural  ordering  deters
participants from doing so and then being too lazy to bring the set of nested transactions into the
proper partial order for validation!

And, talking about the issue of “infrastructure software”, it is usually a good guideline to make this
infrastructure sofware as simple and dumb as possible. This means that the requirements to keep the
partial  order  should be fulfilled at  the edges (transaction generators) and not  the core  (nodes,
validators) of the system!

Again, the natural order exists already. No need to deal with fancy topological sorting algorithms,
humanity (and maybe some bots) did that for you already when they sign the transactions. In order.
As the form chains that are ordered causally. Causality implies topological transaction order.

On the proposed validation scheme:

Yes, a two stage loop. But with the current natural ordering, it is also a  two stage loop to do the
validation, so the demonstration that validation is a two stage loop is quite meaningless. And for a
single core, the approach works for all transactions, without ever having to break out of this loop
due to an external dependency. Not so with parallel validation, and – as far as it seems – even more
so when the natural order has been removed.

And it is of course, as the authors have complained about at length, only  mostly embarrassingly
parallel. Because those transactions that are pointing outside the boundaries of the chunks assigned
to individual validation workers have to be validated according to topological order! 

And  what  the… heck  does  a  lexicographic  ordering  of  transactions  in  the  BLOCK help  with
validation here? Where is the reliance on ordering by TXID id? There has been no motivation at all
here on why this is advantageous.

Yes, of course, there likely needs to be some kind of UTXO data structure that keeps transactions
accessible  by  their  ID.  And of  course  it  essential  to  have  an  index  by transaction  ID on  this
datastructure. But that is independent of the order of transactions in a block!



But this is independent of the order of transactions in the block!!!!!

There’s no motivation at all why this is desirable and I see an utter lack of data to support this view.
And, yes, they can be seen of course as a set without an order if you remove the order. Very well.
But for validating them, one has to reinstate a partial order.  A partial order that is right now
naturally kept within the blocks and removed – just to create the need to be reconstructed – with a
resorting of the transaction in blocks.

But set reconciliation is already proven to work with the caveat of additionally transmitting ordering
information,  see the BU Graphene implementation.  By the authors’ own admission,  the current
ordering  allows  a  huge deal  of  freedom,  which  translates  into  a  large  fraction  of  the  ordering
entropy that can be saved when miners reorder their transactions while keeping them in a validation
order before transmitting them.

This propagation ahead of time happens already and it happens in natural order. Which is, curiously
enough, most amenable to validation!

These “chainless apps” exist right now and they are also not encumbered by the arbitrarily large
blockchain. The ability to serve and query blockchain data is independent of the transaction order in
a block and is rather a question of database layout. One might reorder blocks to more easily serve
data by transaction ID directly from this block data, but this comes with the trade-off that has been
repeatedly point out above that it breaks the validation order!

If  anything,  an  order  will  create  further  trouble  by  encumbering  transactions  within  a  block.
Whereas the transaction order (if you could look at the inaccessible creation / signing time) right



now follows a pattern like the green crosses, with the new lexicographic ordering, it would follow
rather  a  pattern  like  the  red  ones  which  break  order  at  the  block  boundary  in  the  following,
admittedly crude illustration:

The block is a structured timestamp in the context of validation. Ordering by TXID and breaking
block boundaries does not help at all with keeping with the flow of transactions in an even manner
and NO argument has been given so far why that should be the case and the above illustration
demonstrates that one creates an additional, artificial boundary in to the system that only seems to
have the potential make things worse in this regard. See also above regarding the adapters needed to
bring it back into partial order needed for validation. In any case, no proper arguments why this is
beneficial have been brought forward.

On to “Opt-in locality”:

Yes, but what for, exactly? I can localize transactions in a block, but I can use the same process
right now to localize TXIDs in an UTXO database. What does it matter that they are localized in a
block? Any method to query the block data still has to cut out the desired data. In any case.

Earlier on, the authors have identified the validation being the issue with scaling Bitcoin that they
want to address with this proposal.  However, given this and the surrounding paragraphs the
authors should ask themselves honestly whether the changes they propose are basically rather
driven by somewhat easier querying and presentation of the blockchain, rather than validation
of it. 



That is again an assertion without proof. And I assert the opposite here, and have at least the sound
but simple argument from above to back it up: The needed partial order is the validation order. Such
a partial order is always needed. It currently comes with Bitcoin for free. This proposal wants to
remove and replace this order, but there has been no argument forward why the lexicographic order
can in any way solve the problem of having a transaction dependency graph!

Finally let me also use this place to address a point that isn’t directly made in this paper but has
been brought up as an advantage of by-TXID ordering but also weakens drastically upon closer
inspection of the necessary preconditions and scenarios it could be applied in.

That is the idea of being able to “Prove the absence of a transaction in a block”.

With a lexicographic  ordering, the question of “Is this transaction with ID X in Block at height Y
(or with hash Z)?” can be answered in the negative in an efficient way that it cannot be answered
without this canonical ordering. The reason is that a two neighboring leafs in the merkle treedown
to the transaction in question can act as “pliers” of sorts and prove exclusion of a given TXID.

But this is simply the result of asking the wrong question. The question that could be asked instead
is “Is the transaction with ID X in Block at height Y (or with hash Z) and merkle-tree encoded
position P?”.

And  this  can  be  answered  in  all  cases  in  the  negative  and  the  positive  with  the  current
implementation.

Conclusions

I think the above demonstrates why we should all  really ask ourselves whether we want to go
forward with this in November, or postpone this to have a second look. Especially the in-the-field
observation by Tom Zander that at least one current implementation suffers from a reduction in
validation speed concerns me  greatly and tells me that it is rather a good idea to wait a bit more
with a further analysis and proper addressing of the above criticisms. Which are not only made by
me or Tom Zander btw., I am sure I have seen some of them being made elsewhere, in comments
deep on Reddit and similar. So any reader who wants to be properly cited as having prior art here,
please drop me a link.


